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ABSTRACT

In the absence of external forcing, all trajectories on the phase plane of the van der Pol oscillator tend to a closed, periodic trajectory—the
limit cycle—after infinite time. Here, we drive the van der Pol oscillator with an external time-dependent force to reach the limit cycle in a
given finite time. Specifically, we are interested in minimizing the non-conservative contribution to the work when driving the system from a
given initial point on the phase plane to any final point belonging to the limit cycle. There appears a speed-limit inequality, which expresses a
trade-off between the connection time and cost—in terms of the non-conservative work. We show how the above results can be generalized
to the broader family of non-linear oscillators given by the Liénard equation. Finally, we also look into the problem of minimizing the total
work done by the external force.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0227287

Self-sustained oscillations are relevant not only in physics—e.g.,
in electronics, lasers, or active matter—but also in many other
contexts: neuroscience, physiology, and economics, to name just
a few.1,2 A key feature of self-oscillatory systems is the existence
of a stable limit cycle, which appears as a consequence of the non-
linearity of the damping force. The limit cycle is stable because
neighboring trajectories approach it in the long-time limit, i.e.,
after a certain typical relaxation time tR. Here, importing ideas
from the field of shortcuts to adiabaticity in quantum mechanics3

and swift state-to-state transformations (SSTs) in classical and
stochastic systems,4 we address the problem of shortcutting the
relaxation to the limit cycle by driving the system with a suit-
able external force during a given time tf < tR. Specifically, we
aim at building a SST that minimizes the non-conservative work.
The emergence of a speed-limit inequality is shown, with a trade-
off between the connection time and the non-conservative work.
This inequality entails that, for small damping, when the natu-
ral relaxation time of the system to the limit cycle is very long,
the relaxation to the limit cycle can be accelerated by a very
large factor while keeping the energetic cost finite. Interestingly,
the developed framework for the van der Pol oscillator naturally
extends to the more general case of the Liénard equation, with
tiny changes. In addition, the minimization of the total work,
including both the conservative and non-conservative contribu-
tions, is investigated.

I. INTRODUCTION

Stable limit cycles appear in systems that show oscillatory
behavior in the long-time limit without any time-periodic driving.
In other words, limit cycles correspond to self-sustained oscillations,
which are present in a wide variety of non-linear systems. In physics,
self-sustained oscillations in non-linear circuits were the motiva-
tion for van der Pol’s pioneering work5 (see Ref. 1 for a review).
More currently, they are being investigated in the field of active
matter.6–10 In addition, self-oscillations are often found in biologi-
cal systems; for example, they have been shown to be relevant for
circadian rhythms11,12 or the migration of cancer cells in confined
environments.13

The van der Pol equation is a paradigmatic model for self-
sustained oscillations. In dimensionless variables, it reads

ẍ + µ(x2 − 1)ẋ + x = 0, (1)

where µ > 0 is a parameter, to which we will refer as the damping
constant. Variations in the van der Pol equation have been employed
in many fields, e.g., to electronically simulate nerve axons,14,15 to
understand the dynamics of elastic excitable media,16 or to model
self-sustained oscillations in active matter.17 The undriven van der
Pol oscillator takes an infinite time to reach the limit cycle, with
a relaxation time that decreases with the damping constant µ. For
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small damping µ � 1, the natural relaxation time tR to the limit
cycle is very long, tR = O(µ−1).18

Only very recently,19 the problem of accelerating the relaxation
to the limit cycle has been addressed, in the context of the SST
recently introduced in classical and stochastic systems.4 The general
idea of the SST, which is rooted in the field of quantum shortcuts
to adiabaticity,3 is to introduce a suitable driving to make the sys-
tem reach the desired target state in a time shorter than the natural
relaxation time. Still, neither the energetic cost of such an accelera-
tion nor the physical implications thereof have been investigated for
the synchronization to a limit cycle.

In this work, we aim at investigating the energetic cost of
driving the van der Pol oscillator to its limit cycle in a finite
time. More specifically, we are interested in engineering an opti-
mal driving F(t)—to be added to the right-hand side (rhs) of
Eq. (1)—that minimizes the dissipative work done by the non-
conservative non-linear force Fnc(x, ẋ) ≡ −µ(x2 − 1)ẋ. This prob-
lem has strong similarities with the minimization of the irreversible
work in stochastic systems,4,20–23 although the van der Pol oscillator
is not coupled to a heat bath. In addition, it raises the question of
the trade-off between operation time and cost, as measured by the
non-conservative work, and the possible emergence of speed limit
inequalities.4,24–38

The minimization of the non-conservative work is carried out
by considering that the system starts from a given point on the phase
plane and reaches any point of the limit cycle in a given connection
time tf—ideally, much shorter than the natural relaxation time tR.
When the force is not bounded, which is the case we address in this
paper, this minimization problem can be tackled with the tools of
variational calculus, incorporating the variable end point via the so-
called transversality condition.39,40 Remarkably, our analysis shows
that many of the results, including the optimal end point over the
limit cycle, can be obtained without having to know the explicit
expression for the limit cycle.

In this work, we also consider possible generalizations of the
above problem. First, we will show that practically all results found
for the minimization of the non-conservative work in the van der Pol
case extend, with tiny changes, to the Liénard equation—which is a
model that covers a much broader family of oscillators, including
van der Pol’s as a particular case. Second, we will tackle the mini-
mization of the total work done by the external force, including both
the conservative and non-conservative contributions.

The structure of the paper is as follows. Section II presents
the model and some basic equations that we need for our analysis.
In Sec. III, we carry out the minimization of the non-conservative
work. We derive the Euler–Lagrange equations for the optimal path
in phase space in Sec. III A. Therefrom, we obtain explicit expres-
sions for the optimal path and force in Sec. III B. The transversality
condition for the variable end point problem is analyzed in Sec. III C.
Using the results of Secs. III A–III C, the explicit expression for the
minimum non-conservative work is derived in Sec. III D. We illus-
trate our results and discuss their physical implications in Sec. III E.
Section IV is devoted to generalizing our results to more complex
scenarios: the Liénard equation in Sec. IV A and the minimization
of the total work in Sec. IV B. Finally, we present the main con-
clusions of our work and some perspectives for further research in
Sec. V.

II. MODEL

As anticipated in Sec. I, we are interested in investigating the
van der Pol oscillator driven by an external force F(t),

ẍ + µ(x2 − 1)ẋ + x = F(t), (2)

to accelerate the relaxation toward the limit cycle, which is described
by an implicit function of (x, ẋ) that also depends on the parameter
µ, χ`c(x, ẋ; µ) = 0. In the following, we refer to Eq. (2) as the driven
van der Pol equation (dvdPE). For our purposes, it is convenient to
explicitly introduce the phase plane point as

x(t) ≡ (x1(t), x2(t)), x1 ≡ x, x2 ≡ ẋ, (3)

and rewrite the dvdPE (2) as a system of first-order differential
equations,

ẋ =
(

x2

−µ(x2
1 − 1)x2 − x1 + F

)
≡ f(x; F), (4)

i.e.,

ẋ1 = f1(x2) ≡ x2, (5a)

ẋ2 = f2(x1, x2; F) ≡ −µ
(
x2

1 − 1
)
x2 − x1 + F. (5b)

Note that, in order to simplify our notation, we have omitted the
time dependence in both in phase-space variables (x1(t), x2(t)) and
in force F(t).

We would like to reach the limit cycle by applying the driving
force F(t) for a given finite time tf. That is, we want to drive the
system from a given initial state (x10, x20), to a final end point of the
limit cycle, i.e., (x1f, x2f), with χ`c(x1f, x2f; µ) = 0, in a finite time tf.
Once the limit cycle is reached at t = tf, the force is switched off, i.e.,
F(t) = 0 for t ≥ tf, so that the system remains over the limit cycle
∀t ≥ tf.

We aim at optimizing the energetic cost of the driving
described above. Bringing to bear the dvdPE (2) [or (4)], the work
done on the system by the external force F(t) can be split into a con-
servative part 1E = Ef − E0, which only depends on the initial and
final points on the phase plane, and a non-conservative part Wnc,
which depends on the whole trajectory of the system,

W ≡
∫ tf

0

dt F(t) ẋ(t) = 1E + Wnc, (6)

with

E(x) ≡
1

2

(
x2

1 + x2
2

)
, Wnc[x] ≡ µ

∫ tf

0

dt
(
x2

1 − 1
)

x2
2. (7)

Although the oscillator is not explicitly coupled to a heat bath, if
we interpret E as the internal energy of the oscillator, Wnc would be
the heat dissipated to the environment due to the non-linear friction
force.41 In the following, we will mainly be interested in the min-
imization of the non-conservative contribution to the work. This
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minimization has to be done with the boundary conditions,

x1(0) = x10, x2(0) = x20, x1(tf) = x1f, x2(tf) = x2f, (8a)

χ`c(xf; µ) = 0; (8b)

the latter condition enforces that xf belongs to the limit cycle. In the
following, it will be useful to introduce the maximum amplitude xmax

`c

of oscillation over the limit cycle.
We remark the formal similarity of our minimization prob-

lem with the minimization of the irreversible work in systems with
stochastic dynamics.4,21–23,42 Therein, the total work may be split into
two contributions: (i) the free energy difference 1F, which is given
by the initial and final equilibrium points (the analogous role here is
played by 1E), and (ii) the irreversible work, which is a functional
of the trajectory, and it is positive definite (the analogous role here is
played by Wnc). Still, two key differences should be remarked: here,
(i) the sign of Wnc is not necessarily positive, due to the change in
the sign of the non-linearity at |x1| = 1, which, in turn, is responsi-
ble for the emergence of a limit cycle, and (ii) the final point is not
fixed, since we would like to join the initial point to any point of the
limit cycle.43

For an arbitrary value of the damping coefficient µ, there is nei-
ther a closed analytical expression for the function χ`c(x1, x2; µ) = 0
defining implicitly the limit cycle nor a closed analytical expression
for the relaxation of the system toward it. Yet, in the small damping
limit µ � 1, a multiple scale analysis of Eq. (1) gives asymptotically
valid expressions for both χ`c and the time evolution x(t) toward the
long-time behavior—e.g., see Ref. 18. Specifically, one has

χ`c ∼ x2
1 + x2

2 − 4 + O(µ), (9a)

x1(t) ∼ 2

(
1 −

r2
0 − 4

r2
0

e−µt

)−1/2

cos (t + φ0) + O(µ), (9b)

x2(t) ∼ −2

(
1 −

r2
0 − 4

r2
0

e−µt

)−1/2

sin (t + φ0) + O(µ), (9c)

where

r0 =
√

x2
10 + x2

20, φ0 = arctan
x20

x10

. (10)

For µ � 1, the maximum amplitude of the limit cycle approaches 2,

x̃max
`c ≡ lim

µ→0+
xmax

`c = 2. (11)

The value of x̃max
`c stems from the multiple scale expression in

Eq. (9b). In addition, a physical argument could be given as follows:
for µ = 0, circular orbits with x1 = A cos(t + φ0), x2 = −A sin(t
+ φ0), for any A are possible. For µ � 1, this is no longer the
case: the only possible circular orbit must have a vanishing non-
conservative work, as given by Eq. (7), over the circumference: this
gives A = 2. On the one hand, it has been shown that xmax

`c has a
very weak dependence on µ, being very close to x̃max

`c = 2 for all µ,
namely, 2 ≤ xmax

`c ≤ 2.0672.44 On the other hand, the shape of the
limit cycle strongly deviates from a circumference as µ increases.18

For small damping, µ � 1, the relaxation time of the system tR

to the limit cycle is very long, of the order of µ−1. Specifically, we

FIG. 1. Illustration of a free trajectory and a driven trajectory on the phase plane
(x1 = x, x2 = ẋ) of the van der Pol oscillator with µ = 10−1. The thick line
stands for the limit cycle of the system. Over the limit cycle, −x

max
`c ≤ x1 ≤ x

max
`c ;

note that the van der Pol equation is symmetrical under point reflection with
respect to the origin, i.e., (x1, x2) → (−x1,−x2). Also plotted are the vertical
lines x1 = ±x

max
`c (dotted). The free trajectory (dashed red) reaches the limit cycle

in an infinite time, whereas the driven trajectory (solid blue) reaches it in a finite
time; here, tf = 1. The plotted data correspond to the numerical integration of the
van der Pol equation.

estimate tR = 4µ−1, for which e−µtR ' 0.02. In Fig. 1, we present a
typical relaxation of the van der Pol oscillator to the limit cycle for
µ = 0.1, i.e., tR = 40.

The small damping limit is especially relevant for building a
SST to the limit cycle by introducing a suitable driving F(t), because
of the long-time scale of the natural relaxation. In the opposite limit
of large damping, µ � 1, the relaxation to the limit cycle is almost
instantaneous in the undriven case (see, e.g., Sec. 7.5 of Ref. 18).
Therefore, in the following, we mainly focus on the small damping
limit µ � 1.

III. MINIMIZATION OF THE NON-CONSERVATIVE

WORK

We would like to minimize Wnc, which is a functional of the
phase plane trajectory x, as given by Eq. (7). We, thus, have a
variational problem,

Wnc[x] =
∫ tf

0

dt L(x), L(x) = µ(x2
1 − 1)x2

2, (12)

where L(x) = µ(x2
1 − 1)x2

2 is our “Lagrangian.” This is a variational
problem with constraints: ẋ1 = f1, ẋ2 = f2, as given by Eq. (5). These
dynamical constraints are incorporated to the minimization prob-
lem by introducing time-dependent Lagrange multipliers. More-
over, the variable end point belonging to the limit cycle is included
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by considering the so-called transversality condition,39,40 (see also
the Appendix).

A. Euler–Lagrange equation

We start from the phase-space formulation of the problem in
Eqs. (4)–(8). The minimization problem of Wnc[x] is constrained
by the evolution equation (5). This constrained minimization prob-
lem is equivalent to minimize, without constraints, the following
functional:

J[x, p, F] =
∫ tf

0

dt L∗(x, ẋ, p, F), (13)

where

L∗(x, ẋ, p, F) = L(x) + p ·
[
ẋ − f(x; F)

]
(14)

is the new “Lagrangian,” and p(t) ≡ (p1(t), p2(t)) are the Lagrange
multipliers, which, henceforth, we refer to as the momenta. We
employ the usual notation for the scalar product, u · v = u1v1

+ u2v2.
The optimal path must satisfy the Euler–Lagrange equations,

d

dt

(
∂L∗

∂ ẋi

)
=

∂L∗

∂xi

,
d

dt

(
∂L∗

∂ ṗi

)
=

∂L∗

∂pi

, (15a)

d

dt

(
∂L∗

∂ Ḟ

)
=

∂L∗

∂F
, (15b)

i.e.,

ṗ1 = 2µx1x
2
2 + p2(2µx1x2 + 1), (16a)

ṗ2 = 2µ
(
x2

1 − 1
)
x2 − p1 + µp2

(
x2

1 − 1
)
, (16b)

ẋ1 = x2, (16c)

ẋ2 = −µ
(
x2

1 − 1
)
x2 − x1 + F, (16d)

0 = p2. (16e)

Equations (16c) and (16d) are just the evolution equation (5).
Equation (16e) tells us that p2(t) = 0, ∀t ∈ [0, tf], so we infer that
ṗ2(t) = 0 for t ∈ (0, tf). Making use of Eq. (16b), we get

p1 = 2µ(x2
1 − 1)x2, ∀t ∈ (0, tf). (17)

Taking the time derivative of this expression and bringing to bear
Eqs. (16a) and (16c), we eliminate the momenta and obtain the
Euler–Lagrange equation,

(
x2

1 − 1
)

ẍ1 + x1ẋ
2
1 = 0, (18)

which has to be fulfilled by the optimal path that minimizes the
non-conservative work. We solve this equation with the boundary
conditions for x1, i.e., for the position, x1(0) = x10, x1(tf) = x1f.

At first sight, it may seem surprising that the boundary condi-
tions for x2, i.e., for the velocity ẋ, do not appear in the minimization
problem. Since x2 = ẋ1, once we have the solution of Eq. (18), we
cannot tune the boundary conditions for x2; the solution of the
Euler–Lagrange equation will not verify the boundary condition for

the velocity, in general. However, this is not problematic: the finite
jumps in the velocity at the initial and final times neither change
the x values nor contribute to the non-conservative work. In other
words, after solving the Euler–Lagrange equation (18), we intro-
duce—if needed—the finite jumps in velocity at the initial and final
times of magnitudes x2(0

+) − x20 and x2f − x2(t
−
f ), respectively, as

explained in detail below, by means of impulsive forces.
The Euler–Lagrange equations only tell us that the solution is

an extremum of the considered functional but not that it is indeed a
minimum. In order to look into this issue, it is convenient to define
the “Hamiltonian,”45

H(x, p, F) = ẋ · p − L∗(x, ẋ, p, F) = p · f(x; F) − L(x). (19)

Since H is linear in F, the following necessary condition, known as
the generalized Legendre–Clebsch condition, must hold:46

∂

∂F

[
d2

dt2

(
∂H(x, p; F)

∂F

)]
≥ 0 (20)

for having a minimum of the considered functional. For our prob-
lem of concern, i.e., the minimization of Wnc(x), the generalized
Legendre–Clebsch condition entails that

x2
1 − 1 ≥ 0. (21)

The above condition, thus, restricts the solution of the mini-
mization problem to live in the region of the phase plane for which
x2

1 ≥ 1. Therefore, we restrict ourselves to the region |x1| ≥ 1 in the
following: in particular, both |x10| ≥ 1 and |x1f| ≥ 1, with sgn(x10)

= sgn(x1f). For any other case, the minimization problem would
have no solution, since condition (21) would be impossible to meet
at all times. In the case |x10| ≤ 1 and |x1f| ≤ 1, one could, if anything,
maximize the non-conservative work. This is reasonable from a
physical point of view, since the non-conservative force is dissipative
for |x1| > 1, whereas it is active (injects energy) for |x1| < 1.

B. Optimal path and force

Equation (18) has a first integral of motion, which for x2
1 > 1

can be written as

ẋ1

√
x2

1 − 1 = C1, (22)

where C1 is a constant. We define

g(x) ≡
1

2

[
x
√

x2 − 1 − log
∣∣∣x +

√
x2 − 1

∣∣∣
]

, (23)

such that g′(x) =
√

x2 − 1. Therefore, g(x1) monotonically increases
with x1—recall that x2

1 > 1. With this definition, the solution of
Eq. (18) can be written as

g(x1(t)) = C1t + C0, (24)

where C0 is another constant. The constants C1 and C0 are calculated
as functions of x10 and x1f,

C0 = g(x10), C1 =
g(x1f) − g(x10)

tf

, (25)

which completes the solution for the optimal trajectory that min-
imizes the non-conservative work. The initial and final velocities
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over the optimal trajectories ẋ1(0
+) and ẋ1(t

−
f ) are obtained from

Eq. (22),

x2(0
+) = ẋ1(0

+) =
C1√

1 − x2
10

, x2

(
t−f

)
= ẋ1

(
t−f

)
=

C1√
1 − x2

1f

.

(26)

Note that, as already anticipated after Eq. (18), the velocity x2 does
not comply, in general, with the boundary conditions, but this is
not problematic. We can introduce two impulsive contributions to
the force—i.e., two delta peaks—at the initial and final times to fix
this issue, neither changing the particle position nor performing any
work.

Making use of the driven dvdPE (2), particularized for the
optimal trajectory, we get the driving force,

FEL(t) = −C2
1

x1(t)

[x2
1(t) − 1]

2
+ µ C1

√
x2

1(t) − 1 + x1(t), (27)

for 0+ < t < t−f . At t = 0+ and t = t−f , the finite jumps in x2 = ẋ1

entail that F(t) has delta peaks, at t = 0+ and t = t−f , a behavior that

has also been found in the optimization of the irreversible work done
on a harmonically confined Brownian particle in the underdamped
case.47 More specifically, we have for the optimal driving,

Fopt(t) = FEL(t) +
[
x2(0

+) − x20

]
δ(t − 0+)

+
[
x2f − x2(t

−
f )

]
δ
(
t − t−f

)
. (28)

C. Transversality condition for variable end point

Now, we take into account that the final point is not fixed: we
only know that it belongs to the limit cycle. Therefore, in the vari-
ational procedure, δx1f and δx2f do not vanish and the following
condition must hold:

0 =
(

∂L∗

∂ ẋ1

δx1 +
∂L∗

∂ ẋ2

δx2

)∣∣∣∣
t=tf

= pf · δxf, (29)

where p1f ≡ p1(tf) and p2f ≡ p2(tf). Equation (29) is known as the
transversality condition, since it tells us that the vectors pf and δxf

are orthogonal—see also the Appendix.
Since the final point belongs to the limit cycle, Eq. (8b) implies

that δxf is parallel to the tangent vector to the phase plane trajectory
for the undriven van der Pol equation,

δxf ‖ (f1(x2f), f2(x1f, x2f; F = 0)). (30)

Recalling that p2(t) = 0, ∀t, the transversality condition tells us that
p1ff1(x2f) = p1fx2f = 0. Since p1(t) is a continuous function of time,
p1f = p1(t

−
f ), and making use of Eq. (17), we have

2µ
(
x2

1(t
−
f ) − 1

)
x2(t

−
f )x2f = 0. (31)

Note that, as discussed before, the velocity is, in general, discontin-
uous at the final time; i.e., x2(t

−
f ) 6= x2f.

There appear several possibilities:

T1. x2f = 0: This condition is only fulfilled at the leftmost and
rightmost points of the limit cycle, i.e., x1f = ±xmax

`c .

T2. x2(t
−
f ) = 0: This condition entails, together with Eqs. (16c)

and (22), that C1 = 0. This implies that x2(t) = 0 for t ∈ (0, tf)

In other words, x1(t) is constant; x10 = x1f. Clearly, this possi-
bility only makes sense if x10 ∈ [−xmax

`c , −1] ∪ [+1, +xmax
`c ].

T3. x1f = x1(t
−
f ) = 1: Again, Eq. (22) implies that x1(t) is constant,

x10 = x1f = 1, so this possibility is included in T2.

D. Minimum non-conservative work

Taking now into account Eqs. (7), (22), and (25), the non-
conservative work Wmin

nc along the Euler–Lagrange path for a given
final point x1f is

Wmin
nc = µ C2

1 tf = µ

[
g(x1f) − g(x10)

]2

4tf

. (32)

To obtain the minimum value of the work, we employ the result
obtained from the transversality condition: there are two candidates
for the optimal end point: (i) x1f = ±xmax

`c and (ii) x1f = x10. First,
if the point (x10, 0) lies inside the limit cycle, i.e., |x10| ≤ xmax

`c , we
have that the minimum value of Wnc is reached for x1f = x10, for
which Wmin

nc vanishes. Second, if the point (x10, 0) lies outside the
limit cycle, i.e., |x10| > xmax

`c , we have that the minimum value of Wnc

is reached at x1f = sgn(x10)x
max
`c .

Therefore, the optimal final position over the limit cycle—in
terms of non-conservative work—is the one “closest in x” to the
initial position x10,

x
opt

1f =
{

x10 if b ≤ |x10| ≤ xmax
`c ,

sgn(x10)x
max
`c if |x10| > xmax

`c .
(33)

We have defined b = 1 as the position at which the damping
force vanishes. We recall that we have assumed |x10| ≥ 1, |x1f| ≥ 1
to minimize Wnc. Finally, the minimum non-conservative work to
an arbitrary point of the limit cycle is

Wmin
nc =





0 if b ≤ |x10| ≤ xmax
`c ,

µ

[
g
(
xmax

`c

)
− g(|x10|)

]2

4tf

if |x10| > xmax
`c .

(34)

The final expression for the minimum non-conservative work (34)
suggests the introduction of a scaled connection time,

sf ≡ tf/µ, (35)

so that Wmin
nc can be written as

Wmin
nc =

[
g
(
xmax

`c

)
− g(|x10|)

]2

4sf

H
(
|x10| − xmax

`c

)
, ∀µ, (36)

where H(x) is Heaviside’s step function, H(x) = 1, ∀x > 0, H(x)
= 0, ∀x ≤ 0. In terms of the scaled time sf, Wmin

nc still depends on
the damping coefficient µ through xmax

`c . This “residual” dependence
on µ disappears in the small damping limit; making use of Eq. (11),
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we get

W̃min
nc =

[
g
(
x̃max

`c

)
− g(|x10|)

]2

4sf

H
(
|x10| − x̃max

`c

)
, µ � 1. (37)

We recall that xmax
`c is very close to x̃max

`c = 2 for all µ, the deviation
from it being always below 3%.44 Therefore, in Sec. III E of physical
interpretation of the results, we mainly focus on Eq. (37).

E. Physical interpretation of the results

The minimum non-conservative work W̃min
nc depends on the

initial point |x10| and the scaled connection time sf = tf/µ. This is
illustrated with the density plot of W̃min

nc in Fig. 2. We only plot
the region |x10| ≥ x̃max

`c , because W̃min
nc identically vanishes for |x10|

< x̃max
`c .48 A first physical consequence of our result (37) is that W̃min

nc

is proportional to the inverse of the connection time, W̃min
nc ∝ s−1

f . In

the limit of small damping we are focusing on, the proportionality
constant depends only on |x10|.49 This scaling with the connec-
tion time is similar to the one found for the minimum irreversible
work for the accelerated connection between equilibrium states of
mesoscopic systems in stochastic thermodynamics.4,21–24,50

The dependence of the rhs of W̃min
nc on the initial position x10 is

illustrated in Fig. 3 for several values of the scaled connection time
sf. For |x10| ≤ x̃max

`c , i.e., when the initial position lies between the
extremal positions ±̃xmax

`c of the limit cycle, Wmin
nc identically van-

ishes. For |x10| > x̃max
`c , i.e., when the initial position lies outside the

extremal positions of the limit cycle, Wmin
nc 6= 0 and increases with

|x10|, specifically as [g(x10) − g(̃xmax
`c )]2.

Let us now analyze the optimal trajectory and the optimal driv-
ing force that lead to the minimum non-conservative work. On

the one hand, for |x10| ≤ xmax
`c , x

opt

1f = x10 and the optimal trajectory

leading to the limit cycle corresponds to C1 = 0. Therefore, x2 = ẋ1

FIG. 2. Minimum non-conservative work W̃min
nc as a function of scaled connection

time sf and the initial position |x10|. The plotted data correspond to the theoretical
expression (37) for the small damping limit, which is independent ofµ. It is clearly

observed how W̃min
nc decreases as sf increases and |x10| decreases.

FIG. 3. Non-conservative minimum work W̃min
nc as a function of |x10|. Similar to

Fig. 2, the plotted data correspond to the theoretical expression (37). It can be

observed that W̃min
nc increases from zero, for |x10| ≤ x̃

max
`c , to infinity, in the limit

|x10| → +∞.

identically vanishes over the optimal solution for 0+ < t < t−f ; the

system remains at rest at the point (x10, 0) of the phase plane. The
optimal driving force, as given by Eq. (27), is constant, FEL(t) = x10.

On the other hand, for |x10| > xmax
`c , x

opt

1f = xmax
`c , and, thus, C1 6= 0.

Since the sign of x2, i.e., the sign of ẋ1, does not change with time and
is always that of C1, as given by Eq. (22), x1(t) monotonically varies
between x10 and x1f. In this case, the optimal driving force (27) is
not constant. In both cases, the initial and final values of the veloc-
ity are adjusted as we have already commented below in Eq. (27):
at t = 0+ and t = t−f , we introduce two finite-jump discontinuities

in the velocity. We recall that this finite-jump discontinuity in the
velocity produces no non-conservative work, although they certainly
entail that the driving force has delta peaks at the initial and final
times, as given by Eq. (28). Note that the only role of the initial veloc-
ity x20 in the optimal protocol is to modify the correct amplitude for
the impulsive contributions to the force, since the Euler–Lagrange
solution for 0 < t < tf is blind to the boundary values of x2.

Figure 4 shows the optimal trajectory on the phase plane (top
panel) and the corresponding optimal force (bottom panel). Specifi-
cally, we have employed a damping coefficient µ = 0.1 and a scaled
connection time sf = 10, and two initial points on the phase plane:
Ai = (1.5, 0) and Bi = (5, 0), which correspond to the two cases dis-
cussed in the previous paragraph. For point Ai (dashed lines), there
are two equivalent possibilities for the final point, Af and A′

f, which

correspond to driving the system toward the point of the limit cycle
just above (red line) or below (blue line) Ai. For point Bi, only one
optimal trajectory is possible that ends on the phase plane point
Bf = (xmax

`c , 0).51 In the top panel, the arrows mark the direction
of movement on the phase plane—recall that x2 = ẋ1. In the bot-
tom panel, the delta peaks of force at the initial and final times are
marked with the vertical arrows, which indicate the sign of impulsive
forces.
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FIG. 4. Optimal phase plane trajectory (top) and force (bottom) for minimizing the
non-conservative work. Specifically, a damping constant µ = 0.1 and a scaled
connection time sf = 10 have been used. This corresponds to an acceleration
factor tR/tf = 40. Two different values of the initial phase plane point, namely,
Ai = (1.5, 0) (dashed lines) and Bi = (5, 0), are considered. The corresponding
final points are Af ' (1.5, 1.4), A′

f
' (1.5,−1.3), and Bf ' (2, 0), respectively.

In the top panel, the dotted-dashed vertical line marks the limit of the phase plane
region in which the non-conservative work is minimized, i.e., |x10| > 1.

Equation (36) entails the emergence of a trade-off relation
between connection time tf and non-conservative work for an accel-
erated synchronization to the limit cycle. Taking into account that
Wnc[x] ≥ Wmin

nc , we have, in general,

sfWnc[x] ≥
[
g
(
xmax

`c

)
− g(|x10|)

]2

4
H

(
|x10| − xmax

`c

)
, ∀µ. (38)

The monotonic decreasing behavior of Wmin
nc as a function of con-

nection time entails that there appears a minimum time for the
connection for a given value of the non-conservative work Wnc. That

is, a speed limit arises,

sf ≥ smin
f =

[
g
(
xmax

`c

)
− g

(
|x10|

)]2

4Wnc

H
(
|x10| − xmax

`c

)
. (39)

In the small damping limit, we have

sfWnc[x] ≥
[
g
(
x̃max

`c

)
− g(|x10|)

]2

4
H

(
|x10| − x̃max

`c

)
, µ � 1. (40)

The bound on the rhs is independent of µ, and it only depends on
the initial condition x10 and remains of the order of unity as long as
|x10| − x̃max

`c = O(1).

IV. GENERALIZATION OF THE RESULTS

A. Liénard equation

The van der Pol equation is a particular case of the Liénard
equation,18,44,52–57 which we write as

ẍ + µh(x)ẋ + V′(x) = 0, (41)

where h(x) and V(x) are even functions of x, h(x) ∈ C
1 and V(x)

∈ C
2, respectively. This equation describes a particle moving under

the action of a conservative force −V′(x), stemming from a poten-
tial energy V(x), and a non-conservative non-linear viscous force
−µh(x)ẋ. Equation (41) has a unique stable limit cycle under the
following assumptions: (i) V(x) is a confining potential with only
one minimum at x = 0, and (ii) the function

ξ(x) =
∫ x

0

dx′h(x′) (42)

has the properties: (a) ξ(x) has only one positive zero at x = a, with
ξ(x) < 0 for 0 < x < a and ξ(x) > 0 for x > a, and (b) ξ(x) is non-
decreasing for x > a, with limx→+∞ ξ(x) = +∞.58

Remarkably, most of the results for the minimization of the
non-conservative work, as derived in Sec. III, also apply to the
more general Liénard equation, with small changes. For the Liénard
equation, the region in which the non-conservative work can be
minimized is defined by the condition h(x) ≥ 0. Therein, the min-
imum non-conservative work for a fixed value of xf is still given by

Eq. (32), defining g(x) as the primitive of
√

h(x), i.e., g′(x) =
√

h(x).
In addition, the optimal final point is given by Eq. (33), with xmax

`c

being the maximum value of x over the limit cycle. Moreover, this
entails that the emergence of a speed limit extends to the Liénard
equation. Below, we summarize how these results are derived.

Our starting point is the driven Liénard equation, i.e., we add a
force F(t) that we control to its rhs,

ẍ + µh(x)ẋ + V′(x) = F(t), (43)

or

ẋ1 = x2︸︷︷︸
f1

, ẋ2 = −µh(x1)x2 − V′(x1) + F︸ ︷︷ ︸
f2

. (44)

We assume that V(x) and h(x) verify the conditions under which the
undriven Liénard equation has a unique stable limit cycle. Again, we
consider the optimal synchronization to this limit cycle, in terms of
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the minimum non-conservative work. The work done by the non-
conservative viscous force is

Wnc[x] = µ

∫ tf

0

dt h(x1) x2
2. (45)

Once more, we would like to minimize the non-conservative work
for synchronization to the limit cycle, i.e., we would like to min-
imize the functional in Eq. (45) with the boundary condition
(8)—with χ`c(x, µ) = 0 standing now for the limit cycle of the
Liénard equation.

The above minimization problem can be tackled in the same
way as for the van der Pol case, as a variational problem with con-
straints that can be introduced with the introduction of Lagrange
multipliers, the momenta p. Due to the linearity of f2 in the force,

p2(t) = 0, p1(t) = 2µh(x1)x2, ∀t ∈ (0, tf). (46)

Taking this into account, we get the Euler–Lagrange equation for the
optimal trajectory that minimizes Wnc,

2h(x1)ẍ1 + h′(x1)ẋ
2
1 = 0. (47)

The necessary Clebsch–Legendre condition for having a minimum
is now

h(x1) ≥ 0. (48)

Therefore, for the Liénard equation, we restrict ourselves to the
region of the phase plane in which h(x1) > 0. For the sake of sim-
plicity, we consider that there is only one point, x1 = b, at which
h(x1) = 0 for x1 > 0. Therefore, Eq. (48) is equivalent to |x1| ≥ b;
for the van der Pol equation, b = 1.

Again, we have a constant of motion,

ẋ1

√
h(x1) = C1. (49)

Particularizing this equation to the van der Pol oscillator, where
h(x) = x2 − 1, reproduces Eq. (22) of Sec. III. In an analogous way,
we find the solution for the optimal trajectory,

g′(x) =
√

h(x) =⇒ g(x1) = C1t + C0. (50)

Therefore, Eqs. (24) and (25) of Sec. III hold with our redefinition of
g(x). The corresponding driving force for the optimal path is

FEL(t) = −C2
1

h′(x1)

2h2(x1)
− µC1

√
h(x1) + x1 (51)

for 0+ < t < t−f . At the initial and final times, two delta peaks are

necessary to reach the target values for the initial and final velocities,
x20 and x2f, as described by Eq. (28).

The transversality condition selects the final point over the
limit cycle that gives the minimum non-conservative work. The
whole discussion in Sec. III C applies to the Liénard equation, since
the explicit shape of the limit cycle was not employed. The unique
equation that is specific to the van der Pol equation is (31), since we
made use of the particular expression for p1(t). Yet, the conclusion
obtained from it is valid, since for the Liénard equation,

p1

(
t−f

)
= 2µh

(
x1

(
t−f

))
x2

(
t−f

)
, (52)

and, therefore, the transversality condition entails that either x2(t
−
f )

or x2f vanishes.59

Equation (32) for the minimum non-conservative work for a
fixed final point x1f immediately holds, since Eq. (49) entails that
the integrand of Wnc equals µC2

1 over the optimal trajectory. Our
discussion on the transversality condition above entails that Wnc

takes its minimum value at the point x
opt

1f given by Eq. (33), and

Eqs. (34)–(36) also hold for the driven Liénard equation.
The above analysis implies that the scaled time s = t/µ is also

the relevant timescale for the optimal synchronization to the limit
cycle in the Liénard equation. In the small damping limit µ � 1, the
approximate value of the rightmost point of the limit cycle x̃max

`c can
also be obtained by energetic arguments, similar to those employed
for the van der Pol equation: the limit cycle corresponds to a closed
orbit 1

2
x2

2 + V(x1) = E(0), where E(0) is determined by imposing that
the non-conservative work vanishes over the closed orbit.

B. Minimization of the total work

Let us also consider the minimization of the total work W done
by the external force F(t), not only the non-conservative contribu-
tion Wnc. More precisely, we consider a fixed initial point (x10, x20)

on the phase plane and look for (i) the phase plane trajectory
(x1(t), x2(t)) verifying the evolution Eq. (44) and (ii) the final point
(x1f, x2f) over the limit cycle that minimizes the total work. Similar
to Eq. (6), we have that

W = E(xf) − E(x0) + Wnc[x], with E(x) ≡
1

2
x2

2 + V(x1). (53)

We consider an infinitesimal variation of the phase plane path
δx around the optimal one and impose that the variation of E(xf)

+ Wnc[x], with the constraints given by the evolution equation (44)
incorporated with the Lagrange multipliers p(t). The “bulk” term
of the variation, for t ∈ (0, tf), leads to the Euler–Lagrange equa-
tions derived in Sec. III A. For the optimal path verifying the
Euler–Lagrange Eq. (47), only the variation at the upper limit
survives and must vanish,

[
∇xf

E(xf) + pf

]
· δxf = 0, (54)

where ∇xE(x) = (V′(x1), x2) (see the Appendix for details). There-
fore, the modified transversality condition (54) tells us that the vector
∇xf

E(xf) + pf is perpendicular to δxf, which verifies the parallelism

condition in Eq. (30). Then, we have

0 =
[
�

�
�V′(x1f) + p1f

]
x2f + x2f

[
−µh(x1)x2f −

�
�
�V′(x1f)

]

= x2f

[
p1

(
t−f

)
− µh(x1)x2f

]
= µh(x1f)x2f

[
2x2

(
t−f

)
− x2f

]
. (55)

Equation (55) has relevant implications. There appear three
possibilities:

MT1. x2f = 0: This condition is only fulfilled at the leftmost and
rightmost points of the limit cycle, i.e., x1f = ±xmax

`c .
MT2. x2(t

−
f ) = x2f/2: Making use of the first integral (49), together

with Eq. (25), we get

x2f =
2[g(x1f) − g(x10)]

tf

√
h(x1f)

, (56)

provided that h(x1f) 6= 0 (see MT3).
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MT3. h(x1f) = 0, i.e., x1f = b: The first integral (49) tells us that
x1(t) is constant, x1(t) = b, ∀t ∈ [0, tf].

MT1–MT3 are the conditions for the minimization of the total
work W corresponding to T1–T3 for the minimization of the non-
conservative work. Note that MT3 is no longer a particular case of
MT2.

It is interesting to analyze the modified transversality condi-
tions MT1–MT3 in the limit of small damping µ � 1, in which the
relevant timescale for the connection is sf = tf/µ. Therein, Eq. (56)
for MT2 is rewritten as

µ x2f =
2[g(x1f) − g(x10)]

sf

√
h(x1f)

. (57)

Note that this is a closed equation for x1f after considering that the
final point (x1f, x2f) belongs to the limit cycle, i.e., χ`c(x1f, x2f) = 0.
Below, we study the cases corresponding to positions inside the
limit cycle, b ≤ |x10| ≤ xmax

`c , and outside the limit cycle, |x10| > xmax
`c ,

separately.
First, we consider that the initial position lies inside the limit

cycle, b ≤ |x10| ≤ xmax
`c . Assuming that x2f = O(1), we have that x1f

− x10 = O(µ) for sf = O(1), i.e., we recover to the lowest order, the
solution for the non-conservative work. This is reasonable from a
physical point of view: for µ � 1, the energy is approximately con-
stant—with O(µ) corrections—over the limit cycle; so minimizing
the non-conservative work and the total work is equivalent. (The
non-conservative work is of the order of unity for any non-vertical
trajectory.) This continues to be true for very short connection times
sf � 1. Again, this is reasonable: for very short connection times,
the non-conservative work diverges for any non-vertical trajectory
and dominates the minimization of the total work. Thus, the only
exception is the regime of long connection times sf � 1, which
includes an order of unity times in the original timescale: note that
tf = 1 gives µsf = O(1), which would lead to x1f − x10 = O(1). For
µsf � 1, x1f → b—recall that h(x1) vanishes at x1 = b.

The above discussion entails that, for initial points inside the
limit cycle, b ≤ |x10| ≤ xmax

`c , we expect the optimal final point to

vary with sf from x
opt

1f = x10 for sf � 1 to x
opt

1f = b for µsf � 1. In

order to check this theoretical prediction, we have employed the
particular case of the van der Pol oscillator. In Fig. 5, we plot the
total work as a function of the final point x1f (top panel) for differ-
ent values of the connection time sf and the corresponding optimal

value x
opt

1f as a function of sf (bottom panel). Specifically, we have

taken µ = 0.1 and x10 = 1.5. For small values of sf, the dominance

of Wnc over 1E implies that x
opt

1f ' x10. As sf increases, x
opt

1f starts to

decrease until x
opt

1f → 1 for sf → ∞; recall that b = 1 for the van der

Pol oscillator. We have numerically checked that x
opt

1f is accurately

determined by condition MT2, i.e., Eq. (57), for all sf.
We find a different, more complex situation when the initial

point lies outside the limit cycle, |x10| > xmax
`c . Figure 6 shows the

results for the minimization of the total work, also for the van der Pol
oscillator with µ = 0.1 as in Fig. 5 but for x10 = 5. Again, for small
values of sf, W is dominated by Wnc. This entails that the optimal

final point is given by condition MT1, i.e., x
opt

1f = xmax
`c . This situ-

ation is maintained until a certain critical value of the connection

FIG. 5. Total work W as a function of final point over the limit cycle x1f (top) and

the optimal final point x
opt

1f as a function of scaled time sf (bottom). In particular, the
plotted curves correspond to the van der Pol oscillator with a damping constant
µ = 0.1, and an initial point inside the limit cycle, namely, x10 = 1.5. On the top
panel, the stars mark the points at whichW reaches its minimum as a function of
x1f for the considered values of sf shown in the legend. These points are singled
out in the bottom panel with small squares, with the same color code. In the scaled
time s, the natural relaxation time here is sR = tR/µ = 400.

time, sf = s∗f , is reached. Thereat, x
opt

1f abruptly changes and from

that moment on is given by condition MT2, i.e., Eq. (57). This sud-
den change can be explained by taking a look at the top plot of Fig. 6.
When sf is long enough, W has a local minimum given by Eq. (57).
This local minimum may be the global one depending on the value
of W at its boundary x1f = xmax

`c . There is a critical value of the con-
nection time sf = s∗f where both values equate. For shorter times,

x
opt

1f = xmax
`c , whereas for longer times, the optimal point for synchro-

nization is provided by Eq. (57). Note that for sf > s∗f , the behavior

is identical to the previous case, x
opt

1f asymptotically tends to b = 1 in

the limit as sf → ∞.
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FIG. 6. Total work W as a function of final point over the limit cycle (top) and

the optimal final limit cycle point x
opt

1f as a function of scaled time sf . Again, the
plotted curves correspond to the van der Pol oscillator with a damping constant
µ = 0.1, but the initial point lies outside the limit cycle, namely, x10 = 5. The code
for the stars (top) and the small squares (bottom) is analogous to that in Fig. 5.
At sf = s∗

f
' 174.7, it can be observed how the local minimum of W equals its

value at the boundary x1f = x
max
`c .

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have investigated the optimal synchronization
of the van der Pol oscillator to its limit cycle. We have understood
optimality in terms of the minimization of the non-conservative
work from a given initial point x0 = (x10, x20) on the phase plane to
any final point xf = (x1f, x2f) belonging to the limit cycle, in a given
connection time tf. The non-conservative work can be minimized if
both the initial and final points lie on the same region of the phase
plane where the non-conservative force is dissipative, i.e., |x1| ≥ 1.
Interestingly, the minimum non-conservative work Wmin

nc depends
on the initial position x10 but not on the initial velocity x20.

The minimization of the non-conservative work has some
interesting physical consequences. For initial points such that its
initial position x10 lies “inside” the limit cycle, i.e., |x10| ≤ xmax

`c , the
minimum conservative work corresponds to a vertical trajectory in
phase space with a constant position, x1(t) = x10, and zero veloc-
ity, x2(t) = 0, and, thus, zero non-conservative work. The final point
over the limit cycle is reached by introducing a delta-peak force, i.e.,
an impulsive force that instantaneously changes the velocity without
altering the position. For initial points such that its initial posi-
tion x10 lies “outside” the limit cycle, i.e., |x10| > xmax

`c , the optimal
phase-space trajectory joins the initial point with the rightmost or
leftmost point of the limit cycle (±xmax

`c , 0), depending on the sign
of x10. Analogous to recent results for the irreversible work in the
field of stochastic thermodynamics, the minimum non-conservative
work in this case is inversely proportional to the connection time.
This implies that there appears a speed-limit inequality for the
synchronization to the limit cycle.

Especially interesting is the small damping limit µ � 1, in
which the natural relaxation time tR to the limit cycle is very long,
tR = O(µ−1). Therein, the speed-limit inequality reads sfWnc ≥ I0,
where I0 is an order of unity bound—which only depends on the
initial point—and sf = tf/µ is a scaled connection time. This speed-
limit inequality entails that a SST transformation with a very short
connection time, sf = tf/µ = O(1), can be done with finite cost.
Note that the acceleration obtained in this case is enormous, tf/tR

= O(µ2).
It is remarkable that most of the results for the van der Pol

oscillator extend to the Liénard equation, including the t−1
f depen-

dence of the non-conservative work and, thus, the emergence of a
speed-limit inequality. It is also interesting that the optimality of the
rightmost/leftmost points of the limit cycle—in terms of minimiz-
ing the non-conservative work for the synchronization thereto—can
also be established for the Liénard equation. This property follows
from purely geometric arguments, stemming from the transversal-
ity condition, without needing to have a closed expression for the
limit cycle.

We have also considered the problem of minimizing the total
work done by the external force, including both conservative and
non-conservative contributions thereto. From the point of view of
SST, the most relevant regime is that of small damping µ � 1 with
an order of unity scaled connection time sf—which, as stated above,
imply an enormous acceleration of the dynamics; the acceleration
factor diverges as µ−2. Therein, the minimization of the total work
W is dominated by the non-conservative contribution Wnc, and,
therefore, the optimal final point over the limit cycle coincides—to
the lowest order—with that obtained for Wnc. As the connection
time sf increases, the non-conservative contribution to the work
decreases and there appears a competition with the conservative
contribution—which is expressed mathematically by the modified
transversality condition MT2 [Eq. (57)]. For initial points inside the
limit cycle, |x10| ≤ xmax

`c , the optimal final point smoothly varies from

x
opt

1f = x10 for sf � 1 to x1f = 1 for µsf � 1. For initial points out-

side the limit cycle, |x10| > xmax
`c , the behavior of the optimal final

point is more complex: there appears a critical value s∗f , at which x
opt

1f

presents a jump discontinuity, but the minimum work is continu-
ous. Therefore, this is analogous to a first-order phase transition,
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with the optimal final point x
opt

1f playing the role of an order parame-

ter. For sf < s∗f , x
opt

1f = xmax
`c , as was the case for the non-conservative

work, whereas x
opt

1f follows Eq. (57) for sf > s∗f .

Non-linear systems typically call for specific approaches,
almost always involving approximations—e.g., there is not a gen-
eral theory for solving non-linear differential equations, in contrast
with the situation for the linear case. Nevertheless, we have been
able here to derive a whole framework for the minimization of the
work done in the synchronization to a limit cycle in a general class
of non-linear systems, with many exact analytical results—without
knowing the explicit function that gives the shape of the limit cycle.
This is a remarkable result, which may pave the way to find the opti-
mal synchronization to self-sustained oscillations in more complex
non-linear systems, which are relevant in many fields such as active
matter and other biological contexts.7–10,13,60–62

From a practical point of view, there is a maximum value of the
force that can be applied, i.e., |F(t)| ≤ K, in any actual physical sys-
tem. Moreover, the force can only be applied during a non-vanishing
time interval. Hence, it would be interesting to address the min-
imization of the work with the non-holonomic constraint |F(t)|
≤ K—which makes it necessary to resort to the tools of optimal
control theory, specifically Pontryagin’s maximum principle.40,63

For large enough K, physical intuition makes one expect a reg-
ularized version of Eq. (28) as the solution of the optimal con-
trol, with (i) the initial and final delta peaks being substituted
with very short—as compared to the smallest intrinsic timescale
of the undriven system—time windows where F(t) = ±K, and (ii)
an intermediate time window, between the short initial and final
ones, in which the solution follows the Euler–Lagrange equations.64

The expectation of the three-stage picture just described is based
on the position of the particle being changed by a tiny, infinites-
imal from a mathematical point of view, amount in the initial
and final time windows—i.e., for a large enough K, the initial and
final ±K forces are impulsive within a high degree of approx-
imation. As K is decreased, the duration of the necessary ini-
tial and final time windows increase and become comparable to
the intrinsic timescales, making the position appreciably change
therein. As a consequence, the validity of the simple three-stage
picture outlined above cannot be guaranteed as K decreases, and
a thorough analysis of the constrained control problem becomes
compulsory.
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APPENDIX A: TRANSVERSALITY CONDITION

In this Appendix, we look into a detailed derivation of the
transversality condition in a general case. Let x : [t0, tf] → R

n be

a C
1(t0, tf) function representing the phase space trajectory of a

system. Now, let us consider the “cost” functional S[x] of a given
trajectory x. We assume this cost to have the general form

S[x] =
∫ tf

t0

dt L(x, ẋ) + M(xf), (A1)

i.e., L(x, ẋ) is the “Lagrangian” of the problem, the time integral of
which provides the running cost during the interval (0, tf), whereas

M(xf) is a C
1 function giving the terminal cost of the trajectory, with

xf ≡ x(tf).
Now, we consider the minimization problem,

min
x∈C

1
(t0 ,tf)

S[x], (A2)

which is known in optimal control theory as the Bolza problem.40

For our purposes, we analyze the Bolza problem subject to the
boundary conditions,

x(t0) = x0, g(xf) = 0, (A3)

where g is a given function. That is, the initial point is fixed, while
the final point lies on a certain target set g(xf) = 0.
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The first-order necessary condition for optimality is δS = 0.
Since x0 is fixed, δx0 = 0. This means

δS =
∫ tf

t0

dt [δx · ∇xL(x, ẋ) + δẋ · ∇ẋL(x, ẋ)]

+ δxf · ∇xf
M(xf) = 0. (A4)

Integrating, by parts, the second term of the integral, we get

δS =
∫ tf

t0

dt δx ·
[
∇xL(x, ẋ) −

d

dt
∇ẋL(x, ẋ)

]

+ δxf ·
[
pf + ∇xf

M(xf)
]

= 0, (A5)

where we have defined the momenta and its final value as

p ≡ ∇ẋL(x, ẋ), pf ≡ p(tf). (A6)

If xf were fixed—as is the case in the least action principle of classi-
cal mechanics,65 the last term of Eq. (A5) would identically vanish.
Then, the arbitrariness of δx(t) in the time interval (0, tf) leads to the
Euler–Lagrange equation,

∇xL(x, ẋ) −
d

dt
∇ẋL(x, ẋ) = 0. (A7)

In our case, xf is not fixed, and it lies on the curve g(xf) = 0. Yet,
since δx(t) for t ∈ (0, tf) and δxf can be independently varied, (i) the
Euler–Lagrange equations continue to hold and (ii) the boundary
term in Eq. (A5) must also vanish, i.e.,

δxf ·
[
pf + ∇xf

M(xf)
]

= 0. (A8)

This condition is known as the transversality condition, since it tells
us that pf + ∇xf

M(xf) must be orthogonal to δxf. It selects, among all

the points on the target set g(xf) = 0, the optimal final point.
In the main text, we have first considered the problem of

the minimization of the non-conservative work. In that case, there
is no terminal cost and the transversality condition reduces to
δxf · pf = 0, Eq. (29). Later, we have considered the problem of

minimizing the total work. The inclusion of the conservative con-
tribution thereto entails that there is now a terminal cost E(xf), as
expressed by Eq. (53). The transversality condition, thus, changes

to δxf ·
[
pf + ∇xf

E(xf)
]

= 0 [Eq. (54)]. It is to differentiate Eq. (54)

from Eq. (29) that we have referred to the former as the modified
transversality condition in this paper.
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