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Abstract
We apply quantum optimal control to shape the phase-space distribution of Bose–Einstein
condensates in a one-dimensional optical lattice. By a time-dependent modulation of the lattice
position, determined from optimal control theory, we prepare, in the phase space of each lattice
site, translated and squeezed Gaussian states, and superpositions of Gaussian states. Complete
reconstruction of these non-trivial states is performed through a maximum likelihood state
tomography. As a practical application of our method to quantum simulations, we initialize the
atomic wavefunction in an optimal Floquet-state superposition to enhance dynamical tunneling
signals.

1. Introduction

In current endeavors to harness quantum properties for enhanced metrology or quantum simulations, a
shared requirement is the ability to prepare, manipulate, and perform measurements on complex quantum
states [1]. Regarding the initial preparation stage, a key example in quantum metrology is given by the use of
squeezed states, that allow to reach sensitivities below the standard quantum limit. This is famously the case
of squeezed light, used to enhanced spectroscopy [2] and interferometry [3, 4], but there is also a long going
theoretical and experimental effort to harness squeezing with matter—with effective spins derived from
internal states or from states of motion, as well as with matter waves—for enhanced matter wave
interferometry [5–10]. Likewise, quantum simulations, especially when relying on engineered effective
Hamiltonians [11, 12], or exploiting synthetic dimensions [13], benefit from the ability to prepare specific
initial states of the effective system, for which adiabatic preparation methods may not exist.

Bose–Einstein condensates (BECs) constitute a platform particularly well-suited to quantum simulations
as well as quantum metrology, thanks to their high level of controlability. We focus here on engineering the
motional state of BECs in a one-dimensional optical lattice using quantum optimal control (QOC)
(see [14, 15] and references therein) in order to produce states with various phase-space distributions. Such
optimal control processes were already implemented experimentally with success in [16] for the control of
populations and phases of momentum superpositions. We point out that similar approaches were used in a
series of papers for quantum interferometry [17–19] or quantum simulation purposes [20, 21]. In this study,
we show that the techniques proposed in [16] can also be applied to generate complex quantum states
corresponding to a specific phase-space distribution. With our QOC protocol, and manipulating only
external degrees of freedom, we are able to prepare states with exotic density and momentum distributions,
which could not be reached through standard adiabatic methods.

Since the produced states cannot be easily identified from a few measurements (as in [16]), they therefore
require a full experimental characterization in order to verify the quality of the preparation. Such a quantum
state tomography [22] is a matter of great relevance to quantum computation and simulation. Several
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methods to solve that problem have been put forward, using, for example, mappings from the motional state
to internal degrees of freedom [23–25], or, more recently, in the context of many-body systems, exploiting
randomized measurements [26] or neural networks [27]. Here we implement state reconstruction for the
atomic state in the lattice through a maximum likelihood iterative method inspired by quantum
optics [28–33], using measurements of the free evolution of the prepared state in the lattice. We demonstrate
the efficiency of this approach which is original in this context and well adapted to our experimental setup.
Finally, an application of this generic preparation procedure in quantum simulation is proposed in which the
wave function is brought into an optimal Floquet-state superposition to enhance dynamical tunneling
signals.

The paper is organized as follows. In section 2 we present our experimental setup as well as the methods
employed to prepare and reconstruct quantum states. In sections 3 and 4 we tailor the distributions of BECs
in the (x, p) phase space of a one dimensional lattice, performing translation, squeezing and superposition of
Gaussian states. Finally, in section 5 we apply our method to the preparation of an optimal initial state for the
observation of dynamical tunneling in a modulated optical lattice [34, 35].

2. Experimental setup and algorithms

2.1. Experimental setup
The experiment starts with a 87Rb BEC of 5× 105 atoms obtained in a hybrid trap formed by a crossed
optical dipole trap and a magnetic quadrupole trap [36]. The BEC is adiabatically loaded in a far-detuned
one-dimensional optical lattice of period d produced by two counter-propagating laser beams of wavelength
λ= 2d= 1064 nm. Along the axis of the optical lattice, the atoms experience the potential

V(x, t) =− s

2
EL cos(kLx+φ(t))+Vhyb(x), (1)

= VL(x, t)+Vhyb(x),

where kL = 2π/d and EL = ℏ2k2L/2m are respectively the wavenumber and characteristic energy scale of the
lattice (with ℏ the reduced Planck constant andm the atomic mass of 87Rb). The dimensionless lattice depth
s is independently calibrated for each experiment [37]. We directly manipulate the lattice phase φ(t) with
φ(0) = 0 by varying the relative phase between the drives of the two acousto-optic modulators controlling
the laser beams of the lattice [16]. The hybrid trap potential Vhyb has a small angular frequency ωx = 2π× 10
Hz making it negligible at the timescales of the experiments presented here, which are driven by the lattice
potential VL. In the subspace of null quasi-momentum, the external atomic state ψ(x, t) is then represented
by a superposition of plane waves:

ψ(x, t) =
∑
ℓ∈Z

cℓ(t)χℓ(x), (2)

with cℓ(t) ∈ C,
∑
ℓ|cℓ(t)|2 = 1 and χℓ(x) = eiℓkLx/

√
d.

The experiment consists in continuously varying the reference position of the lattice, given by−φ(t)/kL,
for t ∈ [0, tc] in order to control the final state ψ(x, tc) (see section 2.2). All the traps are then suddenly
switched off and the BEC goes into ballistic expansion. After a sufficiently long time-of-flight (35 ms for the
data presented here), we measure the relative atomic populations in the different diffraction orders which
correspond to the probabilities |cℓ(tc)|2. In order to completely reconstruct the quantum state ψ(x, tc), we
also need to access the phases of the cℓ(tc) coefficients. For this purpose, we sample with independent
realizations the evolution of the prepared state in the static lattice (with φ(t> tc) = 0) and use these data for
a full state reconstruction (see section 2.3).

2.2. QuantumOptimal Control
In order to reach a target state |ψT〉 from the ground state of the lattice potential defined in equation (1), we
engineer the evolution of the control parameter φ(t) over the duration tc using a first-order gradient-based
optimal control algorithm [14, 38, 39]. The algorithm consists in the iterative maximization of a figure of
merit F that quantifies the success of applying a given φ(t) to reach the target through integration of
Schrödinger’s equation. Our numerical method is detailed in [16]. The figure of merit is the usual quantum
fidelity F (|ψT〉 , |ψ(tc)〉) = |〈ψT |ψ(tc)〉|2 and no constraint is put on φ(t). The time tc is also fixed
beforehand to 1.75T0 or 2T0 depending on the complexity of the preparation, with T0 the period associated
to the transition between the two lowest levels of the static lattice (e.g. for s= 5.5, T0 ≈ 59.3 µs). The state
preparation is therefore clearly in the non-adiabatic regime. In practice the iterative optimization process is
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Figure 1. Numerical demonstration of an optimized control field for the preparation of a superposition of Gaussian states
centered in (x,p) =±(d/4,psep) (see section 3) starting from the ground state of the lattice with a numerical fidelity to target
Fth > 0.995. (a) Time-evolution of the lattice phase φ(t). (b) (resp. (c)) Squared modulus of the initial (resp. final) wave function
in the x-representation (red) and lattice potential (black) over 3 lattice sites. (d) (resp. (e)) (x, p) phase space, where the Husimi
distribution corresponding to the states in (b) (resp. (c)) are depicted (red), as well as the classical trajectories in the static lattice
at depth s (black lines). The colorscale for each Husimi distribution extends from 0 to its maximum value. Parameters: s= 5.55
and tc = 1.75T0 ≈ 103.3 µs (see text).

terminated when the figure of merit passes a set threshold (close to one), or exceeds a certain number of
iterations. In the experiments presented here, unless otherwise stated, this threshold condition is set to
F > 0.995. At the end of the optimization process, we therefore obtain numerically a theoretical fidelity
Fth = |〈ψT |ψQOC〉|2 where |ψQOC〉 is the final state reached when using the optimized control field φQOC(t).
A typical result of a QOC query is shown in figure 1.

2.3. Quantum state reconstruction
To ensure the quality of the quantum control scheme, we certify the preparation of the desired state by state
tomography through likelihood maximization. Such a reconstruction of an experimentally prepared state
requires finding the density matrix ρ̂= ρ̂ML which maximizes the likelihood L [28, 30–33]:

ρ̂ML = argmax{L [ρ̂]} with L [ρ̂] =
∏
j

π
fj
j , (3)

where πj = tr{ρ̂Êj} are the expected measurement probabilities obtained from a set of operators Êj forming a
positive operator-valued measure (POVM) and f j are the corresponding frequencies measured
experimentally. In our case, the measurement frequencies f j are the relative populations of the plane waves ℓ
measured at regularly spaced times t ∈ [tc, tc + trec], divided by the number of sample times N t (trec = 100 µs
and Nt = 21 for data presented here unless specified otherwise):

fj = fℓ,t =
1

Nt
|cℓ(t)|2. (4)

As we intend to use these measurements to reconstruct the state prepared at tc, the elements of the POVM are
therefore:

Êj = Êℓ,t =
1

Nt
Û†(t, tc) |χℓ〉〈χℓ| Û(t, tc), (5)

with Û(t, tc) the evolution operator in the static lattice potential VL (with φ= 0) from tc to t.
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Figure 2. Quantum state reconstruction by likelihood maximization of the state experimentally prepared by the control field of
figure 1. (a), (b) Density matrices ρ̂ with arg{ρ̂i,j} color coded and |ρ̂i,j| size coded (not to scale between panels). (a) Identity
ID/D (D= 11) as the initial guess. (b) Density matrix of maximum likelihood ρ̂ML. (c) Stack of experimental integrated
absorption images taken during the evolution of the prepared state in the static lattice at s= 5.5± 0.5. (d) Diagonal terms of the
numerical propagation of ρ̂ML which correspond to the absorption images of (c).

To obtain the maximum likelihood estimate of the 1-body density matrix ρ̂ML, we implement the
iterative method developed in [29, 30]. We define a transformation ρ̂(n) 7→ ρ̂(n+1) such that
L[ρ̂(n+1)]⩾ L[ρ̂(n)] and ρ̂ML is a fixed point of the transformation. This algorithm reads:

(a) Set an initial guess state ρ̂(0),

(b) Construct R
[
ρ̂(0)

]
=
∑

j fjEj/tr{ρ̂(0)Ej},
(c) Transform ρ̂(0) 7→ ρ̂(1) = R

[
ρ̂(0)

]
ρ̂(0)R

[
ρ̂(0)

]
,

(d) Repeat from step 2 until L
[
ρ̂(n)

]
−L

[
ρ̂(n−1)

]
≈ 0⇔ ρ̂(n) converged to ρ̂ML.

Here, we use ρ̂(0) = ID/D, with D= 2ℓmax + 3 chosen as the cut-off dimension of the Hilbert space so as
to avoid boundary effects, ℓmax being the highest diffraction order at which some signal is experimentally
detected (for the experiments presented in this paper 2⩽ ℓmax ⩽ 6). Our choice of ρ̂(0) corresponds to the
guess with the least initial information. Finally, two indicators are computed to certify the preparation: the
fidelity of ρ̂ML to the numerically propagated state Fexp = 〈ψQOC|ρ̂ML|ψQOC〉 and the purity γ = trρ̂2ML which
is an indicator of our preparation reproducibility over the typically 20 realizations used for reconstruction.
An accurate determination of the prepared state therefore requires a fine degree of reproducibility. We
illustrate the quantum state reconstruction process with an example in figure 2.

Even though interactions are present within the BEC, they are typically weak in our system of 87Rb
atoms. We verified through numerical simulations that their impact on the dynamics is negligible for
evolution times lower than typically 150 µs. This permits the use of the linear Schrödinger equation in both
the optimal control and reconstruction algorithms. The consistent results obtained from the reconstruction
protocol, which is independent from the optimal control protocol, also validate this choice. For longer
timescales, or if interactions were increased (e.g. through a Feshbach resonance), more sophisticated
algorithms accounting for mean field and beyond-mean-field effects could be envisioned [40, 41].
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Figure 3. Non-squeezed Gaussian states. (a)–(e) Husimi representations in the phase space of the static lattice. Top (red): states
|ψQOC⟩ numerically prepared by optimal control. Bottom (blue): density matrices ρ̂ML reconstructed from experimental data by
likelihood maximization. The relative phases in the superpositions (d) and (e) are respectively 0 and π (see text). The colorscale
for each Husimi distribution extends from 0 to its maximum value. See table 1 for associated experimental parameters and figures
of merit.

3. Non-squeezed Gaussian states

In a first set of experiments, we prepare and reconstruct non-squeezed Gaussian states at arbitrary positions
in phase space. In an analogous manner to the definition of coherent states in quantum optics [42, 43], we
define, at each lattice depth s, a non-squeezed Gaussian state |g(0,0)〉 as the ground state of the harmonic
oscillator that approximates the bottom of each lattice well. For s� 1, the state |g(0,0)〉 can be equated to
the ground state of the sinusoidal potential. We denote more generally as |g(u,v)〉 this same state displaced in
phase space by (u,v) = (kL 〈x̂〉g(u,v) ,〈p̂〉g(u,v) /ℏkL). The displaced Gaussian state |g(u,v)〉 can be expanded on

the plane wave basis with the coefficients3:

cℓ(u,v) =

(
2

π
√
s

)1/4

eiuv/2e−iℓue−(ℓ−v)2/
√
s, (6)

giving the position and momentum standard deviations in state |g〉: kL∆x0 = s−1/4 and∆p0/ℏkL = s1/4/2.
To relate our results to the classical phase space of the system, we also define psep =

√
sℏkL, the positive

momentum of the separatrix at x= 0 (see e.g. figure 1(d)).
In figure 3, we show the Husimi distributions H(u,v) = 〈g(u,v)| ρ̂ |g(u,v)〉/2π of numerically

propagated final states ρ̂QOC = |ψQOC〉〈ψQOC| and of corresponding density matrices ρ̂ML reconstructed
from experimental data. The results are detailed in table 1. We prepare translated non-squeezed Gaussian
states with high fidelity to numerical simulations and good purity (γ ⩾ 0.93). As our experimental
reconstruction data come from several independent initial states evolved for different durations before
measurement, we expect the decrease in purity γ to result from residual experimental fluctuations. In
figures 3(d) and (e), we realize even and odd superpositions of non-squeezed Gaussian states, that is
|ψT〉= (|g(u,v)〉+ eiϕ |g(−u,−v)〉)/

√
2, with ϕ= 0,π. To our knowledge, there is no adiabatic method for

preparing such superpositions of translated Gaussian or ground states in the lattice. The differences between
their momentum evolutions (see appendix A) allow to unambiguously identify that the prepared states are
consistent with numerical simulations (table 1), which is further confirmed by the very low cross fidelities:

F(ψ
(e)
QOC, ρ̂

(d)
ML) = 0.042 and F(ψ

(d)
QOC, ρ̂

(e)
ML) = 0.026. The Husimi representations of the states (both for

|ψQOC〉 and ρ̂ML) show however very little difference between the superposition states of opposite parity, a
known feature of this quasi-distribution [44].

3 Equation (6) only yields normalized states when the standard deviation of the envelope is far greater than the spacing of the momentum
comb of the lattice, that is∆p0 ≫ ℏkL ⇔ s≫ 1, so we systematically renormalize our target states. For the non-squeezed states at depths
s ⩾ 5, one can compute from equation (6):

∣∣∑
ℓ∈Z |cℓ(u,v)|2 − 1

∣∣ ⩽ 3.25× 10−5.
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Table 1. Parameters used for the preparation of non-squeezed Gaussian states and figures of merit obtained from their reconstruction.
For all experiments Fth > 0.995 and tc = 1.75T0.

Figure 3 a b c d e

u π/2 0 π/2 ±π/2 ±π/2
v 0

√
s

√
s/2 ±

√
s ±

√
s

Fexp 0.95 0.86 0.93 0.89 0.91
γ 0.95 0.96 0.93 0.82 0.91
s 5.50±0.25 5.49±0.20 5.57±0.20 5.5±0.5 5.30±0.25

Figure 4. Squeezed Gaussian states. (a)–(e) Husimi representations in the phase space of the static lattice. Top (red): states |ψQOC⟩
numerically prepared by optimal control. Bottom (blue): density matrices ρ̂ML reconstructed from experimental data by
likelihood maximization. The colorscale for each Husimi distribution extends from 0 to its maximum value. See table 2 for
associated experimental parameters and figures of merit.

Table 2. Parameters used for the preparation of squeezed Gaussian states and figures of merit obtained from their reconstruction. For all
experiments (u,v) = (0,0).

Figure 4 a b c d e

1/ξ 0.44 0.62 1.65 2.75 4.34
Fth >0.995 0.980 0.965
Fexp 0.99 0.96 0.98 0.93 0.75
γ 1.00 1.00 1.00 0.92 0.72
s 5.49±0.20 5.49±0.20 5.45±0.40 5.57±0.20 5.62±0.25

tc/T0 1.75 2
trec (µs) 100 125

4. Squeezed Gaussian states

In a second set of experiments, we apply our preparation and reconstruction procedures to the squeezing of
Gaussian states. We define the x-squeezing parameter as the ratio of standard deviations ξ =∆x/∆x0 =
(∆p/∆p0)−1 . Including ξ in the definition of our Gaussian states, equation (6) becomes:

c(ξ)ℓ (u,v) =

(
2ξ2

π
√
s

)1/4

eiuv/2e−iℓue−ξ
2(ℓ−v)2/

√
s. (7)

For the squeezed Gaussian state
∣∣g(ξ)〉 at lattice depth s, position and momentum standard deviations are

given by kL∆x= ξ s−1/4 and∆p/ℏkL = ξ−1 s1/4/2. The highest bound on ξ is reached when only a single
diffraction order is populated, which we can achieve up to |ℓ|= 10 [16].

Figure 4 and table 2 display results for (u,v) = (0,0) and 1/ξ ranging from 0.44 to 4.34. Up to
1/ξ = 2.75, we prepare and reconstruct states with good fidelities and purities (Fexp ⩾ 0.93 and γ ⩾ 0.92).
For the highly squeezed state 1/ξ = 4.34 of figure 4(e), it is necessary to increase tc to 2T0 in order to attain a

6



New J. Phys. 25 (2023) 013012 N Dupont et al

reasonable numerical fidelity Fth. This is due to the complexity of the target state which consists in the
superposition of 13 significantly populated momentum components (|c|ℓ|<7|2 > 0.025) with as many
complex coefficients to control, and illustrates the fact, from optimal control theory, that longer control
times generally increase the set of reachable states. The simultaneous population of many momentum
components has an even worse effect on the reconstruction as it significantly reduces the signal-to-noise
ratio due to the lower number of atoms per diffraction peak (see appendix B), which also requires an increase
in reconstruction parameters trec and N t (to 125µs and 26, respectively). Nevertheless, we achieve a fidelity
Fexp > 0.75 even in that extreme case, and all the Husimi representations of figure 4 show qualitatively very
good agreement between ρ̂ML and |ψQOC〉 for the squeezing of Gaussian states.

Interestingly, a squeezed state produced by equation (7) at depth s with squeezing parameter ξ can be
identified to a non-squeezed state produced by equation (6) at depth seff. This leads to an effective lattice
depth associated to the squeezed state seff = s/ξ4. In that sense, figure 4(e) is the effective realization of the
ground state of a lattice of depth seff ≈ 2000 in our lattice of depth s= 5.62. This is, to our knowledge, the
first realization of such a state, the production of which is technically impossible with adiabatic methods. For
example, with our setup, we would require a laser power of about 750 W in order to reach this lattice depth.

We also targeted Gaussian states both squeezed and rotated in the (x, p) plane. Target state definition and
results for those experiments are presented in appendix C.

5. Enhancing a dynamical tunneling quantum simulation

As a use-case example, we apply our QOC method to the production of the initial state for a quantum
simulation experiment in a Floquet system. More precisely, we employ our protocol to prepare the optimal
initial state for the observation of dynamical tunneling in an amplitude-modulated one-dimensional optical
lattice. In the mixed phase space of a periodically driven dynamical system, classical trajectories are either
quasi-periodic (regular) or chaotic (resulting respectively in continuous lines or spread points in the
Poincaré section, see e.g. figure 5(a)). Quantum particles in such a system can undergo dynamical tunneling,
oscillating from one region of regular trajectories to another, crossing classically impassable
Kolmogorov–Arnold–Moser surfaces [45]. For time-periodic Hamiltonians, a natural basis is the set of
Floquet states, the eigenstates of the evolution operator over one period of modulation (the Floquet
operator). Dynamical tunneling occurs when two non-degenerate Floquet states span the same regular
regions of phase space, with a tunneling oscillation frequency proportional to the quasi-energy difference
between the two states in the Floquet spectrum [34, 45].

In previous experiments with cold atoms in optical lattices, dynamical tunneling was studied with an
initial sudden shift of the lattice to bring the ground state of the system in one of the tunnel-coupled regular
regions [35, 46, 47]. Although this method provides evidence of the phenomenon, more than one frequency
is observed in the tunneling signal as the initial states project only partially in the subspace of the two
relevant Floquet states. Moreover the visibility of the oscillations is limited by the unequal-weight projection
onto these states. We propose QOC as a way to optimize the initial state for the observation of dynamical
tunneling.

The modulated potential is:

V(x, t) =− s

2
EL (1+ εcos(ωt))cos(kLx) , (8)

which generates the mixed phase portrait of figure 5(a) for the parameters s(ω) = 0.25(ℏω/EL)2 and
ε= 0.1.4 We focus on the center of the Poincaré section, where a classical particle, stroboscopically observed
every two periods of modulation, is bound to the lateral harmonic oscillator-like region it started in. For the
quantum counterpart, ω sets an effective reduced Planck constant ℏeff = 2EL/ℏω that we fix at 0.36 for the
dynamical tunneling timescale to be compatible with the two-period stroboscopic sampling. Our optimal
control target is the state that maximizes the visibility of the tunneling oscillation, that is the equal-weight
superposition of the two main Floquet states in the central regular region of figure 5(a), with a relative phase
such that the atoms start on the right side (see appendix D). We can achieve a theoretical preparation fidelity
Fth ⩾ 0.995. After evolution in the modulated potential, and before time-of-flight measurement, we
modulate the potential during an additional half-period to perform a π/2-rotation around the center of the
phase space and convert the population in the right (resp. left) regular region into experimentally accessible
negative (resp. positive) momentum components [35] (figures 5(a) and (b)).

4 The phase portrait is strictly invariant in dimensionless coordinates x̃∝ x/d and p̃∝ p/(mdω).
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Figure 5. Dynamical tunneling experiments. (a) Poincaré section of the system with the initially populated regular region (gray
area with black solid line border) and the coupled regular region that gets populated through dynamical tunneling (gray area with
black dashed line border). (b) Same as (a) after phase space rotation (see text). (c)–(f) Results for the initially translated ground
state. (g)–(j) Results with the initial state obtained from optimal control. (c), (g) Numerical evolution of the momentum
distribution. (d), (h) Corresponding stack of experimental integrated absorption images. (e), (i) Numerical and (f),
(j) experimental evolutions of the negative (solid line) and positive (dashed line) momentum populations. Parameters:
(c)–(f) s= 7.95± 0.40 and (g)–(j) s= 7.95± 0.30.

Figure 5 compares the results of dynamical tunneling experiments when the initial state is either
approximated by a translation of the ground state (figures 5(c)–(f)) or targeted by our optimal control
method (figures 5(g)–(j))5. The spectral content of the oscillations is clearly refined when the 2-Floquet state
superposition is prepared, resulting in a greater signal-to-noise ratio for the measurement of the atomic
tunneling.

6. Conclusion and prospects

QOC is a powerful tool for engineering the external state of ultracold atoms in an optical lattice. We use it
here to manipulate the phase-space distribution of atoms in the unit cells of a one-dimensional optical
lattice. We are able to arbitrarily position, squeeze and superpose Gaussian states, creating exotic phase-space
distributions, as well as to target Floquet states. Using iterative state reconstruction inspired by quantum
optics methods [30], we certify our control protocol, showing a good reproducibility in the preparation of
the desired states (indicated by the purity of the reconstructed state) with great fidelities to numerical
simulations. In the last section, we use our QOC protocol for the preparation of a specific superposition of
Floquet states in a dynamical tunneling experiment.

These results demonstrate the promises optimal control holds for applications to quantum simulation
and metrology. With the demonstrated ability of our method to produce highly non-stationary quantum
states up to four times narrower in position than the ground state of the lattice, we achieve the preparation of
states that are technologically inaccessible through the preparation of a ground state on a lattice setup. The
short timescale for this preparation is also typically well below the duration that would be required for an
adiabatic loading of such a ground state. The optimal control algorithm allows us to approach the minimum
time for the preparation of exotic states in the lattice (which is still constrained by lattice dynamics [16]).

This work, through the controlled generation of highly squeezed states, paves the way to the investigation
of interaction effects in the dynamics, and to the extension of the control protocols used here to include
mean-field interactions [41]. Likewise, it should be possible to adapt the reconstruction protocol presented
here to a non-linear evolution. They could also be generalized to systems of higher dimensionality, where
stronger interaction regimes come into play. Ultimately, experiments exploiting optimal control at each stage
(preparation, manipulation and measurement) for enhanced performance can be envisioned. Thus optimal
control may in the future allow to approach ultimate performances on a given setup.

5 As in [35], these experiments are performed with smaller BECs, of typically 5× 104 atoms in this work.

8



New J. Phys. 25 (2023) 013012 N Dupont et al

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

The authors thank Maxime Martinez and Clément Sayrin for helpful discussions. This study has been
(partially) supported through the EUR Grant NanoX No. ANR-17-EURE-0009 in the framework of the
‘Programme d’Investissements d’Avenir’ and research funding Grants No. ANR-17-CE30-0024 and
ANR-22-CE47-0008. N D and F A acknowledge support from Région Occitanie and Université Toulouse
III-Paul Sabatier.

Appendix A. Superposed Gaussian states

We show on figures A1(a1) and (b1) the data used for the reconstruction of the even and odd superpositions
of non-squeezed Gaussian states of figures 3(d) and (e). A striking difference between the evolution of their
momentum distributions can be seen on the 0th order of diffraction that turns on and off for the even
superposition of figure A1(a) whereas it is rigorously off for the odd superposition of figure A1(b). Despite
their almost indistinguishable Husimi distributions, the different time-evolutions of the two superpositions
allow for the reconstruction of states that evolve very much like the experimental data (figures A1(a2) and
(b2)) as well as the numerically prepared states |ψQOC〉 (figures A1(a3) and (b3)).

9



New J. Phys. 25 (2023) 013012 N Dupont et al

Figure A1. Evolution of the momentum distribution of superpositions of Gaussian states kept in the static lattice. Top panels
(a) correspond to the even superposition of figure 3(d). Bottom panels (b) correspond to the odd superposition of figure 3(e).
(a1), (b1) Stacks of experimental integrated absorption images taken during the evolution of the prepared states in the static
lattice. (a2), (b2) Numerical evolution of the diagonal terms of the density matrices reconstructed from (a1) and (b1). (a3),
(b3) Numerical evolution of the states |ψQOC⟩ obtained by optimal control. See table 1 for associated experimental parameters
and figures of merit.

Figure B1. Evolution of the momentum distribution of a highly squeezed state kept in the static lattice. (a) Stack of experimental
integrated absorption images taken during the evolution of the prepared state in the static lattice. (b) Numerical evolution of the
diagonal terms of the density matrix reconstructed from (a). (c) Numerical evolution of the state |ψQOC⟩ obtained by optimal
control. (b) and (c) correspond to the evolutions of the states presented in figure 4(e).

Appendix B. Highly squeezed Gaussian state

In figure B1(a), we show the reconstruction data for the highly squeezed state (1/ξ= 4.34) of figure 4(e). For
|ℓ|> 3 we can see that the signal-to-noise ratio gets quite low, which, in addition to the higher number of
plane wave coefficients to determine, greatly complicates the reconstruction process. Despite the lower
fidelity Fexp = 0.75 of ρ̂ML to |ψQOC〉 that we obtain, hardly any difference is visible between the numerical
evolution of the momentum distributions associated with the reconstructed state (figure B1(b)) and with the
prepared state (figure B1(c)). This seems to indicate that the impact on the fidelity originates from
differences in the extreme plane wave coefficients for which the signal-to-noise is lower. This sensitivity to
noise also makes the data less reproducible, leading to a reduced state purity γ= 0.72.
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Figure C1. Rotated squeezed Gaussian states. (a), (b) Husimi representations in the phase space of the static lattice. Left (red):
state |ψQOC⟩ numerically prepared by optimal control. Right (blue): density matrix ρ̂ML reconstructed from experimental data by
likelihood maximization. The colorscale for each Husimi distribution extends from 0 to its maximum value. See table C1 for
associated experimental parameters and figures of merit.

Table C1. Parameters used for the preparation of rotated squeezed Gaussian states and figures of merit obtained from their
reconstruction. For all experiments (u,v) = (0,0), ξ = 1/3, Fth ⩾ 0.995, s= 5.45± 0.30 and tc = 1.75T0.

Figure C1 a b

θ π/4 −π/4
Fexp 0.88 0.89
γ 0.89 0.88

Appendix C. Rotated squeezed Gaussian states

In order to perform the rotation in phase space of squeezed Gaussian states we need to redefine our target
states. For a positive rotation angle θ in the (x− p) phase space, the plane wave coefficients of these states are:

c(ξ,θ)ℓ (u,v) =

(
<[A]
π

)1/4

eiuv/2e−ilue−A(l−v)2/2, (C.1)

with

A=
cosh(r)− sinh(r)e2iθ

cosh(r)+ sinh(r)e2iθ
and r=

1

4
ln

(
s

4ξ4

)
.

Figure C1 and table C1 show results for (u,v) = (0,0), ξ = 1/3 and θ =±π/4.

Appendix D. Initial states for dynamical tunneling

We define the ideal state for dynamical tunneling as the equal-weight superposition of the two Floquet states
|FA〉 and |FB〉 that support the tunneling:

|ψ(θ)〉= 1√
2

(
|FA〉+ eiθ |FB〉

)
, (D.1)

where |FA〉 and |FB〉 can be identified by their overlap with a non-squeezed Gaussian state (equation (6))
centered in either lateral regular regions of the Poincaré section (figure 5(a)). With optimal control, we
initialize the system in the right regular region, that is targeting the superposition |ψ(θR)〉 with the phase
difference between the two Floquet states:

θR = argmax
{
〈x̂〉ψ(θ)

}
. (D.2)

Defining |ϕ0〉, the ground state of the lattice, and D̂(∆x), the translation operator that translates in x by a
quantity∆x, the translated ground state to which we compare the preparation of |ψ(θR)〉 is D̂(∆xR) |ϕ0〉
with∆xR maximizing the overlap between |ψ(θR)〉 and the translated ground state:

∆xR = argmax
{∣∣〈ψ(θR)| D̂(∆x) |ϕ0〉

∣∣2} . (D.3)
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Figure D1. Initial states for regular dynamical tunneling. Husimi representations and underlying classical phase spaces for (a) the
translation method and (b) the relevant Floquet states. (a1) |ϕ0⟩. (a2) (resp. (a3)) D̂(∆xR) |ϕ0⟩ just before (resp. after) the start of
the modulation. (b1) |FA⟩. (b2) |FB⟩. (b3) |ψ(θR)⟩. See text for the definitions of these states. The colorscale for each Husimi
distribution extends from 0 to its maximum value.

For our parameters, we find a fidelity between the translated ground state and the optimal state∣∣〈ψ(θR)| D̂(∆xR) |ϕ0〉
∣∣2 ≈ 0.91.

Figure D1 shows the Husimi representations of |ϕ0〉, D̂(∆xR) |ϕ0〉, |FA〉, |FB〉 and |ψ(θR)〉. The differences
between the translated ground state D̂(∆xR) |ϕ0〉 and the optimal state |ψ(θR)〉may seem small, however
their impact on the tunneling signal is quite important, leading to much sharper oscillations with the
optimal state (see figure 5).

ORCID iDs

B Peaudecerf https://orcid.org/0000-0002-2221-2034
D Sugny https://orcid.org/0000-0002-1963-333X
D Guéry-Odelin https://orcid.org/0000-0003-4869-1341

References

[1] Cirac J and Zoller P 2012 Nat. Phys. 8 264–6
[2] Polzik E, Carri J and Kimble H 1992 Phys. Rev. Lett. 68 3020–3
[3] Tse M et al 2019 Phys. Rev. Lett. 123 231107
[4] Acernese F et al (Virgo Collaboration) 2019 Phys. Rev. Lett. 123 231108
[5] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138–43
[6] Wineland D, Bollinger J, Itano W and Heinzen D 1994 Phys. Rev. A 50 67–88
[7] Sinatra A 2022 Appl. Phys. Lett. 120 120501
[8] Estève J, Gross C, Weller A, Giovanazzi S and Oberthaler M 2008 Nature 455 1216–9
[9] Lücke B et al 2011 Science 334 773–6
[10] Kovachy T, Hogan J M, Sugarbaker A, Dickerson S M, Donnelly C A, Overstreet C and Kasevich M A 2015 Phys. Rev. Lett.

114 143004
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