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Characterization of an atom interferometer in the quasi-Bragg regime
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We provide a comprehensive study of ultracold-atom diffraction by an optical lattice. We focus on an interme-
diate regime between the Raman-Nath and Bragg regimes, the so-called quasi-Bragg regime. The experimental
results are in good agreement with a full numerical integration of the Schrödinger equation. We investigate the
long-pulse regime limited by a strong velocity selection and the short-pulse regime limited by “nonadiabatic
losses.” For each of these regimes, we estimate the multiport features of the Bragg interferometers. Finally, we
discuss the best compromise between these two regimes, considering the diffraction phase shift and the existence
of parasitic interferometers.
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I. INTRODUCTION

In 1933, Kapitza and Dirac [1] proposed the diffraction
of electrons by a standing light wave to study the stimulated
emission process. Because of the weakness of the interac-
tion between free electrons and photons, the first convincing
experimental observation was not performed until 2001 [2].
However, an atomic analog of the Kapitza-Dirac effect was
proposed by Altshuler et al. [3], who pointed out the huge
enhancement of the diffraction probability if one replaces
electrons by atoms and if one uses quasiresonant laser radi-
ation. Following this idea, atomic diffraction by a standing
light wave was demonstrated in the 1980s [4,5].

These seminal works led to a number of experimental and
theoretical studies [6–12]. In particular, two extreme regimes
of diffraction are useful for discussions: the Raman-Nath
and Bragg regimes [13,14]. The Raman-Nath regime corre-
sponds to a short and intense atom-light interaction. In this
regime, the scattering process leads to the population of many
atom momentum states. On the other hand, a long interaction
time and a shallow optical potential give rise to the Bragg
regime [15], where only a single diffraction order is allowed
by energy conservation. It provides efficient and adjustable
two-port beam splitters which are required for implementing
two-path interferometer geometries. These interferometers are
of great interest for accurate interferometric measurements
as they allow a straightforward readout of the atomic phase
shift.

Although most of the precision measurements in atom in-
terferometry use two-photon Raman beam splitters [16–23],
Bragg scattering has several attractive features for atom
interferometry. First, in a Bragg interferometer, the atoms
propagate in the same internal state, which makes the atomic
phase less sensitive to external fields. This property could be
advantageous for accurate inertial sensors [24]. Interferome-
ters with a single internal state are also important for accurate
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measurements of some atomic properties [25] or geometri-
cal phase shifts [26,27]. Furthermore, the high-order Bragg
diffraction allows an increase of the separation between the
interferometer arms and hence the interferometer sensitivity.
The first atom interferometer based on Bragg diffraction was
demonstrated by Giltner et al. [28] with a momentum separa-
tion of up to six photon recoils (6h̄k).

High-order diffraction in the Bragg regime [29,30] requires
a very long atom-optical lattice interaction time which is diffi-
cult to handle in interferometric measurements. Nevertheless,
in the area between the Raman-Nath and Bragg regimes, the
so-called quasi-Bragg regime, it is possible to achieve an ef-
fective two-port beam splitter using a smooth temporal profile
of the optical lattice intensity [13,31,32]. Using a Gaussian
shape pulse, Müller et al. [33] performed the atom interfer-
ometer with the highest diffraction order (24h̄k). A convenient
description of the quasi-Bragg regime relies on the adiabatic
following of eigenstates [13,31,34,35]. Taking full advantage
of the adiabatic theorem, Siemß et al. [35] demonstrated an
analytical formalism describing losses and phase shifts for a
sharp momentum distribution.

Many efforts have been made to further increase the num-
ber of photon recoils transferred to the atom in order to
produce large-momentum-transfer (LMT) beam splitters. Dif-
ferent processes were demonstrated; most of them create a
superposition of two momentum states using a first diffrac-
tion pulse followed by an acceleration of each state with a
sequence of diffraction pulses [36–39] or Bloch oscillations
in an accelerated optical lattice [40–43]. Recent years have
seen spectacular breakthroughs in the development of LMT
interferometers, demonstrating coherence for up to 408h̄k
[44]. The LMT beam splitters are one of the main prospects
for the improvement of inertial sensor technologies [45,46]
and fundamental constant measurements [38,47]. The LMT
beam splitters are also central for new tests in gravitational
physics [48–53]. In addition, interferometers with a very large
spatial separation [54,55] pave the way for measurements in
which the macroscopic separation between the two arms is
essential, for example, in cavity QED [56], entangled state
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engineering [57], and measurements such as Aharonov-Bohm
related phases [58–60].

A thorough understanding of the quasi-Bragg scattering
is fundamental for metrology with LMT atom interferom-
eters. In particular, the complex dynamics of the nonres-
onant momentum states leads to diffraction phase shifts
[32,35,61] and multiple interferometers [24,62] which are
crucial for determining the fundamental limits of the sen-
sitivity and the accuracy. Theoretical approaches based
on perturbative expansion allow a qualitative description
of the diffraction phases in the quasi-Bragg regime [32].
However, a more quantitative description needs to con-
sider the momentum distribution of the atomic ensemble
[35,63].

In this paper, we investigate experimentally the inter-
play between diffraction efficiency, diffraction phase, and
multiport beam splitters which were explored theoretically
in [32,35,63]. We measure the Rabi oscillations between
the Bragg states and the nonadiabatic losses for high-
order diffraction at finite momentum width. The very good
agreement with numerical simulations allows a quantitative
understanding of the diffraction dynamics and the diffrac-
tion phases. We demonstrate a short-pulse (SP) regime and
a long-pulse (LP) regime within the quasi-Bragg regime.
In the SP regime a complex dynamics is induced by large
nonadiabatic losses, while in the LP regime the evolution
merges the effective two-level model at a high Rabi cycle
(� π ). An optimal efficiency is found at the border between
these two regimes. We also present the interference patterns
for multiport interferometers operating in the quasi-Bragg
regime. The fringe patterns of each output port of the in-
terferometer are compared with numerical simulations. This
allows us to anticipate further experimental and theoretical
studies regarding the inherent diffraction phase shifts and mul-
tiport features of LMT interferometers based on quasi-Bragg
diffraction.

This paper is organized as follows: Sec. II presents general
aspects of atom diffraction in the quasi-Bragg regime and the
numerical model we use to analyze the experimental results.
Section III discusses the experimental diffraction patterns and
the interferometers signals in the quasi-Bragg regime.

II. ATOM DIFFRACTION MODEL

We consider a Bose-Einstein condensate (BEC) interacting
with a vertical optical lattice created by two counterpropagat-
ing laser beams with a frequency difference �ω = ω1 − ω2.
The mean wave number of the two running waves is de-
noted k = ω1+ω2

2c . The laser is far detuned from the resonant
absorption frequencies, allowing an adiabatic elimination of
the excited internal state. Therefore, the atom-light interaction
reduces to a light shift, proportional to the light intensity, lead-
ing to the potential 2h̄� sin2 (kz), where � is the two-photon
Rabi frequency (see Appendix A).

In our experiments, we use an expanded BEC source in
which atom-atom interactions are negligible. Therefore, the
evolution of the BEC is completely described by a single-atom
Hamiltonian H including the kinetic energy, the gravitational
potential, and the periodic light shift. In the laboratory frame,

FIG. 1. Energy-momentum parabolic dispersion relation. The
Bragg order n diffraction process can be interpreted as multiple two-
photon processes between an input state in momentum |p0〉 and an
output momentum state |p0 + 2nh̄k〉. The two laser beams forming
the optical lattice have frequencies ω1 and ω2 detuned by � with
respect to the atomic transition.

the Hamiltonian is written

H = p̂2

2M
+ Mgẑ + 2h̄�(t ) sin2

[
kẑ − φ(t )

2

]
, (1)

where M is the mass of the atom and ẑ and p̂ are the position
and momentum operators along the direction of the optical
lattice. φ(t ) is the phase difference between the two laser
running waves of the optical lattice. Using the unitary opera-

tor U = e
i
h̄

Mg2t3

6 e
i
h̄

φ(t )
2k p̂e

i
h̄ Mgt ẑ, we transform the Hamiltonian to

H̃ = UHU † + ih̄U̇U †, corresponding to a free-falling frame,
and in this Hamiltonian, the gravitational potential does not
appear explicitly:

H̃ = p̂2

2M
− p̂

(
φ̇

2k
+ gt

)
+ h̄�(t ) − h̄�(t )

2
(e2ikẑ + e−2ikẑ ).

(2)

The operators e±2ikẑ couple atomic states differing by two
photon momenta. Therefore, the periodic potential is inter-
preted as a two-photon process in which a photon is absorbed
from one running wave and reemitted into the other one
with a transfer of two photon momenta 2h̄k. The two-photon
process can occur n times and transfer 2n photon momenta
corresponding to higher diffraction orders, as illustrated in
Fig. 1. Hence, it is convenient to expand the wave function
on the plane waves |2l h̄k〉: |�〉 = ∑n+m

l=−m Al |2l h̄k〉, where Al

are the complex amplitudes of the plane-wave decomposition
(see Fig. 1). We truncate the basis considering 2m outer states
surrounding the two Bragg states |0h̄k〉 and |2nh̄k〉 and all the
states in between them. In this basis, the Hamiltonian H̃ (t ) is
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written as a tridiagonal matrix:

H̃ (t )

= 4h̄ωr

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ−m γ (t ) 0 . . . . . . . . . 0

γ (t )∗ . . .
. . .

. . .
. . .

. . .
...

0 . . . 0 . . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . δn
. . . 0

...
. . .

. . .
. . .

. . .
. . . γ (t )

0 . . . . . . . . . 0 γ (t )∗ δn+m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)

where ωr = h̄k2

2M is the recoil frequency of a single photon and
γ (t ) = �(t )

8ωr
is the dimensionless effective two-photon Rabi

frequency �(t ). The diagonal terms δl (t ) = l2 − l ṽ(t ) depend
on the usual kinetic energy in l2 and on the velocity ṽ(t ) of
the lattice with respect to the free-falling atoms (in units of
vr = h̄k

M ):

ṽ(t ) = v(t ) + (gt − v0)

vr
= �ω(t )

4ωr
+ (gt − v0)

vr
. (4)

v0 is the initial atom velocity in the lattice direction in the
laboratory frame. In addition, the lattice velocity is set by
the frequency difference �ω in between the two beams. A
time-dependent frequency ramp �ω(t ) = ω0 + αt , with αt =
−2kgt , is adjusted to cancel out the Earth acceleration so that
the Bragg condition is always verified. The constant value
ω0 = 4nωr + 2kv0 cancels out the diagonal term δn and de-
fines the Bragg condition at order n for a given v0.

The Schrödinger equation leads to a system of differential
equations. Approximate solutions exist, in particular for rect-
angular pulse shapes of the lattice amplitude. Two extreme
cases are widely discussed in the literature [12]. The first case
corresponds to short enough interaction times to neglect the
dynamics of the external states, i.e., for short interaction times
compared to the period of classical oscillation in the optical
potential τ < (8ωr

√|γ |)−1. This approximation corresponds
to the Raman-Nath approximation [64], introduced for the
diffraction of light by high-frequency sound waves, now used
in acousto-optic devices [65,66]. The broad spectrum associ-
ated with a short rectangular pulse leads to multiple diffraction
orders and is poorly suited for atom beam splitters. On the
other hand, the Bragg regime corresponds to the interaction
with a weak potential: |γ | � 1. The population in the nonres-
onant momentum states vanishes, and they can be ignored in
a perturbative approximation. The result is a two-level system
leading to Rabi oscillations between the diffracted states.

A rough estimate of the effective Rabi frequency for
diffraction of order n is given by the first nonzero term of the
perturbation expansion [29]: �n ≈ �n

(8ωr )n−1(n−1)!2 . This result
is not accurate as soon as �n is not very small with respect to
ωr ; the higher terms of the perturbation expansion are then no
longer negligible. However, this quantity is proportional to the
difference of the an and bn coefficients of the Mathieu equa-
tion [67], and it is well established that the power expansions
of these coefficients have a rather small radius of convergence
[68], so that the convergence of the perturbation expansion of
�n is slow. Despite its inaccuracy the approximate formula

FIG. 2. (a) Evolution of the populations during a Gaussian pulse
for Bragg order n = 3. The solid black line represents the Gaussian
pulse amplitude as a function of time. The pulse duration σ = ω−1

r

and the maximum amplitude γmax = 3.3 were chosen to produce
a perfect Bragg mirror. Populations are plotted in (b) for the two
Bragg states (|0h̄k〉 in blue and |6h̄k〉 in red) and in (c) and (d) for
the unwanted states. Inner states (|2h̄k〉 in pink and |4h̄k〉 in gray)
in (c) and outer states (| − 2h̄k〉 in yellow and |8h̄k〉 in green) in
(d) oscillate by pair.

for �n illustrates the necessity of high laser power and a
very long interaction for large values of the Bragg order n.
Therefore, the Bragg regime is not of practical interest for
high momentum transfer.

We are interested in the intermediate regime introduced by
Müller et al. [32] and named the quasi-Bragg regime. This
regime has shown efficient high-order Bragg diffraction for
an experimentally accessible set of parameters. The regime
occurs when the potential is switched on and off smoothly.
As for the Bragg diffraction, in the quasi-Bragg regime two
output momentum states are mainly populated once the pulse
has ended. In the analytical theory developed in [35] the
finite momentum dispersion is described perturbatively, and
the losses act as small corrections to the description of the
quasi-Bragg diffraction process. As the parameters of our
experiments are beyond these approximations, we study the
dynamics by numerically solving the Schrödinger equation in
the free-falling frame using the discrete momentum basis.
The populations on each momentum state are calculated as
the squared complex amplitudes after the interaction with the
lattice: Pl = A2

l . In what follows, we use a Gaussian pulse
of the lattice amplitude to reduce losses in unwanted states
[32,63]:

γ (t ) = γmax exp

[
− t2

2σ 2

]
, (5)

where σ is the Gaussian pulse duration and γmax is the am-
plitude (peak two-photon Rabi frequency). The numerical
propagation is performed on a 10σ time window centered on
the pulse.

Figure 2 illustrates the time evolution of the populations in
the momentum states during a Gaussian pulse of Bragg order
n = 3 and for zero velocity dispersion. The pulse parameters
are set to realize a perfect mirror pulse in which only the
Bragg state |6h̄k〉 is populated at the end of the pulse.

If the Bragg condition is fulfilled, the two Bragg states are
two eigenstates and are degenerate at the start of the interac-
tion (|γ | � 1). When the amplitude of the lattice increases
sufficiently slowly, the populations adiabatically follow these
two eigenstates. At the end of the pulse, the two eigenstates
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return back to the initial two momentum states leading to Rabi
oscillations. The weight in each Bragg state depends on the
accumulated phase (Rabi phase θR) during the evolution. For
the calculation, we use the momentum basis, which is not
the eigenbasis of the system (Bloch states) in the presence
of the lattice. The adiabatic following of the two eigenstates
corresponds to the oscillation of unwanted momentum states
by pairs with a non-negligible amplitude which finally de-
structively interfere.

The complex dynamics between momentum states during
the pulse is a signature of the quasi-Bragg regime. It em-
phasizes the importance of considering the inner states (0 <

l < n) and some outer states (l < 0 and l > n) to accurately
describe the complete evolution of the atomic populations.
The number 2m of outer states to be considered is linked to
the spectral width of the pulse, so it depends on the Bragg
order n, the pulse duration σ , and the pulse amplitude γmax.
Appendix B discusses a criterion for the minimum number
of outer states to be taken into account in (3) to ensure the
convergence of our simulations.

In the quasi-Bragg regime, changing the pulse duration
for a given amplitude does more than drive Rabi oscillations
between the two Bragg states. Figure 3(a) shows the evolution
of the populations in the different relevant states at the end of
a pulse of duration σ for γmax = 3.3. Two subregimes can be
distinguished: the SP regime, where many unwanted states are
populated, and the LP regime, where the population oscillates
between the two Bragg states. In the LP regime, the oscillation
between these two states is well predicted by a two-level
calculation despite the fact that unwanted states are transiently
populated during the pulse. It is interesting to notice that in
the SP regime the populations in the unwanted states, i.e.,
the losses, synchronously cancel out for specific values of
σ . This cancellation offers the opportunity to experimentally
choose pulse parameters that exploit the loss cancellation in
the SP regime to maximize the diffraction efficiency. In what
follows, the diffraction efficiency refers to a mirror pulse, and
it is measured as the fraction of the population transferred in
|2nh̄k〉, i.e., Pn.

The boundary between the SP regime and the LP regime
and the periodic cancellation of the losses are illustrated in
Fig. 4. Figure 4 presents the total population in the two
Bragg states in a σ -γmax map for Bragg order n = 3. The
SP and LP regimes are clearly identified. The boundary is
pushed towards longer pulses as γmax increases. It follows the
intuitive picture that the spectral width increases with γmax

and needs to be compensated by a longer pulse to main-
tain the adiabaticity of the pulse. The actual shape of the
boundary is, however, nontrivial since it relies on multiple
interferences between unwanted states. It also appears that
the loss cancellation presents a periodic pattern that can be
interpreted as Stückelberg interferometers [69]. Stückelberg
interferences are due to the symmetry of the Gaussian pulse,
which induces a symmetric series of avoided crossings be-
tween the rising part and the falling part of the pulse. Each
avoided crossing acts as a beam splitter for the eigenstates
which splits and recombines the wave functions. The resulting
interferometers lead to oscillations between the Bragg states
and the losses that depend on the phase difference due to the

FIG. 3. Numerical simulation of diffraction at order n = 3 in the
quasi-Bragg regime with zero velocity dispersion and γmax = 3.3.
(a) Evolution of populations in the different momentum states as a
function of the pulse duration σ ; the population of the initial state
|0h̄k〉 is not plotted. The black solid line represents the population
in the diffracted Bragg state |6h̄k〉; the populations in the unwanted
states are plotted as dashed lines. The blue dotted line is the result
of an effective two-level calculation for the population in the |6h̄k〉
state. It overlaps with the numerical calculation in the long-pulse
(LP) regime and shows that the Rabi phase θR is continuously
built from the short-pulse (SP) regime. (b) Square root of the to-
tal population in the unwanted states for a pulse duration around
0.5ω−1

r [shaded regions in (a) and (c)]. (c) Diffraction phase � as
a function of σ . The two gray dashed lines indicate constant ±π/2
phases. They match the diffraction phase calculated in the LP regime.
(d) Diffraction phase compensated from the trivial π/2 contribution
(�d = � − π/2) for the same pulse duration.

propagation in the different eigenstates. Following [35], we
call these losses due to nonadiabatic effect Landau-Zener (LZ)
losses LLZ.

The diffraction efficiency is not the only relevant parame-
ter when we plan to use Bragg diffraction to build an atom
interferometer. The diffracted waves are imprinted with a
phase that needs to be controlled at a metrological level. The
numerical calculation gives access to the diffraction phase
� between the two Bragg states as the difference between
the arguments of the complex amplitudes after the pulse:
� = arg An − arg A0.

Figure 3(c) represents the relative phase � as a function
of σ for γmax = 3.3. In the LP regime, the diffraction phase
oscillates as expected in the deep Bragg regime (effective
two-level approximation); that is, the phase � jumps between
±π/2 for each half period. However, in the SP regime, we
observe a complex phase evolution highlighting the link be-
tween diffraction phase and LZ losses [32,35]. Müller et al.
[32] showed that the nontrivial phase �d is bounded by �d �
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FIG. 4. The total population P0 + P3 of the two Bragg states
(|0h̄k〉 and |6h̄k〉) in color scale in a σ -γmax map for n = 3. The calcu-
lation assumes a vanishing velocity dispersion. The black dashed line
is a guide to the eye showing the boundary between the SP and LP
regimes. The light blue solid line corresponds to the cut at γmax = 3.3
studied in Fig. 3.

√
LLZ. Figures 3(b) and 3(d) present, respectively, the square

root of the losses and �d for σ ∈ [0.37ω−1
r , 0.52ω−1

r ] close
to the LP regime boundary where the losses are small. In this
range, �d ≈ √

LLZ/3, confirming that the vanishing losses
coincide with a minimum of nontrivial diffraction phase.

To reproduce experimental data as accurately as possible,
the finite velocity dispersion of the atomic cloud has to be
taken into account in the calculation as the diagonal matrix
elements explicitly depend on the atom velocity. This is done
by adding to the lattice velocity ṽ(t ) used in Eq. (4) a random
variable δṽ following the Gaussian distribution:

ρ(δṽ) = 1√
2πσ 2

ṽ

exp

[
− δṽ2

2σ 2
ṽ

]
, (6)

where σṽ is a Gaussian width proportional to the atomic cloud
velocity dispersion. The numerical calculation is performed
for each velocity class, and the mean atomic population in
each momentum state is the weighted average over the distri-
bution.

The main consequence of a finite velocity dispersion is
to reduce the diffraction efficiency for long pulses as part of
the atomic distribution ends up being off resonant. From this
point of view, one would like to compromise on the pulse
duration to minimize both Landau-Zener losses and velocity
selection losses [63]. The existence of this compromise is
illustrated in Fig. 5, taking as an example diffraction order
n = 3 with a velocity dispersion of 0.32vr , which is relevant
to our experiment (see Sec. III). The right part of Fig. 5 maps
the population in the diffracted Bragg state |6h̄k〉 in a σ -γmax

plane. It presents a series of local maxima corresponding to
Rabi phases that match odd multiples of π . The left part of
Fig. 5 shows the evolution of the transferred population as
a function of the pulse duration along the local maximum
lines drawn by dashed lines in the σ -γmax plane. Each curve
corresponds to a given Rabi phase (θR = π , 3π , etc.). All the
odd-π Rabi phases in the LP regime reach a similar maxi-
mum transfer efficiency for a given (σ, γmax)opt. This optimal

FIG. 5. Population P3 in the diffracted Bragg state for n = 3. The
calculation takes into account a velocity dispersion of 0.32vr . Right:
Diffracted population P3 in a color scale in a σ -γmax map. Dashed
lines are guides to the eye showing local maximum lines achieving
Rabi phases θR = π (dashed line a), 3π (dashed line b), 5π (dashed
line c), etc. Left: Diffracted population along maxima lines. The dark
blue curve corresponds to θR = π , the red curve corresponds to θR =
3π , and the light blue curve corresponds to θR = 5π . An optimal
transfer is realized for well-chosen (σ, γmax)opt couples for θR � 3π .

transfer is limited by the velocity selection losses, which are
similar for all (σ, γmax)opt. In this example, the maximum effi-
ciency can be reached for θR � 3π . An interesting trade-off is
the pulse duration σopt � 0.4ω−1

r corresponding to θR = 3π ,
which minimizes the peak Rabi frequency. Going for a higher
Rabi phase with equivalent efficiency would further reduce
Landau-Zener losses, but it would increase negative effects
scaling with σγmax such as spontaneous emission losses and
phases related to ac Stark shifts.

In the next section we numerically and experimentally
investigate the impact of finite temperature on high-order
diffraction beam splitters in the quasi-Bragg regime.

III. EXPERIMENTAL RESULTS

A. Experimental setup

The atomic source is an evaporatively cooled 87Rb ensem-
ble in a crossed dipole trap in the presence of a magnetic field
gradient to purify the ensemble in the magnetically insensitive
Zeeman sublevel of the lower hyperfine state |F = 1, mF =
0〉. We obtain a BEC of N = 8 × 104 atoms with final trapping
frequencies (60 × 900 × 1100) Hz3. The single-shot velocity
dispersion is further reduced by transferring the BEC in a
much shallower trap (10 × 80 × 80) Hz3, leading to a velocity
dispersion of about 0.32 ± 0.05vr = 1.9 ± 0.3 mm s−1, with
vr ∼ 5.9 mm s−1, including center-of-mass velocity fluctua-
tions.

The vertical optical lattice used for Bragg diffraction is
sketched in Fig. 6. The laser source is a 1560-nm-laser fre-
quency doubled to 780 nm with a detuning � = 11 GHz from
the 87Rb |5S1/2, F = 1〉 to |5P3/2, F ′ = 2〉 transition. This de-
tuning is sufficient to ensure negligible spontaneous emission
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FIG. 6. Two laser beams at frequencies ω1 and ω2 are overlapped
with orthogonal linear polarizations. The beams pass through a first
(λ/4)-wave plate to obtain circular polarizations and are retrore-
flected through a second λ/4 plate. This setup creates two vertical
optical lattices corresponding to the σ+/σ+ and σ−/σ− pairs, with
each one pairing both frequencies.

for the considered interaction times. However, for a given
diffraction order, we have seen that there is an optimal γmax.
Therefore, for a given laser intensity, it is possible to find an
optimal � value which minimizes the spontaneous emission
[63]. The laser is split into two paths passing through two
double-pass acousto-optic modulators (AOMs) controlling the
frequency difference and phase of the optical lattice. They
are recombined on crossed polarization in a polarization-
maintaining fiber. A last AOM controls the amplitude of both
beams up to 150 mW and thus allows the temporal pulse shap-
ing of the optical lattice. The two beams are finally collimated
with a Gaussian waist w0 = 4 mm and polarized with orthog-
onal circular polarizations. The beams are then retroreflected
along the vertical axis after passing through a quarter-wave
plate. This configuration creates two quasistanding waves for
each circular polarization with opposite velocities ±�ω/2k
and opposite phases.

For large enough initial velocity of the atoms v0 � vr , only
one of the two lattices can fulfill the Bragg condition at a
time. The other one is Doppler shifted off resonance and does
not interact with the atoms. In practice, the initial velocity is
acquired by letting the atom fall under gravity for 6 ms before
the optical lattice is turned on. To ensure the Bragg condi-
tion is satisfied for long interaction times or complex pulse
sequences, the constant gravity acceleration is compensated
by a constant frequency ramp on one of the two beams [see
Eq. (4)].

The populations in different momentum states are mea-
sured by time-of-flight fluorescence imaging after 20 ms of
free fall. The spatial separation corresponding to a momentum
separation of 2h̄k equals around 230 μm, which is larger than
the typical cloud size of � 60 μm (radius at 1√

e
). The images

are integrated along the direction orthogonal to the diffracting
lattice, and the resulting profiles are fitted with a sum of reg-
ularly separated Gaussians corresponding to each momentum
state. The relative population in each state is taken to be the

integral of the corresponding Gaussian divided by the total
integrated signal.

B. Quasi-Bragg diffraction

The high-order Bragg diffraction in the quasi-Bragg regime
is illustrated in Fig. 7. We have performed measurements of
the populations in the different momentum states after a pulse
of order n = 3 with a peak two-photon Rabi frequency γmax =
3.3. The pulse duration σ is scanned between 0.05ω−1

r and
1.1ω−1

r . The distribution of the population over the different
momentum states is well reproduced by the numerical simu-
lation including the velocity selection effect for long pulses.
The very good agreement between the data and the simulation
does not rely on any data adjustment. The simulation needs
only two parameters which are independently measured: the
atomic velocity dispersion σṽ , which is measured by time
of flight, and the optical power P allowing a calculation of
the two-photon Rabi frequency γmax (see Appendix A). In
addition the calculated γmax is compared to the first-order Rabi
oscillation with rectangular pulses.

The SP and LP regimes are still distinguishable with a
finite-velocity-dispersion ensemble. Landau-Zener losses are
significant for short pulses (σ < 0.4ω−1

r ) and completely van-
ish for longer pulses. The velocity dispersion has a major
impact in the LP regime, reducing the oscillation amplitude
of the populations of the Bragg states as the spectral width
of the pulse becomes narrower. In order to minimize the
velocity selection and to address the whole atomic velocity
distribution, one would like to use a pulse that is as short as
possible. However, a very short pulse induces Landau-Zener
losses and associated diffraction phases which degrade the
interferometer performances. Therefore, a trade-off between
the velocity selection and Landau-Zener losses is needed. It
is highly dependent on the shape of the lattice pulse and on
the velocity dispersion of the atomic source. The Gaussian
shape pulses studied here are commonly used to reduce the
spectral width of the pulse and thus the Landau-Zener losses,
but they do not take full advantage of the available laser power
to drive Rabi oscillations. One could think to use smooth
edge functions with a larger pulse area [34] for the same γmax

value to manage a better trade-off: an example of such a pulse
is the “tanh pulse.” A lower velocity dispersion, achieved
by velocity selection or δ-kick collimation techniques [70],
gives more room between short-pulse Landau-Zener losses
and long-pulse spectral narrowing.

The limited laser power and the finite velocity dispersion
allow us to achieve a mirror pulse efficiency above 70% up
to order n = 6 (see Fig. 12 ). Such an efficiency ensures good
fringe visibility for three-pulse interferometers. However, it
corresponds to pulse durations in the SP regime where losses
are not negligible and diffraction phases are not trivial and are
hard to control to a metrological level.

In order to study the impact of this choice in the quasi-
Bragg regime on the interferometer signal we first compare
the performances of individual mirror pulses in the SP or
LP regime for Bragg order up to n = 5. Figure 8 shows how
the population distributes over the different momentum states,
including unwanted states, after the mirror pulses. Here, the
LP pulses correspond to θR = 3π , which matches the com-
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FIG. 7. Comparison of the measured and calculated relative populations of the various momentum states as a function of σ for a quasi-
Bragg diffraction of order n = 3. The peak two-photon Rabi frequency is γmax = 3.3. (a) The relative populations in the different momentum
states are plotted in blue and red for the two Bragg states |0h̄k〉 and |6h̄k〉, respectively. (b) Relative population in the inner states (pink: |2h̄k〉,
gray: |4h̄k〉). (c) Relative population in the outer states (black: | − 4h̄k〉, green: | − 2h̄k〉, yellow: |8h̄k〉). Each experimental point is an average
of 10 measurements, and the error bar is the statistical shot-to-shot error. The solid lines are the results of the numerical simulation for a
velocity dispersion corresponding to 0.32 ± 0.05vr . The experimental uncertainty on the velocity dispersion is shown as the shading around
the simulated populations.

promises illustrated in Fig. 5, while the SP pulses correspond
to θR = π for the same γmax. For example, in the n = 3 case
illustrated in Fig. 7, the LP mirror pulse duration is σ �
0.42ω−1

r , and the SP mirror pulse duration is σ � 0.10ω−1
r .

The LP pulses conserve the major part of the population in
the two Bragg states, but the transfer efficiency is limited and
decreases as the velocity selectivity increases with the Bragg

FIG. 8. Population distribution after a mirror pulse in the SP
regime (left bars) and in the LP regime (right bars). The dark (light)
color bar area stands for the transferred fraction Pn in |2nh̄k〉 (non-
transferred fraction P0 in |0h̄k〉). The hatched areas quantify the
fraction of atoms lost in the unwanted states. The error bars are
standard deviations over 10 realizations. The cumulative height of
the two colored areas indicates the fraction of atoms detected and
used for the calculation of the relative population at the output of
the interferometer. The efficiencies restricted to the two-Bragg states

Pn
P0+Pn

for the SP pulses (LP) are 90% (79%) for n = 2, 93% (67%)
for n = 3, and 70% (40%) for n = 5.

order. On the contrary, the SP pulses perform high efficiencies
restricted to the two-Bragg states Pn

P0+Pn
, despite a significant

loss of atoms in the unwanted states. These two different
kinds of losses have different impacts on the interferometer
signal, which will be discussed in the next section. The drop in
transfer efficiency for n = 5 is due to the limited laser power,
which prevents us from finding the optimal pulse parameters
for such a high order.

C. Quasi-Bragg atom interferometer

We perform Mach-Zehnder-type three-pulse interferome-
ters. In the usual two-level picture, relevant for Raman pulses
or in the deep Bragg regime, the beam-splitter pulses corre-
spond to θR = π/2, and the central mirror pulse corresponds
to θR = π . However, in the quasi-Bragg regime, such low
Rabi phases would have been obtained for short pulses leading
to large Landau-Zener losses. In the following experiments,
the beam splitters are realized with longer pulses, giving θR =
3π/2 [see Fig 3(a)]. This value corresponds to a pulse at the
frontier between the SP and LP regimes and thus represents
a compromise between Landau-Zener losses and velocity
selection.

We build interferometers up to n = 5 with the different
central mirror pulses studied in Fig. 8. The interferometer
phase is scanned by adding a phase shift �ϕ to one of the
laser beams forming the lattice prior to the last Bragg pulse.
Figures 9(a) and 9(b) show, as an example, the interference
fringes for n = 3 for the two configurations of the central
pulse. The population in one of the output ports is normalized
to the population in the two main output ports and is fitted with
a sine function, as expected for a two-path interferometer. The
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FIG. 9. Sample interference patterns for mirror pulses in the
(a) LP and (b) SP regimes for n = 3. We show the relative atom
number in one of the two main output ports normalized by the pop-
ulation in both main ports as a function of the phase shift. Error bars
are standard deviations over three realizations. The solid lines are
sinusoidal fits to the data. (c) Fitted visibility in the SP regime (black
circles) and in the LP regime (blue squares) as a function of the Bragg
order. Error bars for SP interferometers reflect the distortion of the
signal and the mismatch with the pure sine model.

interrogation time between two pulses is small (T = 1 ms) in
order to minimize the effect of environmental perturbations,
such as vibrations and to focus on the impact of the diffraction
losses on the interferometer signal. In addition, for inter-
ferometers with large arm separations, the atoms experience
different optical fields on each arm. Therefore, the absolute ac
Stark shift averages unevenly on each arm, which reduces the
visibility. However, for the interrogation time T considered
in this paper, the separation is small enough to ignore this
effect. In addition, for larger arm separation, it is possible
[55] to compensate the mean ac Stark shift by using a laser
with a supplementary frequency corresponding to a detuning
of a sign opposite that of the Bragg diffraction beams. The
relative intensity of this supplementary frequency beam must
be adjusted with respect to the Bragg beams to cancel the
mean ac Stark shift.

In the LP regime [see Fig. 9(a) for n = 3], the fringe pattern
stays very close to a pure sine. This pattern indicates that all
atoms are measured in one of the two Bragg states with van-
ishing population in the unwanted states. The fitted visibilities
for LP interferometers are plotted as blue points in Fig. 9(c).
The fringe visibility decreases with the Bragg order n as the
velocity bandwidth of the diffraction pulse decreases with n,
so that a larger fraction of the population remains in the initial
state and does not contribute to the fringe signal. The finite
available laser power limits the Bragg order to n = 5 with a
fitted visibility around 15%.

FIG. 10. Fringe patterns for n = 2. The pulses parameters are
γmax = 1.75, σ = 0.46ω−1

r for the beam-splitter pulses (θR = 5π/2)
and σ = 0.15ω−1

r for the mirror pulse (θR ∼ π ). The multiport nature
of Bragg diffraction leads to distorted fringe patterns. The momen-
tum states depicted are (a) the two Bragg states, (b) the inner state,
and (c) and (d) the two outer states. Each experimental data point is
an average of three points, and the error bar is the standard deviation.
Solid lines are the results of numerical simulation for a velocity
dispersion of 0.32vr .

The SP regime offers the possibility of addressing a
broader velocity distribution which contributes to keeping an
almost constant visibility up to order n = 4 [see black circles
in Fig. 9(c)]. The degraded performance for n = 5 is also due
to limited laser power. The improved visibility is explained
by the inefficiency of the pulses which populate unwanted
momentum states that are filtered out by the normalization and
do not enter the estimation of the plotted relative population.
Therefore, the total number of atoms contributing to the inter-
ferometer signal is reduced with respect to the LP counterpart
(see Fig. 8). In addition, the population in the unwanted states
leads to large diffraction phases and parasitic interferometric
paths that distort the fringe patterns. In this regime, the inter-
ferometer is no longer a two-path interferometer leading to a
degraded phase estimation [see Fig. 9(b)].

The multiport nature of the interferometer in the quasi-
Bragg regime plays an already significant role for order n = 2,
as shown in Fig. 10. It shows the populations in all the differ-
ent measurable output ports normalized to the total number of
detected atoms. The experimental data are compared with our
numerical calculation.

As expected for n = 2 order pulses, the two main output
ports oscillate with a period π as the laser phase shift �ϕ is
imprinted twice during the diffraction event [see Fig. 10(a)].
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The fringe pattern is strongly distorted, and this distortion is
obviously related to the strong modulation of the population
of the inner state, which is unique in the n = 2 case. This be-
havior is a typical signature of interferometers involving more
than two paths and leads to a systematic error of the phase
measurement since the response function strongly differs from
the expected sine shape. The populations in the outer states are
non-negligible, but their modulation is much weaker, and they
do not have a significant impact on the phase measurement for
the present experimental parameters.

Spurious interferometers have been observed in dual inter-
ferometers from the residual errors of a Lissajou fitting [62].
In particular, the authors observed a “magic” pulse duration
minimizing the errors on the phase extraction. We think the
effect is related to a minimum of unwanted momentum states
populated during the π/2 pulses in the SP regime. We believe
that our direct observations of the fringes on each interferom-
eter’s outputs will guide the theories needed to read the phase
taking into account multiport features [71].

IV. CONCLUSIONS

We have investigated atom diffraction and interferometry
of a BEC by a standing light wave in the quasi-Bragg regime
up to the sixth Bragg order. We have shown simulations
with no adjusted parameters, in good agreement with exper-
imental results for arbitrary pulse-length regimes (short and
long pulses) and initial velocity dispersion. In particular, we
have modeled with very good agreement with the experiment
all the momentum states involved in the diffraction process:
Bragg states and nonadiabatic losses. Our work points out
the required size of the momentum basis for accurate calcu-
lations of the diffraction process. By matching simulations
and experiments we provide a quantitative understanding of
the inherent diffraction phase shifts and multiport features
of LMT interferometers based on quasi-Bragg diffraction.
We confirmed the link between diffraction phases and the
nonadiabatic losses, and our simulations anticipate diffrac-
tion phase shifts of up to several tens of milliradians. We
demonstrated an optimal diffraction efficiency at the border
between the SP and LP regimes for a Rabi phase θR � π . A
higher Rabi phase, i.e., higher (σ, γmax)opt, would lead to a
similar diffraction efficiency limited by the velocity selection
and a reduced diffraction phase but might impact the effects
scaling in γmaxσ such as the ac Stark shift and spontaneous
emissions. We have also demonstrated interferometer fringes
with phase-controlled interferometers up to n = 5. Therefore,
we were able to observe the impact of the multipath interfer-
ences directly on the fringe’s signal for each interferometer’s
outputs. The insight gained from these investigations should
guide the development of new methods for better optimization
and estimation of multiport interferometers.
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APPENDIX A: LATTICE-DEPTH MEASUREMENT �

Bragg scattering can be described as a multiphoton Ra-
man process between momentum states. Each elementary
two-photon Raman process couples momentum states in the
same internal ground states |Fg, mFg〉 through an intermedi-
ate excited state in a different internal state |Fe, mFe〉. The
single-photon Rabi frequencies between a ground state and
an intermediate state are denoted �|e〉. The excited states have
a lifetime 1/�. For a large detuning (� � �|e〉, �) from inter-
mediate level |e〉 (see Fig. 1), the system can be described as
an effective two-level system by adiabatically eliminating the
intermediate level |e〉. The effective Rabi frequency between
two momentum states is given by summing over all possible
intermediate states:

� =
∑
|e〉

�2
|e〉

2�
. (A1)

In the electric-dipole approximation, �|e〉 is proportional to
the product of the electric field amplitude by the matrix
element of the dipole operator. Using the Wigner-Eckart
theorem, we factor out the reduced matrix element and
Clebsch-Gordan coefficient.

�|e〉 = E0

√
3ε0λ3�

2π2h̄

√
(2Fe + 1)(2Fg + 1)

×
{

Je 1 Jg

Fg I Fe

}(
Fe 1 Fg

−mFe q mFg

)
. (A2)

In practice, we use the D2 lines of 87Rb, corresponding to
a wavelength λ = 780.1 nm, and a natural linewidth � =
2π × 6.1 MHz. ε0 is the vacuum permittivity. The laser field
polarization is given in standard components q = ±1, 0. The
amplitude of the electric field corresponding to a single-
photon transition is evaluated from the power P and the
Gaussian beam waist w0:

E0 = 2

w0

√
P

πcε0
. (A3)

In our experimental setup, the retroreflected configuration
leads to two optical lattices with orthogonal polarization. The
optical power for each lattice’s arm is recycled by the retrore-
flection. Therefore, P is the optical power measured in the
incident laser beam for each frequency ω1 and ω2 (i.e., the
total incident optical power is 2P).

All the data reported in this paper are measured with atoms
prepared in the ground state (Jg = 1/2, Fg = 1, mFg = 0) and
the optical lattice with the circular polarization σ− (q = −1
in standard components). Therefore, only two intermediate
states |e〉 are coupled: Je = 1/2, Fe = 1, 2, mFe = −1.

The effective two-photon Rabi frequency [Eq. (A1)] is
a central parameter in the atom diffraction with an op-
tical lattice. In order to determine �, we measured the
Rabi oscillations between the two diffracted states with a
rectangular-pulse first-order Bragg diffraction in the Bragg
regime (Fig. 11). We obtain good agreement between the
measured and calculated �.
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FIG. 11. Evolution of the diffracted Bragg state for a resonance
condition for Bragg order n = 1. The temporal shape of the envelope
of the lattice is rectangular.

APPENDIX B: TRUNCATION OF THE MOMENTUM BASIS
USED FOR THE NUMERICAL MODEL

We showed in Fig. 2 that the dynamics of high-order
Bragg diffraction requires us to consider a sufficiently large
momentum basis. For example, we compare the measured
diffraction probability for a quasi-Bragg order n = 6 to its
numerically predicted value for different basis truncations.
Figure 12 presents this comparison for a large range of the
pulse duration σ . For m = 0, meaning that the basis contains
only the two Bragg states and the inner states in between, the
numerical result fails to estimate both the amplitude and the
frequency of the population oscillation. Considering two outer
states (m = 1) increases the agreement with the experimen-
tal results. The complex dynamics is properly captured for
m � 2. The overlap of the two curves for m = 2 and m = 3
confirms the convergence of the simulation.

We numerically solve the system of differential equa-
tions using the SCIPY.INTEGRATE package of PYTHON. The
computational cost rapidly increases with the basis size, es-
pecially when considering a nonzero velocity dispersion. It is
thus interesting to find a criterion giving the minimal value
m0 of outer states that has to be considered for a given quasi-
Bragg order n.

A first naive energetic criterion is related to the fact that
all states |2l h̄k〉 between the two Bragg states (l ∈ [0, n]) are
naturally included in the calculation. The model should then

FIG. 12. Population in |12h̄k〉 state for n = 6 and γmax = 6.25
as a function of the pulse duration. Black squares are the exper-
imental measurements. Error bars are standard deviations on 10
measurements. The experimental data are compared with numerical
simulation results for the corresponding pulse parameters and atomic
velocity dispersion for various m values. The dashed lines are simula-
tion results for m = 0 (red) and m = 1 (green). The black solid line is
the result for m = 2 and overlaps with blue dotted line corresponding
to m = 3.

FIG. 13. Comparison of the minimum required number of outer
states as a function of the quasi-Bragg order n. Black dots are the
results of a convergence test 2mc. The solid black line is the lower
bound criterion 2m0 derived from the energetic argument. The blue
solid line is an empirical correction to the criterion adding a n2

contribution [Eq. (B3)]. The lines correspond to the nonrounded
analytical formulas for 2m0 and 2memp

0 .

at least consider outer states down to | − 2(m0)h̄k〉 so that
δ−m0 � maxl∈[0,n] |δl |. Note that the exact same criterion is
obtained considering outer states up to |2(n + m0)h̄k〉 since
the diagonal term δl is symmetric. When the Bragg condition
is realized for the quasi-Bragg order n, the maximum detuning
for inner states reads

max
l∈[0,n]

|δl | =
{|δn/2| = n2/4 if n is even,

|δ(n−1)/2| = (n2 − 1)/4 if n is odd.
(B1)

Solving the equality and rounding to the next integer give
the criterion for m0:

m0 =

⎧⎪⎨
⎪⎩

⌈
1
2 n(

√
2 − 1)

⌉
if n is even,

⌈
1
2 n

(√
2 − 1

n2 − 1
)⌉

if n is odd,

(B2)

where �x
 is the ceiling function that rounds x to the least
integer greater than or equal to x.

In practice, for n > 3, the 1/n2 term for odd quasi-Bragg
order does not affect the rounded value for m0. We thus take
m0 = � 1

2 n(
√

2 − 1)
 as a lower bound for m.
This criterion is compared to a convergence test of the

truncation of the calculation basis performed in the case of
zero velocity dispersion. The quantity of interest is the peak
Rabi frequency γmax that gives a perfect mirror pulse (diffrac-
tion probability >99%) with the shortest pulse length. This
quantity varies with m and converges to a constant value for
m > mc. Figure 13 shows a comparison between the values of
mc (black dots) and the previously derived criterion m0 (black
line) for different quasi-Bragg orders n.

The minimum required number of outer states is well pre-
dicted by the criterion m0 up to a quasi-Bragg order n � 10.
It appears that it does not capture the n2 term relevant for
high n [63]. We propose a modified criterion memp

0 including
a minimal fitted n2 term that reproduces the convergence test
results:

memp
0 = ⌈

1
2 n(

√
2 − 1) + 1 + An2

⌉
, (B3)

where A ≈ 2 × 10−3.
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This analytical criterion is based on a simple energetic
argument and compared to zero-velocity calculations. It gives
a lower bound for the number of outer states that has to
be included to accurately reproduce the dynamics. For rele-

vant experimental parameters, with large velocity dispersion
and/or high peak two-photon Rabi frequency, one might have
to run a dedicated convergence test to ensure that all the
relevant off-resonant couplings are taken into account.

[1] P. L. Kapitza and P. A. M. Dirac, The reflection of electrons
from standing light waves, Math. Proc. Cambridge Philos. Soc.
29, 297 (1933).

[2] D. L. Freimund, K. Aflatooni, and H. Batelaan, Observation of
the Kapitza–Dirac effect, Nature (London) 413, 142 (2001).

[3] S. Altshuler, L. M. Frantz, and R. Braunstein, Reflection of
Atoms from Standing Light Waves, Phys. Rev. Lett. 17, 231
(1966).

[4] E. Arimondo, H. Lew, and T. Oka, Deflection of a Na Beam by
Resonant Standing-Wave Radiation, Phys. Rev. Lett. 43, 753
(1979).

[5] P. E. Moskowitz, P. L. Gould, S. R. Atlas, and D. E. Pritchard,
Diffraction of an Atomic Beam by Standing-Wave Radiation,
Phys. Rev. Lett. 51, 370 (1983).

[6] A. F. Bernhardt and B. W. Shore, Coherent atomic deflection by
resonant standing waves, Phys. Rev. A 23, 1290 (1981).

[7] M. Marte and S. Stenholm, Multiphoton resonances in atomic
Bragg scattering, Appl. Phys. B 54, 443 (1992).

[8] P. L. Gould, G. A. Ruff, and D. E. Pritchard, Diffraction
of Atoms by Light: The Near-Resonant Kapitza-Dirac Effect,
Phys. Rev. Lett. 56, 827 (1986).

[9] S. Dürr, S. Kunze, and G. Rempe, Pendellösung oscillations in
second-order Bragg scattering of atoms from a standing light
wave, Quantum Semiclassical Opt. 8, 531 (1996).

[10] S. Dürr and G. Rempe, Acceptance angle for Bragg reflection
of atoms from a standing light wave, Phys. Rev. A 59, 1495
(1999).

[11] M. Wilkens, E. Schumacher, and P. Meystre, Band theory
of a common model of atom optics, Phys. Rev. A 44, 3130
(1991).

[12] C. Champenois, M. Büchner, R. Delhuille, R. Mathevet, C.
Robilliard, C. Rizzo, and J. Vigué, Atomic diffraction by a laser
standing wave: Analysis using Bloch states, Eur. Phys. J. D 13,
271 (2001).

[13] C. Keller, J. Schmiedmayer, A. Zeilinger, T. Nonn, S. Dürr, and
G. Rempe, Adiabatic following in standing-wave diffraction of
atoms, Appl. Phys. B 69, 303 (1999).

[14] S. Gupta, A. E. Leanhardt, A. D. Cronin, and D. E. Pritchard,
Coherent manipulation of atoms with standing light waves, C.
R. Acad. Sci. Ser. IV, Phys. 2, 479 (2001).

[15] P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard,
Bragg Scattering of Atoms from a Standing Light Wave, Phys.
Rev. Lett. 60, 515 (1988).

[16] S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S.
Johnson, and M. A. Kasevich, Multiaxis Inertial Sensing with
Long-Time Point Source Atom Interferometry, Phys. Rev. Lett.
111, 083001 (2013).

[17] A. Gauguet, B. Canuel, T. Lévèque, W. Chaibi, and A.
Landragin, Characterization and limits of a cold-atom Sagnac
interferometer, Phys. Rev. A 80, 063604 (2009).

[18] B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng,
C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos,

and A. Landragin, Metrology with atom interferometry: Inertial
sensors from laboratory to field applications, J. Phys.: Conf. Ser.
723, 012049 (2016).

[19] Y. Bidel, N. Zahzam, C. Blanchard, A. Bonnin, M. Cadoret,
A. Bresson, D. Rouxel, and M. F. Lequentrec-Lalancette, Ab-
solute marine gravimetry with matter-wave interferometry, Nat.
Commun. 9, 627 (2018).

[20] Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S.
Zhan, Q.-Z. Zhang, and J. Luo, Demonstration of an ultrahigh-
sensitivity atom-interferometry absolute gravimeter, Phys. Rev.
A 88, 043610 (2013).

[21] C. Freier, H. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H.
Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, Mobile
quantum gravity sensor with unprecedented stability, J. Phys.:
Conf. Ser. 723, 012050 (2016).

[22] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M.
Tino, Precision measurement of the Newtonian gravitational
constant using cold atoms, Nature (London) 510, 518 (2014).

[23] L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, Determina-
tion of the fine-structure constant with an accuracy of 81 parts
per trillion, Nature (London) 588, 61 (2020).

[24] P. A. Altin, M. T. Johnsson, V. Negnevitsky, G. R. Dennis, R. P.
Anderson, J. E. Debs, S. S. Szigeti, K. S. Hardman, S. Bennetts,
G. D. McDonald, L. D. Turner, J. D. Close, and N. P. Robins,
Precision atomic gravimeter based on Bragg diffraction, New J.
Phys. 15, 023009 (2013).

[25] B. Décamps, J. Vigué, A. Gauguet, and M. Büchner, Mea-
surement of the 671-nm tune-out wavelength of 7Li by atom
interferometry, Phys. Rev. A 101, 033614 (2020).

[26] J. Gillot, S. Lepoutre, A. Gauguet, J. Vigué, and M. Büchner,
Measurement of the Aharonov-Casher geometric phase with
a separated-arm atom interferometer, Eur. Phys. J. D 68, 168
(2014).

[27] J. Gillot, S. Lepoutre, A. Gauguet, M. Büchner, and J. Vigué,
Measurement of the He-McKellar-Wilkens Topological Phase
by Atom Interferometry and Test of Its Independence with
Atom Velocity, Phys. Rev. Lett. 111, 030401 (2013).

[28] D. M. Giltner, R. W. McGowan, and S. A. Lee, Atom Interfer-
ometer Based on Bragg Scattering from Standing Light Waves,
Phys. Rev. Lett. 75, 2638 (1995).

[29] D. M. Giltner, R. W. McGowan, and S. A. Lee, Theoretical
and experimental study of the Bragg scattering of atoms from a
standing light wave, Phys. Rev. A 52, 3966 (1995).

[30] A. E. A. Koolen, G. T. Jansen, K. F. E. M. Domen, H. C. W.
Beijerinck, and K. A. H. van Leeuwen, Large-angle adjustable
coherent atomic beam splitter by Bragg scattering, Phys. Rev.
A 65, 041601(R) (2002).

[31] M. A. H. M. Jansen, K. F. E. M. Domen, H. C. W. Beijerinck,
and K. A. H. van Leeuwen, Off-resonance atomic Bragg scat-
tering, Phys. Rev. A 76, 053629 (2007).

[32] H. Müller, S.-W. Chiow, and S. Chu, Atom-wave diffraction
between the Raman-Nath and the Bragg regime: Effective Rabi

033302-11

https://doi.org/10.1017/S0305004100011105
https://doi.org/10.1038/35093065
https://doi.org/10.1103/PhysRevLett.17.231
https://doi.org/10.1103/PhysRevLett.43.753
https://doi.org/10.1103/PhysRevLett.51.370
https://doi.org/10.1103/PhysRevA.23.1290
https://doi.org/10.1007/BF00325391
https://doi.org/10.1103/PhysRevLett.56.827
https://doi.org/10.1088/1355-5111/8/3/016
https://doi.org/10.1103/PhysRevA.59.1495
https://doi.org/10.1103/PhysRevA.44.3130
https://doi.org/10.1007/s100530170276
https://doi.org/10.1007/s003400050810
https://doi.org/10.1016/S1296-2147(01)01179-9
https://doi.org/10.1103/PhysRevLett.60.515
https://doi.org/10.1103/PhysRevLett.111.083001
https://doi.org/10.1103/PhysRevA.80.063604
https://doi.org/10.1088/1742-6596/723/1/012049
https://doi.org/10.1038/s41467-018-03040-2
https://doi.org/10.1103/PhysRevA.88.043610
https://doi.org/10.1088/1742-6596/723/1/012050
https://doi.org/10.1038/nature13433
https://doi.org/10.1038/s41586-020-2964-7
https://doi.org/10.1088/1367-2630/15/2/023009
https://doi.org/10.1103/PhysRevA.101.033614
https://doi.org/10.1140/epjd/e2014-50277-1
https://doi.org/10.1103/PhysRevLett.111.030401
https://doi.org/10.1103/PhysRevLett.75.2638
https://doi.org/10.1103/PhysRevA.52.3966
https://doi.org/10.1103/PhysRevA.65.041601
https://doi.org/10.1103/PhysRevA.76.053629


A. BÉGUIN et al. PHYSICAL REVIEW A 105, 033302 (2022)

frequency, losses, and phase shifts, Phys. Rev. A 77, 023609
(2008).

[33] H. Müller, S.-W. Chiow, Q. Long, S. Herrmann, and S.
Chu, Atom Interferometry with up to 24-Photon-Momentum-
Transfer Beam Splitters, Phys. Rev. Lett. 100, 180405
(2008).

[34] D. Gochnauer, K. E. McAlpine, B. Plotkin-Swing, A. O.
Jamison, and S. Gupta, Bloch-band picture for light-pulse
atom diffraction and interferometry, Phys. Rev. A 100, 043611
(2019).

[35] J.-N. Siemß, F. Fitzek, S. Abend, E. M. Rasel, N. Gaaloul, and
K. Hammerer, Analytic theory for Bragg atom interferometry
based on the adiabatic theorem, Phys. Rev. A 102, 033709
(2020).

[36] S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard,
Contrast Interferometry Using Bose-Einstein Condensates to
Measure h/m and α, Phys. Rev. Lett. 89, 140401 (2002).

[37] S.-W. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich,
102h̄k Large Area Atom Interferometers, Phys. Rev. Lett. 107,
130403 (2011).

[38] B. Plotkin-Swing, D. Gochnauer, K. E. McAlpine, E. S. Cooper,
A. O. Jamison, and S. Gupta, Three-Path Atom Interferome-
try with Large Momentum Separation, Phys. Rev. Lett. 121,
133201 (2018).

[39] J. Rudolph, T. Wilkason, M. Nantel, H. Swan, C. M. Holland,
Y. Jiang, B. E. Garber, S. P. Carman, and J. M. Hogan, Large
Momentum Transfer Clock Atom Interferometry on the 689 nm
Intercombination Line of Strontium, Phys. Rev. Lett. 124,
083604 (2020).

[40] P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, Large
Momentum Beam Splitter Using Bloch Oscillations, Phys. Rev.
Lett. 102, 240402 (2009).

[41] H. Müller, S.-W. Chiow, S. Herrmann, and S. Chu, Atom Inter-
ferometers with Scalable Enclosed Area, Phys. Rev. Lett. 102,
240403 (2009).

[42] J. E. Debs, P. A. Altin, T. H. Barter, D. Döring, G. R. Dennis,
G. McDonald, R. P. Anderson, J. D. Close, and N. P. Robins,
Cold-atom gravimetry with a Bose-Einstein condensate, Phys.
Rev. A 84, 033610 (2011).

[43] G. D. McDonald, C. C. N. Kuhn, S. Bennetts, J. E. Debs, K. S.
Hardman, M. Johnsson, J. D. Close, and N. P. Robins, 80h̄k
momentum separation with Bloch oscillations in an optically
guided atom interferometer, Phys. Rev. A 88, 053620 (2013).

[44] M. Gebbe, J.-N. Siemß, M. Gersemann, H. Müntinga, S.
Herrmann, C. Lämmerzahl, H. Ahlers, N. Gaaloul, C. Schubert,
K. Hammerer, S. Abend, and E. M. Rasel, Twin-lattice atom
interferometry, Nat. Commun. 12, 2544 (2021).

[45] T. Hensel, S. Loriani, C. Schubert, F. Fitzek, S. Abend, H.
Ahlers, J. N. Siemß, K. Hammerer, E. M. Rasel, and N. Gaaloul,
Inertial sensing with quantum gases: A comparative perfor-
mance study of condensed versus thermal sources for atom
interferometry, Eur. Phys. J. D 75, 108 (2021).

[46] J. Li, G. R. M. da Silva, W. C. Huang, M. Fouda, J. Bonacum,
T. Kovachy, and S. M. Shahriar, High sensitivity multi-axes
rotation sensing using large momentum transfer point source
atom interferometry, Atoms 9, 51 (2021).

[47] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Mea-
surement of the fine-structure constant as a test of the standard
model, Science 360, 191 (2018).

[48] S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A.
Kasevich, Testing General Relativity with Atom Interferometry,
Phys. Rev. Lett. 98, 111102 (2007).

[49] G. M. Tino, Testing gravity with cold atom interferome-
try: Results and prospects, Quantum Sci. Technol. 6, 024014
(2021).

[50] B. Canuel et al., ELGAR—A European laboratory for grav-
itation and atom-interferometric research, Classical Quantum
Gravity 37, 225017 (2020).

[51] P. W. Graham, J. M. Hogan, M. A. Kasevich, S. Rajendran,
and R. W. Romani, Mid-band gravitational wave detection with
precision atomic sensors, arXiv:1711.02225.

[52] M.-S. Zhan et al., Zaiga: Zhaoshan long-baseline atom interfer-
ometer gravitation antenna, Int. J. Mod. Phys. D 29, 1940005
(2020).

[53] Y. A. El-Neaj et al., Aedge: Atomic experiment for dark matter
and gravity exploration in space, EPJ Quantum Technol. 7, 6
(2020).

[54] O. Garcia, B. Deissler, K. J. Hughes, J. M. Reeves, and
C. A. Sackett, Bose-Einstein-condensate interferometer with
macroscopic arm separation, Phys. Rev. A 74, 031601(R)
(2006).

[55] T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly,
S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A.
Kasevich, Quantum superposition at the half-metre scale,
Nature (London) 528, 530 (2015).

[56] S. Dürr, T. Nonn, and G. Rempe, Origin of quantum-
mechanical complementarity probed by a ‘which-way’ exper-
iment in an atom interferometer, Nature (London) 395, 33
(1998).

[57] Rameez-ul-Islam, M. Ikram, M. Imran, and G.-Q. Ge, En-
tanglement and the paradox of untying the defining fea-
ture from a quantum entity, Phys. Rev. A 100, 052122
(2019).

[58] C. Champenois, M. Büchner, R. Delhuille, R. Mathevet, C.
Robilliard, C. Rizzo, and J. Vigué, Matter neutrality test using
a Mach-Zehnder interferometer, The Hydrogen Atoms, Vol. 570
(Springer, Berlin, Heidelberg, 2001), pp. 554–563.

[59] A. Arvanitaki, S. Dimopoulos, A. A. Geraci, J. Hogan,
and M. Kasevich, How to Test Atom and Neutron Neutral-
ity with Atom Interferometry, Phys. Rev. Lett. 100, 120407
(2008).

[60] M. A. Hohensee, B. Estey, P. Hamilton, A. Zeilinger, and
H. Müller, Force-Free Gravitational Redshift: Proposed Grav-
itational Aharonov-Bohm Experiment, Phys. Rev. Lett. 108,
230404 (2012).

[61] M. Büchner, R. Delhuille, A. Miffre, C. Robilliard, J. Vigué,
and C. Champenois, Diffraction phases in atom interferometers,
Phys. Rev. A 68, 013607 (2003).

[62] R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang,
and H. Müller, Controlling the multiport nature of Bragg
diffraction in atom interferometry, Phys. Rev. A 94, 053618
(2016).

[63] S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D.
Close, Why momentum width matters for atom interferometry
with Bragg pulses, New J. Phys. 14, 023009 (2012).

[64] C. V. Raman and N. S. Nagendra Nath, The diffraction of light
by high frequency sound waves, Proc. Indian Sci. A 2, 406
(1936).

033302-12

https://doi.org/10.1103/PhysRevA.77.023609
https://doi.org/10.1103/PhysRevLett.100.180405
https://doi.org/10.1103/PhysRevA.100.043611
https://doi.org/10.1103/PhysRevA.102.033709
https://doi.org/10.1103/PhysRevLett.89.140401
https://doi.org/10.1103/PhysRevLett.107.130403
https://doi.org/10.1103/PhysRevLett.121.133201
https://doi.org/10.1103/PhysRevLett.124.083604
https://doi.org/10.1103/PhysRevLett.102.240402
https://doi.org/10.1103/PhysRevLett.102.240403
https://doi.org/10.1103/PhysRevA.84.033610
https://doi.org/10.1103/PhysRevA.88.053620
https://doi.org/10.1038/s41467-021-22823-8
https://doi.org/10.1140/epjd/s10053-021-00069-9
https://doi.org/10.3390/atoms9030051
https://doi.org/10.1126/science.aap7706
https://doi.org/10.1103/PhysRevLett.98.111102
https://doi.org/10.1088/2058-9565/abd83e
https://doi.org/10.1088/1361-6382/aba80e
http://arxiv.org/abs/arXiv:1711.02225
https://doi.org/10.1142/S0218271819400054
https://doi.org/10.1140/epjqt/s40507-020-0080-0
https://doi.org/10.1103/PhysRevA.74.031601
https://doi.org/10.1038/nature16155
https://doi.org/10.1038/25653
https://doi.org/10.1103/PhysRevA.100.052122
https://doi.org/10.1103/PhysRevLett.100.120407
https://doi.org/10.1103/PhysRevLett.108.230404
https://doi.org/10.1103/PhysRevA.68.013607
https://doi.org/10.1103/PhysRevA.94.053618
https://doi.org/10.1088/1367-2630/14/2/023009
https://doi.org/10.1007/BF03035840


CHARACTERIZATION OF AN ATOM INTERFEROMETER IN … PHYSICAL REVIEW A 105, 033302 (2022)

[65] W. R. Klein and B. D. Cook, Unified approach to ultra-
sonic light diffraction, IEEE Trans. Sonics Ultrason. 14, 123
(1967).

[66] T. K. Gaylord and M. G. Moharam, Thin and thick gratings:
Terminology clarification, Appl. Opt. 20, 3271 (1981).

[67] M. Abramowitz and I. A. Stegun, Handbook of Math-
ematical Functions with Formulas, Graphs, and Mathe-
matical Tables, 9th Dover printing (Dover, New York,
1964).

[68] J. Meixner, F. W. Schäfke, and G. Wolf, Mathieu Functions
and Spheroidal Functions and Their Mathematical Foundations,
Further Studies, Vol. 837 (Springer, Berlin, Heidelberg, 1980).

[69] S. N. Shevchenko, S. Ashhab, and F. Nori, Landau-
Zener-Stückelberg interferometry, Phys. Rep. 492, 1
(2010).

[70] H. Müntinga et al., Interferometry with Bose-Einstein Conden-
sates in Microgravity, Phys. Rev. Lett. 110, 093602 (2013).

[71] N. Gaaloul (private communication).

033302-13

https://doi.org/10.1109/T-SU.1967.29423
https://doi.org/10.1364/AO.20.003271
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1103/PhysRevLett.110.093602

