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Optimal Floquet state engineering for large
scale atom interferometers

T. Rodzinka1, E. Dionis2, L. Calmels1, S. Beldjoudi1, A. Béguin1, D. Guéry-Odelin1,
B. Allard 1, D. Sugny 2 & A. Gauguet 1

The effective control of atomic coherence with cold atoms has made atom
interferometry an essential tool for quantum sensors and precision measure-
ments. The performance of these interferometers is closely related to the
operation of large wave packet separations.We present here a novel approach
for atomic beam splitters based on the stroboscopic stabilization of quantum
states in an accelerated optical lattice. The corresponding Floquet state is
generated by optimal control protocols. In this way, we demonstrate an
unprecedented Large Momentum Transfer (LMT) interferometer, with a
momentum separation of 600 photon recoils (600 ℏk) between its two arms.
Each LMT beam splitter is realized in a remarkably short time (2ms) and is
highly robust against the initial velocity dispersion of the wave packet and
lattice depth fluctuations. Our study shows that Floquet engineering is a
promising tool for exploring new frontiers in quantum physics at large scales,
with applications in quantum sensing and testing fundamental physics.

Atom interferometry has made significant contributions to quantum
technologies, enabling advances in inertial sensing1–3, and the mea-
surement of fundamental physical constants4–6. It also has great
potential for performing fundamental tests, such as testing the weak
equivalence principle7, searching for the nature of dark energy8,9, or
investigating analogs of the Aharonov-Bohm effect10,11. Enlarging the
spatial separation between the arms of an interferometer holds great
promise for increasing the sensitivity of quantum sensors. It is also
instrumental in the exploration of new physics at the interface of
relativity and quantum mechanics12–14, as well as to the detection of
gravitational waves15–20 and dark matter21,22. These proposals highlight
the critical need for highly efficient atom manipulation processes,
especially to achieve momentum separations >1000 photon recoils
(1000ℏk). Large Momentum Transfer (LMT) techniques increase the
momentum separation from a superposition of two states generated
by a π/2 beam splitter pulse. This lowmomentum separation is further
enhanced by continuous acceleration via Bloch oscillations23–25 or
discrete acceleration using π pulse sequences26–29. To date, the largest
momentum transfer techniques used in interferometers have
demonstrated momentum separations up to 400 ℏk30,31.

In this paper, we present a novel approach that unifies discrete
and continuous acceleration methods by combining the Floquet
formalism with quantum Optimal Control Theory (OCT). Quantum
OCT is a set of methods for designing electromagnetic fields to
perform specific quantum operations with optimal efficiency32. It
has emerged as a key tool in the advancement of quantum
technologies33. In the context of atom interferometry, OCT has only
been successfully applied to a limited number of momentum states,
e.g. to improve the robustness of interferometers based on Raman
beam splitters34 or third-order Bragg diffraction35. However, the use
of these protocols in optical lattice-based LMT experiments remains
challenging due to the significant number of states involved and the
need for robustness over a wide range of parameters36–38. In our
approach, optimal control protocols are employed to guarantee the
robust preparation of Floquet states against the velocity dispersion
of the atomic ensemble. This Floquet state based approach sig-
nificantly reduces the complexity of the systemunder consideration.
Consequently, it allows the application of OCT in situations where
the control problem would be numerically intractable without this
formalism.
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This method operates in deep non-adiabatic regimes, enabling
remarkably fast and highly effective acceleration within an optical
lattice, exceeding the current state of the art. We demonstrate an
interferometer capable of achieving a momentum separation of up to
600 ℏk with a visibility of 20%. In addition, numerical simulations
confirm the scalability of our approach and suggest the possibility of
atom interferometers >1000 ℏk. This advance paves the way for sig-
nificant progress in the measurement of the fine structure constant
and addresses a critical challenge for atom interferometers operating
at very large scales, particularly in the context of gravitational wave
detectors.

Results
Our experimental setup, shown in Fig. 1a, uses a Bose-Einstein Con-
densate (BEC) consisting of about 3 × 104 Rubidium-87 atoms. After a
free fall of about 5ms, the atoms have an initial center-of-mass
momentum of ~8 ℏk in the laboratory frame and a momentum dis-
persion of 0.3ℏk corresponding to an effective temperature of ~30 nK.
The atoms then interact with a retroreflected vertical optical lattice,
with tunable frequency and amplitude. The acceleration due to gravity
is compensated by applying a linear frequency ramp to achieve a sta-
tionary lattice in the free fall frame.

The experimental configuration implements an analog of the
Mach-Zehnder interferometer for atoms by a sequence of optical
lattice pulses inducing Bragg transitions between momentum
states39, as shown in Fig. 1b. The initial π/2 pulse creates a coherent
superposition between two momentum states, ∣p0

�
and ∣p0 � 2_k

�
,

thus acting as a beam splitter for the matter wave. Here, p0≪ ℏk
denotes the initial momentum of an atom in the free fall frame. The
lower path then undergoes an acceleration sequence and is decel-
erated again after a free propagation time T’. This acceleration-
deceleration sequence (Fig. 1c) ideally does not affect the upper arm.
Then a π pulse reverses the momentum states ∣p0

�
and ∣p0 � 2_k

�
,

acting as a mirror for the two arms. The same sequence of accel-
eration, free propagation T 0 and deceleration is then applied to the
upper path. Finally, a π/2 pulse acts as a second beam splitter to
complete the interferometer. The populations in the two main out-
put ports with states ∣p0

�
and ∣p0 � 2_k

�
are measured through

fluorescence imaging after ~14ms of free fall time.

Principle of Floquet atom accelerator
The acceleration of the atom is achieved by a sequence of optical
lattice π pulses, each of duration τ. Every pulse transfers a momentum
of 2 ℏk to the atom. This results in an average acceleration of al =

2_k
Mτ ,

where M is the atomic mass. The two-photon resonance condition is
adjusted for each pulse to ensure efficient momentum transfer. The
frequency difference ω between the two arms of the optical lattice, in
the free fall frame, driving the Bragg transitions is therefore a piece-
wise constant functionwith a decrease of 8ωr =4

_k2

M betweenpulses, as
represented in Fig. 2b. We define the accelerated frame as the refer-
ence frame following the average acceleration al of the atoms. In this
frame, the lattice frequency is a periodic sawtooth function with per-
iod τ, as shown in Fig. 2c. In the accelerated frame, the Hamiltonian is
periodic, ĤðtÞ= Ĥðt + τÞ, and the dynamics of the system is naturally
described within the Floquet formalism40.

Floquet’s theorem states that there exists a complete set of
solutions to the time-dependent Schrödinger equation, called Floquet
states, which can be obtained by diagonalizing the one-period
propagator41 (see Supplementary Material). Here the Floquet’s theo-
rem simplifies as the system is observed stroboscopically at times nτ.
In particular, if the system is prepared in a single Floquet state ∣wmðt0Þ

�
at time t0, its temporal evolution exhibits periodicity up to a phase
factor:

∣wmðt0 + τÞ
�
= ∣wmðt0Þ

�
eiθm : ð1Þ
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Fig. 1 | Large momentum transfer interferometer. a Scheme of the experimental
setup. A vertical optical lattice is used to manipulate the atom momentum states.
Fluorescence imaging is used todetect the atomsafter a timeofflight.b Space-time
diagram of the LMT interferometer based on a sequence consisting of two π/2
pulses separated by a π pulse. Between these pulses, the two arms are successively
accelerated and decelerated by a sequence of additional lattice pulses. The atoms
are in free fall for T 0 between the acceleration and deceleration stages. c Scheme of

the acceleration-deceleration process. Blue dots represent the momentum state
decomposition at different times of the sequence. d Stack of images of atomic
ensembles for different maximum momentum separations. The images are taken
after a full sequence of acceleration and deceleration for a single arm and after a
time of flight of 14ms. A maximum separation of 600ℏk corresponds to a transfer
of 1200ℏk per arm (acceleration + deceleration).
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The principle of the Floquet accelerator is based on the stroboscopic
stabilization of the system, i.e., the atom returns to the same Floquet
state ∣wm

�
after each pulse of duration τ (see Fig. 2d). It results in a

lossless coherent accelerationof the atomicwavepacket in the free fall
frame. Among all the Floquet states, a relevant choice is the state ∣w0

�
,

which is localized in both position and momentum within each lattice
cell, and has the highest projection onto the initial momentum state
∣p0

�
. The momentum state decomposition in population and phase of

a typical ∣w0

�
state is illustrated in Fig. 2e, f. This specific Floquet state

appears in particular for a π pulse and depends on the temporal pulse
shape. For sufficiently short pulse duration τ ≤ 7 μs, this state is very
similar to a displaced and squeezed state in phase space42, which is
preserved during the dynamics and whose time evolution of the
position and momentum expectation values is well described by the
corresponding classical trajectory (see Supplementary Material). An
example is shown in Fig. 2g with the Husimi representation of the
Floquet state. The displacement in position of the quantum state
results from a balance between the inertial force − Mal in the accel-
erated frame and the restoring force due to the optical lattice.

The efficiency of the acceleration is greatly improved by adding a
suitably shaped pulse to prepare the Floquet state. In practice, this
pulse is designed using OCT to adjust both the amplitude and fre-
quency of the optical lattice. Optimal controls are designed using a
gradient-based optimization algorithm that aims to maximize itera-
tively a given figure of merit defining the optimal problem (see
Methods and Supplementary Material). This step is performed before
(and at the end of) the acceleration sequence, and it transforms the
initial state ∣p0

�
into the corresponding Floquet state ∣w0

�
defined for a

given π pulse of the acceleration sequence (and vice versa). The cor-
responding optimal control protocols are denoted OC-1 and OC-2 in
Fig. 2. Similar sequences are used during the deceleration phase.

Figure 2 shows the principle of Floquet acceleration with a
sequence of NF = 20 pulses that transfers 40 ℏk. At each step of the
sequence, a time-of-flight measurement allows the atomic states to be
mapped onto the momentum state basis ∣p0 + 2n_k

�
, with n 2 Z. In

Fig. 2d, the different states are displayed in the accelerated frame to
improve the readability of the images.

The Floquet acceleration relies on the periodicity of the pulse
sequence, independent of the specific shape of each pulse. Therefore,
the Floquet state ∣w0

�
can be identified for various types of pulses,

including sequential Bragg pulses, continuous Bloch-type accelera-
tions (such as adjacent square pulses of constant frequency in the
accelerated frame), and their combinations. In this study, we use dis-
crete frequency evolution and either discrete (hyperbolic tangent tanh
pulses) or continuous (adjacent square pulses) amplitude evolution.
Detailed amplitude and frequencyprofiles of the lattice are given in the
Methods section.

It is worth noting that our approach differs from the use of Flo-
quet’s formalism in ref. 31, where it is used to find periodic amplitude
modulations within a single pulse to mitigate the opposite Doppler
effects of the two arms of an interferometer.

Robust Floquet state preparation
We have introduced the principle of Floquet acceleration for a pure
initial momentum state ∣p0

�
. The OC pulses corresponding to this

idealized situation, are called non-robust control. However, each p0
within a BECmomentum distribution f(p0) is associated with a specific
Floquet state ∣w0ðp0Þ

�
. For example, Fig. 3a shows the decomposition

into momentum states of two Floquet states associated with 0 ℏk and
0.3 ℏk. Thus, the non-robust control does not achieve perfect pre-
paration for the entire momentum distribution. Therefore, to effi-
ciently implement this approach, we need to find a robust OC pulse
capable of simultaneously preparing Floquet states ∣w0ðp0Þ

�
for all p0.

For acceleration sequences based on short π pulses, the Floquet
state is only slightly changed with respect to p0, and robust OC pulses
can be designed for a reasonably broad momentum distribution (see
Methods). In Fig. 3b, we show in an illustrative example that the dis-
tribution measured in the momentum state basis with the robust
optimal control is very close to the theoretical distribution, while sig-
nificant differences are observed in the case of the non-robust control.

Fig. 2 | Principle of Floquet acceleration. aThe time variationof the optical lattice
consists of a periodic series of π pulses of duration τ and amplitude Ω, illustrated
here with tanh pulses. b The resonance condition in the laboratory frame is
adjusted for each pulse, resulting in a stepwise evolution of the lattice frequency.
c In the accelerated frame, the lattice frequency ωa shows a periodic sawtooth
shape, resulting in τ-periodic driving of the lattice. OC-1 and OC-2 represent the
optimal Floquet state preparation pulses. d Stack of experimental images showing
accelerated atoms at different steps of the acceleration sequence for NF = 20. The

images are taken after a time-of-flight showing the momentum distributions of the
input state ∣p0

�
, the output state is ∣p0

�
in the accelerated frame (∣p0 � 2NF_k

�
in

the free fall frame) and the prepared Floquet state ∣w0

�
during the periodic

acceleration sequence. e, fCalculated Population and phase decompositions of the
transported Floquet state in the momentum states basis for a 5.3 μs square pulse.
g Corresponding phase space Husimi representation of the Floquet state (see
Supplementary Material).
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The quality of the robust preparation is confirmed by the measure-
ments of the fraction of atomsaccelerated to 20 ℏk, as shown inFig. 3c.

Our experimental results are in a good agreement with simula-
tions performed without adjustable parameters for both cases. The
acceleration efficiency achieved with the non-robust preparation
shows a rapid decrease with increasing momentum dispersion, in
contrast to the robust case, which maintains a high efficiency up to
0.35 ℏk (~45 nK). Beyond this velocity dispersion, the OCT algorithm
does not converge to robust control within the 100 μs duration of the
OC-1 and OC-2 pulses.

Floquet atom acceleration
Wemeasure the efficiency of the Floquet accelerator using a sequence
of acceleration-deceleration over a range of momentum values, up to
an acceleration-deceleration of 600-600 ℏk (i.e. a total transfer of
1200ℏk). Figure 4 shows themeasured fraction of remaining atoms for
two different acceleration sequences, one based on tanh pulses with a
duration of 8 μs and the other on square pulses with a duration of
5.3μs. We fit these data with a function P0 � P2NF , where NF is the
number of acceleration pulses. The parameter P0 mainly represents
the overall efficiency of the OC-1 and OC-2 stages and P is an effective
pulse-to-pulse efficiency of the acceleration process. We achieve an
efficiency per ℏk (

ffiffiffi
P

p
) of 0.99945(5) (resp. 0.9990(2)) for the square

(resp. tanh) pulse sequence.
The observed efficiency is the highest reported to date31,43–45. In

addition, there is potential for improvement by mitigating sponta-
neous emission, a significant limitation as shown in Fig. 4, by
increasing laser detuning and power46. Another important factor to
consider is amplitude fluctuations. Numerical simulations show that
pulse-to-pulse fluctuations, characterized by a standard deviation of
4% (typical in our setup), can account for the observed efficiency.
This problem can be mitigated by laser power stabilization techni-
ques. This suggests that the intrinsic efficiency of Floquet accelera-
tion allows the realization of large momentum transfers in regimes
well above 1000ℏk.

The demonstrated 2 × 600ℏk momentum transfer with an effi-
ciency of 0.5 is achieved in 3.6ms, including four OC pulses of 100 μs
each. Two of them are used here to reverse the direction of accelera-
tion, allowing the atoms to return at a detectable velocity (see inset in
Fig. 4). This results in an average momentum transfer of ℏk every 3 μs,
the largest acceleration demonstrated so far with multi-photon tran-
sitions. Some single-photon transitions exhibit faster momentum
transfer rates31; however, this advantage comes with a trade-off
between spontaneous emission and Rabi frequency47–49.

Large Momentum Transfer Atom Interferometer
We implement the Floquet accelerator in an LMT inteferometer (see
Fig. 1b). The π/2 beam splitters used in the interferometer create two
arms with a momentum separation of only 2ℏk. To effectively
implement Floquet accelerations in a LMT interferometer, it is
essential tomaintain decoupling between the acceleration processes
in each arm. However, the Floquet state ∣w0

�
is typically decomposed

over many momentum states as can be seen, e.g. in Fig. 3b. Thus,
during the early acceleration stage, when the momentum difference
between the two interferometer arms is minimal, typically only a few
ℏk, the momentum components of the Floquet state of the acceler-
ated arm would coincide with those of the unaccelerated arm. This
overlap leads to a significant reduction of the LMT beam splitter
efficiency. To mitigate this effect, one needs to tailor an efficient
initial two ports beam splitter reaching a sufficient momentum
separation such as high order Bragg diffraction35,39, Bloch
acceleration23, shaken-lattice beamsplitters50, or additional OC
pulses36,37. We choose to implement this pre-acceleration strategy
(illustrated in Fig. 5a) using Coherent Enhancement of Bragg
Sequences (CEBS)29 until the momentum difference δp between the
interferometer arms reaches 22 ℏk, corresponding to the combined
momentum transferred by the π/2 pulse and the 10 CEBS pulses. The
latter pulses used in the pre-acceleration stage have a duration of
40 μs, ensuring that only a very limited number of momentum states
are populated during each pulse. We then switch to Floquet accel-
eration for the remainder of the acceleration sequence. Therefore,
the maximum momentum separation is 2Nℏk = (22 + 2NF)ℏk.

The interferometer signal is the normalized atom numbers
detected in the twomain output ports: S =N0/(N2 +N0), whereN2 is the
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Fig. 3 | Robustness of the Floquet state preparation. a For a given acceleration
sequence, the Floquet state depends on the initial atommomentum p0. The insets
show the Floquet states for p0 = 0 ℏk and 0.3 ℏk. b Histogram of the momentum
state distribution of the theoretical Floquet states ∣w0ðp0Þ

�
averaged over the

momentum distribution f(p0) and experimentally prepared Floquet states. Green
circles (resp. blue squares) correspond to the state obtained with the robust pre-
paration (resp. non-robust). Lower panel: Image of the prepared Floquet state with
the robust preparation. c Remaining fraction of accelerated atoms at 20 ℏk for
robust Floquet state preparation in ∣w0

�
(green circles) and without robust opti-

mization (blue squares) as a function of themomentumdispersion σp of the atomic
cloud. Error bars are a statistical standard error of the mean over 20 realizations.
Solid lines are the corresponding numerical predictions. The above examples
correspond to an acceleration sequence based on tanh pulses of 8 μs.

Fig. 4 | Floquet accelerator momentum transfer. Fraction of remaining atoms
after up to 600ℏk acceleration and 600ℏk deceleration. The red squares (resp.
green circles) correspond to a square (resp. tanh) pulse sequence. Error bars are a
statistical error on the mean over 20 realizations. Solid lines show fits to the data
with the function P0 � P2NF , and the shaded areas indicate numerically estimated
losses due to spontaneous emission (dark blue) and pulse-to-pulse amplitude
fluctuations with a 4% standard deviation (light blue). Inset: Scheme of the
acceleration-deceleration sequence of 2 ×NF-pulses showing the OC preparation
sequences.
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number of atomsmeasured in output port − 2 ℏk, andN0 is associated
with port 0 ℏk. The interference fringe between the two arms is
described by a sinusoidal function SðϕÞ =Að1 +V sinðϕÞÞ, whereV is the
fringe visibility andA is themean value. The phase shiftϕ can be varied
with the phase of the optical lattice, which is imprinted on the accel-
erated atomic wavefunction at each pulse transferring a momentum
2 ℏk. In practice, an offset φl of the optical lattice phase is applied
during theNF Floquet accelerationpulses (see Supplementary Fig. S1a),
resulting in a phase shift ϕ =NF ×φl. The fringe is scanned by incre-
menting φl. The visibility is determined by fitting the amplitude of the
sinusoidal function. The scaling with NF provides a compelling evi-
dence that the interference is specific to the fully separated inter-
ferometer and not to signals associated with parasitic interferometers
(see Methods and Supplementary Fig. S1b–d). Thus, we demonstrate
an atom interferometer with a separation of 600 ℏk and a visibility of
18 % ± 4% (Fig. 5b). This achievement represents the largest momen-
tum separation ever achieved in an atom interferometer. The visibility
value is mainly limited by two factors: the number of atoms under-
going spontaneous emission that reach the detection volume, and the
number of atoms lost during the pre-acceleration stages. Furthermore,
dephasing effects, such as vibrations or AC-Stark shifts inhomogene-
ities, may also contribute to this limitation. In addition, the maximum
momentum separation results from the inherent time-of-flight con-
straints of our experimental setup (see inset of Fig. 1d).

Discussion
In conclusion, our work introduces a novel approach that combines
Floquet formalism and optimal control protocols to accelerate atoms
in optical lattices, covering both continuous and discrete acceleration
scenarios. This method operates in a highly non-adiabatic regime,
allowing accurate control of atomic phases. In particular, we identify a

remarkable regime characterized by a constant amplitude and a dis-
crete lattice frequency evolution. Our approach achieves unprece-
dented efficiency and speed in lattice-based acceleration, resulting in
the highest and fastest demonstrated maximum momentum separa-
tion of 600ℏk in atom interferometry. The momentum separation is
limited only by the dimensions of our vacuum chamber.

Despite this already high efficiency, a major limitation of our
setup, spontaneous emission, could be overcome by increasing the
detuning with the excited state, while maintaining the same lattice
depth with more laser power. In addition, we show that the Floquet
state can be accurately approximated by a squeezed state. This simple
parameterization could allow refinement of the acceleration sequence,
leading to improved robustness of matter-wave beam splitters, espe-
cially with respect to laser power fluctuations and a fine control of
systematic effects associated with the atomic diffraction phase shifts.
Moreover, the implementation of opposite Floquet accelerations in
both interferometer arms using double lattice diffraction could offer a
solution to further mitigate systematic phase shifts. Therefore, this
method has the potential to support interferometers well beyond
1000 ℏk, opening new avenues for future applications in precision
metrology, quantum technologies, and addressing one of the critical
challenges for very large scale atom interferometers envisioned for
gravitational wave detection.

These results not only advance applications in atom inter-
ferometry but also introduce an innovative approach that extends the
capabilities of quantum optimal control to navigate high dimensional
Hilbert spaces33,51. In our approach, we encapsulate the complexity
within a Floquet state, allowing both remarkably fast and robust state-
to-state preparation within a vast 300-dimensional Hilbert space. The
ability to precisely manipulate quantum states in such complex sys-
tems has great potential for quantum technologies, either for sensing
or for quantum computing and simulation51–53. Therefore, beyond
applications in atom interferometry, our approach provides an effec-
tive method in the quantum control toolbox.

Methods
Quasi-Bragg diffraction in a nutshell
The optical lattice consists of two counter-propagating beams, char-
acterized in the laboratory reference frame by their frequencies (ω1,2),
their opposite wave vectors (k1,2) with k1 ~ − k2, and a phase (φ1,2). The
phase and frequency differences between these two beams are deno-
ted by φ =φ1 − φ2 and ωl = _φ=ω1 � ω2, and the mean wave vector is
defined as k = (k1 + k2)/2. When these two waves are superimposed,
they form a quasi-stationary wave moving with a velocity v =ωl/2k
relative to the laboratory reference frame.

The laser is detuned far from the frequencies of the atomic tran-
sitions, allowing for adiabatic elimination of the excited state. The
atom-light interaction is then reduced to a light shift proportional to
the light intensity. This leads to an interaction potential of the form
2_ΩðtÞsin2ðkz � φðtÞ=2Þ, where Ω(t) represents the two-photon Rabi
frequency. In the laboratory reference frame, the Hamiltonian
describing the evolution of the atom is the sum of a kinetic energy
term, the potential associatedwith the standingwave and gravitational
potential

Ĥ =
p̂2

2M
� _ΩðtÞ cosð2kẑ � φðtÞÞ+Mgẑ:

Using the unitary transformations Û1 = exp½ i_Mgtẑ� and Û2 = exp½i φp̂
2_k�,

we obtain as shown in Supplementary Material, the Hamiltonian Ĥ2 in
the free fall frame that can be expressed as

Ĥ2 =
1

2M
p̂�Mωl

2k
�Mgt

� �2

� _ΩðtÞ
2

e2ikẑ + e�2ikẑ
� �

:

b

a

...

CEBS
pre-acceleration

Upper arm

Lower arm
OC-1

Time

M
om

en
tu

m

Fig. 5 | Floquet accelerator-based atom interferometer. a Momentum-time dia-
gramof the composite beam splitter:π/2 Bragg pulse, 10CEBSpre-acceleration and
289 Floquet acceleration pulses leading to 600 ℏk. Green dots represent momen-
tum states populated during the sequence. b Fringes for 600ℏk LMT-
interferometer. Each point is the averaged measurement over around 10 realiza-
tions and error bars are the standard errors on the mean. The solid line is a sinu-
soidal fit to the data.
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The operators e± 2ikẑ couple momentum states differing by 2ℏk.
The periodic potential can thus be interpreted as a two-photon pro-
cess in which a photon is absorbed in one traveling wave and re-
emitted by stimulated emission in the other wave, resulting in a 2 ℏk
momentum transfer. Energy conservation leads to the two-photon
Bragg resonance condition:ωl = 4ωr + 2 kva, where va is the projection
of the atomic velocity onto the lattice direction in the laboratory
reference frame. Here, the optical lattice is vertical and the atoms are
in free fall. Consequently, a time-dependent frequency ramp
ωl(t) = 4ωr + 2 kv0 − 2 kgt =ω − 2 kgt is set to compensate for the
acceleration due to gravity and to maintain the Bragg condition, ω is
the lattice frequency in the free fall frame.

As described in Supplementary Material, an additional unitary
transformation given by Û3 = exp½� 2i

_ βẑ� (where β(t) is a time-
dependent parameter that has the dimension of a momentum) is
performed to define the Hamiltonian Ĥ3 in an accelerated frame in
which the dynamics is periodic. We arrive at

Ĥ3 =
1

2M
p̂�Mωl

2k
+2β

� �2

� _ΩðtÞ cosð2kẑÞ+2 _βẑ=_:

For weak optical lattice depths, the dynamics of the system is
described by an “effective two-level system” (Bragg approximation).
Under these conditions, we observe Rabi oscillations between two
momentum states separated by 2 ℏk. The Rabi phase is defined as
ΘR = ∫Ω(t)dt, forΘR =π/2 (resp.π) the correspondingpulse is called aπ/
2 pulse (resp. π pulse). In the Bragg regime, a π/2 pulse creates an
equiprobable coherent superposition similar to a beam splitter for the
atomic wave function. A π pulse reverses the two momentum states,
essentially acting as a mirror for the atoms. For larger lattice depths,
the Bragg approximation breaks down, requiring consideration of
more complex dynamics between momentum states39.

Experimental setup
Cold atom source. The atomic source consists of an ensemble of
Rubidium-87 atomscooled by forced evaporation in an all-optical trap.
The configuration of this dipole trap is based on two horizontally
crossing beams at 1070 nm, plus a third beamat 1560 nmat an angleof
45° to the vertical, with a smaller waist. This configuration allows the
trapping frequencies and trapping depth to be adjusted indepen-
dently, and the runaway regime to be achieved during evaporative
cooling. In addition, a horizontal magnetic field gradient is applied
during the evaporative cooling process to prepare the condensate in
the pure ∣F = 1,mF =0

�
state. In 6 seconds we produce a Bose-Einstein

condensate (BEC) consisting of 6 × 104 atoms. Confinement fre-
quencies at the end of evaporation reach about (60 × 900 × 1100) Hz3.
By transferring the BEC to a less confining trap, characterized by fre-
quencies around (10 × 80 × 80)Hz3, we achieve a significant reduction
in the velocity dispersion. This allows us to obtain atomic ensembles of
3 × 104 atoms with a momentum dispersion of about 0.3ℏk (corre-
sponding to an effective temperature of 30nK).

For the data presented in Fig. 3c, we adjust the momentum dis-
tribution either by adding a delta kick collimation step (for the data
below 0.3 ℏk) or by changing the trap parameters during the final
evaporative cooling steps.

Optical lattice. Our 780nm-optical lattice is made by frequency
doubling of a 1560 nm-laser. The resulting 780 nm-beam is split into
two to form the arms of a standing lightwave used to create the optical
lattice. The phase and frequency of each arm are controlled using a
acousto-optic modulator in a double-pass configuration. The two
beams are then recombined with orthogonal linear polarizations and
coupled through a fiber. An additional acousto-optic modulator at the
fiber output controls the amplitude of the two beams. The vertically
aligned beams are retroreflected to create a standing light wave that

forms the optical lattice. This retroreflected configuration implements
a double lattice with opposite effective wave vectors and orthogonal
circular polarizations, as described in detail in ref. 39. The Bragg
transitions for both lattices are degenerate for a vanishing relative
atom-lattice velocity. However, a brief free fall induces a Doppler shift
that causes one lattice to go out of resonance. Each lattice operates at
an approximate power of 250mW, with a fixed detuning of 40GHz
from the atomic resonance. At the atom positions, the waist measures
~1.6mm, resulting in a maximum lattice depth characterized by the
peak two-photon Rabi frequency Ωmax = 25ωr .

The relative atom-lattice velocity is set by the frequency differ-
ence between the two beams that form the lattice39. A frequency chirp
is systematically added to the frequency difference profile to com-
pensate for the atomic free fall and create a quasi-standing wave in the
free fall frame. The value of the chirp is determined with a relative
uncertainty of 10−5 by identifying the dark fringe with standard three-
pulse interferometers of varying interrogation times.

Detection. Atoms are measured through fluorescence imaging after
time-of-flight. Given the typical velocity dispersion of the atomic
cloud, the final free fall time must be >14ms to separate the two
adjacent momentum states distant from 2 ℏk. The fluorescence beams
are the laser beams used for initial laser cooling brought at resonance.
The beam waist of 7mm, and the limited field of view of the camera
limit the detection volume to a typical size of <1 cm and thus the
overall available time of free-fall to ~ 45ms.

For all the data, the population in each momentum state is mea-
sured as the fluorescence signal integrated over a square box, typically
60μm of size, centered on the center of mass position of the con-
sidered state. For the data presented in Figs. 3 and 4, the populations
are normalized to the total atom number of a free fall BEC at the same
position on the camera without any interaction with the optical lattice.
For Supplementary Fig. S1 and Fig. 5, data are normalized to the sumof
the populations in the two main output states.

Floquet acceleration efficiency
This section describes our evaluation of the two identified experi-
mental limitations of the Floquet acceleration.

Spontaneous emission estimation. It is assumed that a spontaneous
emission event causes the loss of the corresponding atom for the
ongoing acceleration sequence. The probability of a spontaneous
emission event occurring during a single Floquet pulse, denoted as
Psp.em., can be calculated from the knowledge of the single photon
detuning and the pulse duration and amplitude. The remaining frac-
tion of atoms after N pulses is thus calculated as ð1� Psp:em:ÞN (blue
dashed curve in Fig. 4).

Pulse to pulse fluctuations. The impact of pulse-to-pulse amplitude
fluctuations is estimated through numerical simulations. An ideal
Floquet state, ∣w0

�
, is propagated through a series of N pulses, each

with an amplitude distributed according to a normal law centered on
thenominal valueΩ0 andwith a relative standarddeviation of 4%. After
averaging over multiple realizations and weighting the remaining
fraction of atoms by the anticipated decay rate due to spontaneous
emission, we obtain an estimated loss rate that aligns with the
observed data (illustrated by the dark and light blue regions in Fig. 4).

Visibility measurements and analysis
Interferometer fringe data (see Supplementary Fig. S1) are fitted with
the following function: N0

N0 +N2
=A 1 +V sinðKφl +φ0Þ

� 	
, where the offset

A, the visibility V and the offset phase φ0 are the three fitted para-
meters. K is a known scaling factor with the phase jumpφl (see below).

For this measurement procedure, the positions of the two boxes
measuring the populations in the two output ports are slightly
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adjusted within the cloud size to optimize the signal-to-noise ratio of
the fitted visibility. The position changes have a marginal effect on the
detected atom number or on the value of the fitted parameter (visi-
bility and offset phase).

The statistical significanceof thefitted visibility hasbeen checked.
We have simulated a large number (Ns = 106) of fully random datasets
(with exactly zero visibility) each with the same size as the measure-
ments represented in Fig. 5. The variance of the normal distribution
corresponds to the observed detection noise. Each dataset is then
analyzed with the same procedure for the presented measurement
from which we construct a number V/σV where V is the fitted visibility
and σV the corresponding uncertainty. From the histogram of the Ns

values of V/σV, we compute the complementary cumulative distribu-
tion function. For a given value x, this function is the probability to
obtain a fittedV/σV larger or equal to x on a randomdataset. Evaluating
the complementary cumulative distribution function of the measured
value of V/σV (i.e. x = 4.8) gives the probability to fit a value at least as
extreme from a dataset with zero visibility. For the presented mea-
surement, we estimate this probability to be <10−5, which significantly
rejects the no visibility hypothesis.

To further strengthen the visibility measurement, we performed
experiments with the same maximum momentum separation
2Nℏk = (22 + 2NF)ℏk but changing the scaling factor K. It corresponds
to the number of acceleration pulses that experience the phase jump
φl among the NF pulses of the acceleration sequence (see extended
data Supplementary Fig. S1a). Supplementary Fig. S1b shows the same
data presented in Fig. 5b with K =NF = 289. Fringes for K = 200 and
K = 100 are also given in Supplementary Fig. S1c, d respectively. The
three measurements show a sinusoidal behavior with the expected
scaling with the phase jump and consistent fitted visibilities
(V = 18 ± 4% for K = 289, V = 27 ± 5% for K = 200 and V = 21 ± 4% for
K = 100). It confirms that the visibility measurement is not biased by
parasitic interferometers at this level of uncertainty. Moreover, the
observed evolution of the interferometer phase shift in function of the
lattice phase is consistent with the anticipated outcome. Conse-
quently, they provide a basic interferometer response function that
can be used to evaluate the scale factor for inertial measurements.

Interferometer sequence
The full interferometer sequence is illustrated in Supplementary
Fig. S1a. It starts with a first beam-splitter creating the coherent
superposition between momentum states ∣p0

�
and ∣p0 � 2_k

�
. The

lower arm is further accelerated by a serie of pre-acceleration pulses
using the CEBS. The state is then sufficiently separated from ∣p0

�
(upper arm) to be transformed into the Floquet state by the prepara-
tion pulse OC-1 and accelerated by a serie of NF pulses. A second
preparation pulse OC-2 transforms it back to the fully accelerated
state. A free evolution time T 0 is added before the symmetric decel-
eration sequence. In practice, for the experiments reported in this
paper, T 0 remains small (below 1ms). After a central miror pulse
exchanging the momentum states, the interferometer is closed by a
symmetric sequence addressing the upper arm and a final beam
splitter.

Beam splitter, mirror and pre-acceleration pulses. Except for
the OC preparation sequences and Floquet-acceleration pulses,
for which the shape are discussed in the dedicated sections,
all the pulses use hyperbolic tangent amplitude profiles
ΩðtÞ=Ω0 × max 0, tanh 8t=τ0

� 	
tanh 8ð1� t=τ0Þ

� 	
 �
where τ0 is the

total duration of the pulse and Ω0 the peak Rabi frequency. In
particular, the beam splitter (resp. mirror) pulses have a duration
τ0 = 50 μs (resp. τ0 = 60 μs) and the corresponding amplitude Ω0 to
produce the expected Rabi phase when couplingmomentum states
∣0i and ∣� 2_k

�
at the two-photon resonance. Similarly, the pre-

acceleration pulses using the CEBS technique are mirror pulses

with the same amplitude profile of duration 40μs following the
accelerated trajectory. The overall efficiency of a pre-acceleration
(pre-deceleration) sequence is ~0.3, which represents a limitation
on interferometer visibility.

Robust optimal control. We use optimal control theory32 and a
gradient-based algorithm, GRAPE54, to design the control pulses OC-1
and OC-2. The optimal control problem is to maximize the figure of
merit F ðp0Þ

1 defined as

F ðp0Þ
1 =

Z +1

�1
jhψðτcÞjw0ðp0Þij2f ðp0Þdp0,

where ∣ψðtÞ� is the solution of the Schrödinger equation at time t in
the free fall frame for a given value of the parameter p0 and τc the
duration of the optimal control. Note that one could define a dif-
ferent figure of merit that takes into account the phase of ∣w0ðp0Þ

�
(see Supplementary Material). The algorithm optimizes both the
amplitude and the frequency of the optical lattice over time to
achieve the expected target fidelity. The corresponding control
solution is said to be robust to p0 in the sense that the same control
protocol is used for all values of this parameter in the range
[ − 3σp, 3σp]. Details about the numerical implementation can be
found in the Supplementary Material.

In this study, we considered a given acceleration sequence cor-
responding to a Floquet state ∣w0

�
and transformed the input state to

this Floquet state using optimal control protocols. This solution is the
most efficient and provides the highest momentum transfer rate.
However, there is another optimization strategy based on Floquet
analysis, which is to apply optimal control algorithms to design pulses
(amplitude and frequency) of the acceleration sequence itself. This
pulse shaping aims to generate a Floquet state with a significant
overlap with the initial momentum state ∣p0

� � ∣w0

�
. This strategy has

resulted in a less efficient and much longer acceleration sequence.

Example of OC preparation sequence. Supplementary Fig. S2 gives
an example of the OC pulse designed for a Floquet acceleration based
on square amplitudewith aduration τ = 5.3 μs. The total durationof the
OC preparation sequence is constrained to 100 μs. Extensive numer-
ical simulations show that this time is a good compromise between
efficiency of the process and the relatively simple shape of the optimal
pulse. The time evolution of the state during the OC pulse is illustrated
in Supplementary Fig. S2c. It is continuously transformed from a non-
localized initial planewave ∣p0

�
to the target Floquet state ∣w0

�
, similar

to a displaced squeezed state in phase space. Note that the reverse OC
sequences used in this work (labeled OC-2 in the main text) have a
similar global shape and are close to the time-reversal of the profiles
displayed in Supplementary Fig. S2.

Data availability
Source data generated in this study is available at the repository
Zenodo under https://zenodo.org/records/13981746.
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