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Abstract
Quantum optimal control (QOC) is a set of methods for designing time-varying electromagnetic
fields to perform operations in quantum technologies. This tutorial paper introduces the basic
elements of this theory based on the Pontryagin maximum principle, in a physicist-friendly way.
An analogy with classical Lagrangian and Hamiltonian mechanics is proposed to present the
main results used in this field. Emphasis is placed on the different numerical algorithms to solve
a QOC problem. Several examples ranging from the control of two-level quantum systems to
that of Bose–Einstein condensates (BECs) in a one-dimensional optical lattice are studied in
detail, using both analytical and numerical methods. Codes based on shooting method and
gradient-based algorithms are provided. The connection between optimal processes and the
quantum speed limit is also discussed in two-level quantum systems. In the case of BEC, the
experimental implementation of optimal control protocols is described, both for two-level and
many-level cases, with the current constraints and limitations of such platforms. This
presentation is illustrated by the corresponding experimental results.

Supplementary material for this article is available online

Keywords: quantum control, optimal control theory, Pontryagin maximum principle,
two-level quantum systems, Bose–Einstein condensates, quantum technologies

1. Introduction to quantum control

The design and development of quantum technologies requires
the use of many advanced techniques in order to tackle the fra-
gility of quantum information, and the difficulty of isolating

∗
Author to whom any correspondence should be addressed.

and manipulating quantum entities [1–7]. These challenges
have led in particular to the development of quantum optimal
control (QOC) [8–19], a branch of optimal control theory
(OCT) whose aim is to adapt and apply the tools of optimal
control to quantum systems. As its name suggests, optimal
control [20–30] is a mathematical theory that refers to the
design of time-varying controls to manipulate dynamical sys-
tems in order to ideally achieve specific goals (encapsulated

1 © 2024 IOP Publishing Ltd

https://doi.org/10.1088/1361-6455/ad46a5
https://orcid.org/0000-0002-4594-5978
https://orcid.org/0000-0002-2221-2034
https://orcid.org/0000-0003-4869-1341
https://orcid.org/0000-0002-1963-333X
mailto:dominique.sugny@u-bourgogne.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ad46a5&domain=pdf&date_stamp=2024-6-3
https://doi.org/10.1088/2515-7639/ad46a5


J. Phys. B: At. Mol. Opt. Phys. 57 (2024) 133001 Tutorial

in a figure of merit). QOC was initiated in the eighties, and
has since then seen an exponential development. It nowadays
comprises a very powerful toolbox of analytical and numerical
methods for designing control protocols under various exper-
imental constraints and limitations. QOC is therefore not only
a mature theoretical field, but also a very efficient approach
from an experimental point of view on many quantum plat-
forms. A key aspect of QOC is that it is an open-loop pro-
cedure that provides the optimal control process without any
feedback from the experiment. Successful applications there-
fore require a very accurate modeling of the dynamical sys-
tem and careful consideration of the controls that are experi-
mentally available. Such QOC techniques have recently been
successfully applied in many different areas of quantum tech-
nologies, ranging from quantum computing and simulation to
sensing [14, 15], making QOC a key tool of growing import-
ance in the development of quantum technologies. This can
be seen by its growing presence in the literature, as illustrated
in figure 1. QOC is not the only control method that is avail-
able to manipulate quantum systems in an optimized fashion.
Among others, we can mention adiabatic passage techniques
[31–33], shortcut to adiabaticity approaches [34–38] or com-
posite pulses [39–42]. While QOC in most cases deals with
time-dependent pulses, it can be applied to other issues such as
the control of Hamiltonian structure [43, 44]. Optimal control
can also be performed in the frequency domain as, e.g. shown
in [45]. Furthermore, the framework of the quantum speed
limit (QSL) [46–51], which seeks to establish lower bounds on
the minimum time required to steer a system from a given ini-
tial state to a target state, is closely linked to QOC [46, 52–54].
The corresponding time is expressed as a ratio between the
distance to the target state and the dynamical speed of evolu-
tion. This approach, like QOC, has been the subject of intense
development in recent years.

Several textbooks and reviews have introduced and
described the basic elements and provided a fairly complete
picture of the field of QOC [11, 15, 16, 18, 55]. Others have
focused on its practical numerical implementation or on the
description of various optimization algorithms [9, 56–58].
However, either their starting points are at a high mathem-
atical level, or they only consider a specific aspect of the
QOC toolbox, so that it can be difficult for a newcomer to
get a complete overview of the field and to apply such tech-
niques to their own system. This tutorial paper aims to fill
that gap. This introduction covers a wide range of aspects,
from the description of the Pontryagin maximum principle
(PMP) which can be seen as the central mathematical res-
ult of the theory [20, 21, 28], to the analytical or numerical
computations of optimal control and their experimental imple-
mentation. Mathematical issues are treated with a minimum of
rigor, but with several reminders of basic notions. The various
numerical algorithms available in the literature are described.
Special emphasis is given to two numerical methods, namely
the shooting and the gradient-based algorithms, which allow
solving low- and high-dimensional quantum optimal prob-
lems respectively. Numerical codes are provided in the sup-
plementary material. We point out that the efficiency of such
algorithms is due to the absence of traps in most of quantum

control landscapes, as originally proposed in [59, 60] and then
discussed and extended in [61–65]. Due to the large num-
ber and diversity of optimization methods, some interesting
topics are not covered in this tutorial. Among others, we can
mention machine learning techniques [66–72], the Hamilton–
Jacobi–Bellman approach [73], second-order optimization
algorithms [74–77], closed-loop control [78–80], controllab-
ility and accessibility of quantum systems [81–85], quantum
control landscapes [59–65], robust optimal control [86–105],
optimal control of linear systems [28, 106–110], optimal con-
trol and quantum sensing [111–116] and the control of open
quantum systems [117–127].

The success of QOC has been demonstrated theoretically
in a large number of quantum systems [14]. Although such
control protocols are interesting from a theoretical point of
view, e.g. to know the physical limits of a dynamical system
in terms of control time or fidelity, they are generally not the
final answer to a control problem: the ultimate goal is to imple-
ment the calculated control process experimentally. Several
difficulties have to be overcome in order to transfer the the-
oretical result to the experiment, which can be divided into
two categories. The first problem comes from the model sys-
tem which must be sufficiently precise in an open-loop frame-
work to describe the physical system, but relatively simple
to apply the optimization algorithms numerically. A second
obstacle is related to the family of control pulses that can be
implemented experimentally. Depending on the experimental
setup, different constraints may arise, ranging from the con-
trol time and the maximum intensity of the control available,
to its Fourier bandwidth or its time discretization. It is now
possible to take these constraints into account in optimiza-
tion algorithms. This development makes QOC more useful
in terms of experimental applications and helps to bridge the
gap between control theory and control experiments. Such a
project has been successfully carried out on various platforms
such as superconducting circuits, NV centers, magnetic reson-
ance and trapped atoms, ions and molecules [14]. The experi-
mental implementation of optimal control protocols is highly
dependent on the system under study, and we cannot cover all
possible situations here. In this paper, we focus on a specific
example for which we provide numerical solutions, namely
the control of a Bose–Einstein condensate (BEC) in a one-
dimensional optical lattice [128–130]. This system has attrac-
ted a lot of interest in recent years from a control point of
view [131–141], especially for quantum simulation applica-
tions [142–144], for which QOC can be used to efficiently pre-
pare the initial state of the system [145]. It allows us to illus-
trate the implementation of optimal control on an infinite-size
system, as well as to emulate a two-level system. We discuss
the different steps of the experimental implementation from
the modeling of the system dynamics, to the experimental con-
straints on the control design and the measurement of the final
state of the system. The impact of various experimental limita-
tions is highlighted and discussed. Experimental results based
on optimal control protocols are presented.

This tutorial paper is organized as follows. In section 2, we
introduce the OCT based on the PMP. The analogy with clas-
sical Lagrangian and Hamiltonian systems is used to describe
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Figure 1. Growth in the number of scientific articles NQOC (red curve) with the keywords ‘quantum’ and ‘optimal control’ published each
year on the internet, during the period 1990–2022, and ratio between NQOC and the number of scientific articles NQ with the keywords
‘quantum’ (blue curve). Despite an increasing number of annual publications, the ratio decreased during the period 2000–2015 (the number
of publications in quantum science grew very rapidly during these years), but since 2018 the trend has reversed. At the beginning of 2023
(not shown in the graph), the trend is confirmed with almost 1% of publications concerning QOC. Data were collected using Google Scholar.

the basic concepts of this theory. In section 3, we show how
such results can be adapted to quantum systems. The time-
optimal control of a two-level quantum system is used as
an illustrative example. The connection between QOC and
QSL in this system is discussed. In section 4, a detailed
introduction to numerical methods is given with particular
emphasis on two different approaches, namely the shooting
method and gradient-based optimization algorithms which are
also illustrated in a two-level quantum system. Pseudo-codes
describing the structure of the algorithms are provided in the
main text, and Python codes for specific control processes
can be found in the supplementary material. These numer-
ical approaches are used in section 5 to manipulate a BEC
in an optical lattice. A complete description of an experi-
mental implementation is given as well as the constraints and
limitations of the experimental apparatus used. A number of
examples in classical and quantum physics are given through-
out the text. The simplest ones can be ignored by a reader
already experienced in optimal control. A conclusion is given
and prospective views are suggested in section 6. Appendix A
gives a list of mathematical symbols and acronyms used
in the article. Appendices B and C contain mathematical
results used in the main text. A description of the numer-
ical codes of the supplementary material is also provided in
appendix D.

2. OCT and PMP

2.1. Introduction

OCT has its roots in the calculus of variations which is
over 300 years old [146–148]. Interest in this branch of

mathematics grew rapidly with the advent of computer science
in the early 1960 s. A rigorous mathematical framework for
OCT was given by L. Pontryagin and his co-workers in 1960
with the introduction of the PMP [20–23, 28], which then led
to a variety of applications [149]. In particular, OCT was at
the origin of optimal trajectory prediction in aeronautics [11,
24]. Today, OCT is used in a wide range of fields ranging from
economics, to physics and electronics, to name but a few. The
PMP transforms the optimal control problem into a general-
ized Hamiltonian system subject to a maximization condition
and some boundary conditions. In this framework, the goal
is to find the Hamiltonian trajectory that reaches the target
state, while minimizing the cost functional which defines the
optimization procedure. A key advantage of the PMP is that
it reduces the initial infinite-dimensional control landscape
to a finite low-dimensional space. This brief description also
shows that optimal control is closely related to classical mech-
anics and its Lagrangian or Hamiltonian formalism.

Before we present the PMP at the end of this section, let
us take a step back to basics. As the above brief description
of optimal control shows, a first observation is that optimal
control problems are very similar to those in classical mech-
anics [150, 151], where the goal is to find the trajectory of a
classical system that minimizes a certain quantity, the action.
The same direction is followed in OCT, but instead of the usual
action, other quantities relevant to the control procedure are
minimized. Another important modification is the presence
of a time-dependent parameter in the dynamical equations
which can be shaped to some extent by an external operator.
In the case of an aeroplane, for example, the control para-
meters include all possible actions that can be performed on
the aircraft, such as modifying the engine thrust or changing
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the orientation of elevators and ailerons. In quantum phys-
ics, the control agent is generally a shaped electromagnetic
field. The formal concepts are illustrated in this section using a
simple example, namely a point particle controlled by a time-
dependent force. We begin by recalling some key elements of
the calculus of variations applied to a point particle.

Example 1. A basic idea of the calculus of variation and
of the principle of least action is to derive the equation
of motion of a physical system from a single quantity, the
action [150]. Mathematically, the latter takes the form of
a functional [148] i.e. a function of functions. In the case
of a free one-dimensional particle, the action S can be
expressed as

S [x] =
ˆ tf

0

1
2
mẋ2 (t) dt, (1)

where x(t) ∈ R is the position of the particle at time t with
t ∈ [0, tf], tf the duration of the dynamics, m its mass, and
the dot symbolizes the time derivative. The physical motion is
associated with the least action S. From the condition δS= 0
where δS is the functional derivative of S taken for two tra-
jectories close to each other [150], it can be shown that the
physical trajectory satisfies the Euler–Lagrange equation

∂L
∂x

− d
dt
∂L
∂ẋ

= 0, (2)

where L= mẋ2/2 is the Lagrangian, here equal to the kin-
etic energy of the particle. An explicit calculation leads to the
expected result mẍ(t) = 0.
The model system can be extended by introducing a control

f(t) ∈ R, which takes the form of a force applied to the particle.
With this modification, the action becomes

S [x] =
ˆ tf

0

(
1
2
mẋ2 (t)+ f(t)x(t)

)
dt, (3)

where the extra term −f(t)x(t) is a potential energy. The
Lagrangian is then defined as the difference between the kin-
etic energy and the potential energy. The equation of motion,
calculated using equation (2) with the new Lagrangian is
mẍ(t) = f(t). The latter can be determined from Newton’s
law, but also from the Hamiltonian formalism, in which
the Lagrangian is replaced by the Hamiltonian H. The
Hamiltonian is a function on the phase space i.e. position and
momentum (Γ = R2 for a point particle), rather than a func-
tion of position and velocity for the Lagrangian. The phase
space can be constructed by defining a conjugate variable, the
momentum, as p= ∂L

∂ẋ , and H can be expressed as H= pẋ−
L [150]. This change of variables is called a Legendre trans-
formation. The equations of motion are given by Hamilton’s
first-order differential equations

ẋ=
∂H
∂p

, ṗ=−∂H
∂x
, (4)

which allow us to recover the system dynamics. In the case
of a point particle, we have p= mẋ and the Hamiltonian is

H= p2

2m − f x, which leads from equation (4) to ṗ= f and mẋ=
p, and finally to mẍ= f as expected.
Now suppose that a particular time-dependent force can

be generated. It is clear that the dynamics of the system are
modified, the corresponding trajectory being solution of the
equation mẍ(t) = f(t). The particle is then steered from the
point x(0) to x(tf). This example can be reformulated in terms
of optimal control. The idea is to reverse the procedure by
fixing the initial and final states of the system a priori and
by designing the corresponding control. Since this problem
can have a very large number of solutions, a specific con-
trol is selected based on an additional criterion as described
below. □

An optimal control problem is usually defined as follows.
The first step is to introduce the system to be controlled,
whose state X(t) = {Xa(t)}a=1,...,n is a real vector, X(t) ∈ Rn

with coordinates Xa. We assume that the system dynamics are
described by a real first-order differential equation of the form

Ẋ(t) = F(X(t) ,u(t) , t) , (5)

as provided e.g. by equation (4), where u(t) ∈ U⊂ Rm is the
control withm real components and F= {Fa}a=1,...,n is a vec-
tor function that should be smooth enough. The set U corres-
ponds to the admissible values of the control and is determined
by the operator. This choice is usually dictated by the exper-
imental limitations of the device or by the hypotheses used
to derive the model system. Note that U= Rm if there is no
specific constraint. A standard example for a one-dimensional
control parameter is U= [umin,umax] where umin and umax are
respectively the minimum and maximum of allowed control
values. A solution to equation (5) is well-defined from a math-
ematical point of view if the control u belongs to a particular
set of functions called the admissible controls. In many cases,
continuous or piecewise continuous functions are sufficient to
guarantee the existence of a solution, but not of the optimal
control, as discussed in [16]. We also emphasize that there are
problems for which the optimal control is not a piecewise con-
tinuous function but presents for instance a chattering process,
characterized by an infinite number of switchings between two
extreme values in a finite time interval [27, 152]. Note that this
phenomenon can also be observed in QOC as recently shown
in [153].

The optimal control protocol can be found by introducing a
cost functional C that should be minimized. Note that a max-
imization can also be considered byminimizing−C. The func-
tional C can be expressed as the sum of a terminal cost G and
a running cost F0 depending respectively on the final state and
the trajectory followed by the system:

C = G(X(tf) , tf)+
ˆ tf

0
F0 (X(t) ,u(t) , t)dt, (6)

where tf is the control time, which can be fixed or free. In stand-
ard applications, the terminal cost G can describe the distance
to the target state, while the second term can penalize either
the control time or the energy of the control. Such running
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costs correspond to F0 = 1 and F0 =
1
2u

2(t), respectively, up
to a constant factor.

Example 2. We consider the problem of steering a one-
dimensional point particle with minimum energy consumption
between the points x= 0 and x= 1 in a given time tf, such that
the initial and final velocities are zero. The equations of motion
in the phase space R2 are

d
dt

(
x
p

)
=

(
p/m
f

)
, (7)

with initial (0, 0) and final (1, 0) states respectively. The cost
functional associated with this optimal control problem is
chosen to be

C = (x(tf)− 1)2 + p(tf)
2
+

ˆ tf

0

1
2
αf 2 (t) dt, (8)

where α is a constant factor such that the second term has
an energy dimension. Note that α can also be used to weight
the relative importance of the two terms in the cost functional.
The minimum of C corresponds to a compromise between the
distance of the final state to the target and the energy consumed
along the trajectory to reach the final state. □

In summary, the task in an optimal control problem is to
find the control u∗ that minimizes the cost functional C under
the constraint that Ẋ= F(X,u, t). It can be mathematically
described as an infinite dimensional constrained optimization
problem since all amplitudes u(t) in a continuous time interval
are optimized. As in a finite dimensional constrained optimiza-
tion problem, the main difficulty comes from the condition (5)
to be satisfied at any time t. The functional C cannot be minim-
ized directly due to this additional constraint. The idea is then
to increase the dimension of the state of the system to obtain an
unconstrained optimization problem [22, 154, 155]. An exten-
ded space is defined by doubling the number of variables of the
system state. The adjoint state Λ(t) ∈ Rn is introduced and the
new state can be written as (X,Λ,u) ∈ R2n+m. The state Λ(t)
plays the same role as Lagrange multipliers in a finite dimen-
sional problem, except that the static constraints and a finite
number of Lagrange multipliers are respectively replaced by
a dynamical constraint (5) and a time-dependent function. We
refer the reader to appendix B for details on this approach.

We then consider the action associated with the optimal
control problem:

Definition 1 (Action of the optimal control problem). Let
X(t) ∈ Rn be the state of a physical system at time t, Λ(t) ∈
Rn its adjoint state, and u(t) ∈ U⊂ Rm a control. Let G be
a terminal cost function, F0 a running cost, and F a vector
function describing the system dynamics. The optimal control
action is defined as

S= G(X(tf) , tf)

+

ˆ tf

0
dt
[
F0 (X(t) ,u(t) , t)+Λ(t) ·

(
Ẋ(t)−F(X(t) ,u(t) , t)

)]︸ ︷︷ ︸
L(X,Ẋ,u,t,Λ)

.

(9)

The function in the integral is the Lagrangian L of the optimal
control problem. □

From this definition, it is straightforward to deduce that Λ
is the conjugate coordinate of X using

∂L
∂Ẋ

= Λ.

Example 3. A direct application of definition 1 to the system
defined in example 2 leads us to the following Lagrangian:

L=
1
2
αf 2 +Λx (ẋ− p/m)+Λp (ṗ− f) , (10)

where Λx and Λp are respectively the adjoint states of x and p,
Λ = (Λx,Λp). □

2.2. First-order variation and PMP

2.2.1. Lagrangian formulation. The action introduced in
definition 1 is very similar to the action of a usual classical
system and it contains all the information needed to find the
solutions of the optimal control problem. We use the same
approach as in classical mechanics by calculating the condi-
tions that the extremals of S must fulfill when considering a
small variation of the control [146–148]. The analysis is more
demanding than in classical mechanics because the set U can
be closed as in the case U= [umin,umax]. One must be careful
at the boundary of U, because it leads to extremals that are
not specified by functional derivatives of S. This is similar to
the case of a function f defined on a closed interval which has
extrema on the boundary of the interval that are not given by
a zero of its derivative.

Here, we examine a system with unconstrained con-
trols. The case of a closed set is discussed below with the
Hamiltonian formalism. Extremals are characterized by the
condition δS= 0 for small variations δX, δΛ, and δu which
are assumed to be independent. These variations are chosen to
be as general as possible, and they are not a priori restricted
to satisfy Ẋ= F.

The functional derivative of Swith respect to the three vari-
ables, X, Λ and u is

δS=
∂G
∂X(tf)

δX(tf)+
ˆ tf

0

[
∂F0

∂X
δX+

∂F0

∂u
δu+ δΛ ·

(
Ẋ−F

)
+Λ ·

(
δẊ− ∂F

∂X
δX− ∂F

∂u
δu

)]
.

Integrating by part the term Λ · δẊ, we obtain

δS=

(
∂G
∂X(tf)

+Λ(tf)

)
δX(tf)+Λ(0)δX(0)

+

ˆ tf

0
dt

([
∂F0

∂X
− Λ̇−Λ

∂F
∂X

]
δX+

[
Ẋ−F

]
δΛ

+

[
∂F0

∂u
−Λ

∂F
∂u

]
δu

)
.
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Next, we deduce that the extremals of S fulfill the following
conditions

Λ̇ =
∂F0

∂X
−Λ

∂F
∂X

, Λ(tf) =− ∂G
∂X(tf)

,

Ẋ= F, X(0) = X0,

Λ
∂F
∂u

− ∂F0

∂u
= 0.

The initial condition on X comes from the fact that δX(0) = 0,
i.e. we consider trajectories with the same initial state.
The results are summarized in the following theorem.

Theorem 1 (Extremals of the action). Extremals of the
action of the optimal control problem at a fixed final time with
the initial state X(0) = X0 satisfy the following conditions:

Ẋa(t) = Fa(t) (Euler–Lagrange equation forΛ), (11)

Λ̇a(t) =
∂F0

∂Xa(t)
−Λ(t)

· ∂F
∂Xa(t)

(Euler-Lagrange equation forX), (12)

Λa(tf) =− ∂G
∂Xa(tf)

(Boundary condition forX), (13)

∂F0

∂ua
= Λ(t) · ∂F

∂ua(t)
(Euler–Lagrange equation foru).

(14)

□
Several comments on these results can be made.

Equation (11) is the equation of motion, and thus, any
solution of δS= 0 must correspond to a physical traject-
ory of the system. Equation (12) is derived from the Euler–
Lagrange equation d

dt
∂L
∂Ẋ

− ∂L
∂X = 0 for X. It returns a differ-

ential equation for the dynamics of Λ(t), whose value at final
time is given by the gradient of the terminal cost G over the
final state X(tf). Equation (14) leads to a strong condition for
the control u. As can be seen in the examples, equation (14)
can often be used to express the control as a function of X and
Λ, i.e. u(t) = u(X(t),Λ(t)). The control is then completely
determined by the dynamics of the state and its adjoint state.
Using the n initial conditions of X and the n final conditions
of Λ parameterizing X(t) and Λ(t), we obtain that the optimal
control is a function of a finite number of parameters, trans-
forming thus an infinite-dimensional optimization problem
into a finite one.

We emphasize that identities of theorem 1 are satisfied by
all the extremals of the action. It is therefore only a neces-
sary optimality condition that selects trajectory candidates
to be optimal. In practice, it is straightforward to establish
equations of theorem 1 which can be expressed as a set of non-
linear coupled differential equations with two-side bound-
ary conditions. The difficult task is to find the solutions of
such equations. This can be done analytically in the simplest
cases, otherwise numerically. Some examples of applications
to quantum systems are given in section 3.

Example 4. Theorem 1 can be applied directly to the optimal
control Lagrangian L= 1

2αf
2 +Λx(ẋ− p/m)+Λp(ṗ− f) of

example 3. The derivatives of L with respect to the states (x, p)
and the adjoint states (Λx,Λp) give the equations of motion

ẋ= p/m,

ṗ= f,

Λ̇x = 0,

Λ̇p =−Λx

m
,

(15)

while control can be obtained from the derivative of L with
respect to the control f

f =
Λp

α
.

Boundary conditions can also be deduced using the terminal
cost G= (x(tf)− 1)2 + p(tf)2, introduced in example 2. We
obtain:

Λx (tf) =−2(x(tf)− 1) ,

Λp (tf) =−2p(tf) .

For an optimal trajectory reaching exactly the target, we have
x(tf) = 1 and p(tf) = 0, and thus Λx(tf) = Λp(tf) = 0. □

2.2.2. Hamiltonian formulation. As in classical mechan-
ics [150], we can adopt either a Lagrangian or a Hamiltonian
formalism to derive the equations of motion. The Hamiltonian
structure can be derived from the optimal control action intro-
duced in definition 1. Since Λ is the conjugate momentum of
X, the Hamiltonian HP, called the Pontryagin Hamiltonian,
can be defined as HP = Λ · Ẋ−L= Λ ·F−F0. When X and
Λ satisfy the extremal equations, the functional derivative of S
given by

δS=
ˆ tf

0

(
∂F0

∂u
−Λ · ∂F

∂u

)
· δu(t)dt

can be then written as

δS=−
ˆ tf

0

∂HP

∂u
· δu(t)dt. (16)

Equation (16) allows us, for an open setU, to find the extremal
condition for the control, ∂HP

∂u = 0. Here only the normal
extremals are obtained. Under certain conditions, control pro-
cesses that do not depend on the running cost F0 can also be
solutions of the optimal control problem. Such extremals are
called abnormal. To take them into account, a negative con-
stant Λ0 ⩽ 0 is added to the definition of the Hamiltonian HP

which is given in its final form as follows [11, 16, 23].

Definition 2 (Pontryagin Hamiltonian). The Pontryagin
Hamiltonian HP is given by:

HP = Λ ·F+Λ0F0. (17)

□
6
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For Λ0 < 0, we find the previous definition of HP by noting
that Λ0 can be normalized to -1 without loss of generality. The
Pontryagin Hamiltonian does not depend on F0 when Λ0 = 0,
which leads to the family of abnormal solutions. We stress that
abnormal solutions also occur in finite-dimensional optimiza-
tion problems as a special case of Lagrange multipliers. This
point is discussed in appendix B which shows that abnormal
extremals are not restricted to optimal control problems. An
example of abnormal control is described in example 8.

Example 5. The Pontryagin Hamiltonian for the optimal con-
trol Lagrangian L= 1

2αf
2 +Λx(ẋ− p/m)+Λp(ṗ− f) can be

written as

HP = Λx
p
m

+Λpf +
Λ0

2
αf 2, (18)

where Λ0 is a negative constant. In the abnormal case, the
Pontryagin Hamiltonian is given by

HP = Λx
p
m

+Λpf. □
Optimal trajectories are given by Hamilton’s equations,

once again highlighting the link between classical mechanics
and optimal control. They can be written as:

Λ̇a =−∂HP

∂Xa
,

Ẋa =
∂HP

∂Λa
,

∂HP

∂ua
= 0.

(19)

A straightforward calculation reveals that these equations are
equivalent to dynamical equations of theorem 1. Equation (19)
that can be used with unconstrained control (U is an open set)
correspond to ‘the weak Pontryagin principle’. The theory can
be extended to consider the general case. This leads to the
Pontryagin Maximum Principle (PMP) which can be stated as
follows [11, 16, 20, 22–24, 28].

Theorem 2 (Pontryagin maximum principle). We consider
the dynamical system defined by

Ẋ(t) = F(X(t) ,u(t)) ,

where F is a smooth vector function and u : [0, tf]→ U⊂ Rm

the control. The goal of the control protocol is to steer the sys-
tem from X0 to Xf at time tf which is fixed or free. The optimal
control problem u∗ is defined from the cost functional C to min-
imize

C = G(X(tf))+
ˆ tf

0
F0 (X(t

′) ,u(t ′))dt ′,

where F0 and G are two smooth functions. The Pontryagin
Hamiltonian HP is defined as

HP (X,Λ,Λ0,u) = Λ ·F(X,u)+Λ0F0 (X,u) ,

where Λ(t) ∈ Rn is the adjoint state, and the abnormal mul-
tiplier Λ0 ⩽ 0 a constant. The pair (X,u∗) is optimal if there

Figure 2. Schematic plot of the Pontryagin Hamiltonian HP as a
function of the control u in the interval U= [umin,umax] represented
by the vertical dashed lines. The dots indicate the position of the
extremal values of HP. In this example, the global maximum of HP

lies on the edge of U, while a local maximum lies inside U.

exists a non zero continuous pair (Λ,Λ0) such that the traject-
ories of the extended system are given by Hamilton’s equations
Λ̇ =−∂XHP and Ẋ= ∂ΛHP, and the maximization condition
can be written almost everywhere on [0, tf] as:

HP (X,Λ,Λ0,u
∗) =max

u∈U
HP (X,Λ,Λ0,u) . (20)

The state and adjoint state satisfy respectively the initial and
final conditions

X(0) = X0, Λ(tf) = Λ0
∂G(X(tf)
∂X(tf)

. □
Some mathematical details and a geometric interpretation

of the PMP can be found in appendix C. We observe that the
first-order condition ∂HP

∂u = 0 is replaced by a stronger maxim-
ization condition (20) of the Pontryagin Hamiltonian along the
optimal trajectory. This modification is crucial to treat the case
of a closed set U such as U= [umin,umax] since the maximum
of HP can be defined on an open or a closed set. A schematic
description of this maximization is given in figure 2.

Some additional comments and extensions can be made on
theorem 2. The Hamiltonian HP is generally called a pseudo-
Hamiltonian because it depends on the control u. It can be
shown that the Hamiltonian HP is constant in time and it is
constantly zero if tf is free. A brief description of this con-
dition is given in appendix C. A solution X of this optimal
control problem is called an extremal trajectory and is candid-
ate to be optimal. This means that the PMP is only a neces-
sary condition for optimality and several extremal trajectories
may exist. Additional work is required to select the optimal
solution among such trajectories. As in a finite-dimensional
optimization problem (see appendix B for details), two dif-
ferent sets of trajectories can be extremals, namely the nor-
mal and the abnormal, respectively for Λ0 < 0 and Λ0 = 0.

7
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The pair (Λ,Λ0) is defined up to a constant factor, but cannot
simultaneously be equal to 0. This degree of freedom comes
from the fact thatHP and the adjoint states are abstract quantit-
ies which have no physical meaning. Multiplying (Λ,Λ0) by a
constant factor amounts to multiplying HP by the same factor
without changing the optimal control problem. This allows in
the normal case to normalize the constantΛ0 to a specific value
such as−1/2 or−1. The target state here is only a point, but a
set of points or a subset ofRn can be chosen as target. The final
condition for the adjoint state must then be adapted. It is also
possible to consider the trajectories that reach exactly the state
Xf at time tf. In this case, the final conditions are satisfied by
the state as X(tf) = Xf and not by the final adjoint state Λ(tf).
In a general situation, the optimal solutions of the Hamilton’s
equations of the PMP are defined from 2n conditions given at
initial or final times on the state or the adjoint state.

Based on theorem 2, a systematic way to solve the optimal
equations given by the PMP can be formulated. The differ-
ent steps must be followed for both normal and abnormal
extremals. The first objective is to use the maximization con-
dition to express the control in terms of the state and adjoint
state as u= v(X,Λ). If this is possible, the control is said to be
regular, otherwise it is singular. Note that the two situations
can be mixed for a given trajectory in the sense that the control
can be regular at some times and singular at others. Different
QOC problems in which singular extremals are optimal have
been found in the literature [16, 156, 157]. In the regular situ-
ation, the second step is to insert the expression of the control
into the Hamilton’s equations. If the function v is smooth, we
get a well-defined Hamiltonian system as in classical mech-
anics except that the desired trajectory is defined by two-side
boundary conditions on X(0) andΛ(tf). A straightforward way
to solve this problem is to use a shooting technique which con-
sists of finding the initial value Λ(0) such that the final con-
dition on the adjoint state at time tf is satisfied. This approach
faces two main difficulties due to the possible complexity of
the system dynamics. The first is related to the non uniqueness
of the solution and the second to the potentially strong sensit-
ivity to initial conditions in the case of chaotic dynamics. The
latter is found especially in high-dimensional systems. This
observation justifies the use of shooting techniques only for
simple control problems of low dimension. Other numerical
optimizationmethods have been developed to solvemore com-
plicated issues. Such optimization algorithms are described in
section 4.

The following examples illustrate different situations that
can be encountered with the PMP.

Example 6. We consider the control of a point particle in the
energy minimum case from state (0, 0) to (1, 0) in a fixed time
tf. The cost functional to minimize is given by

C =
1
2
(x(tf)− 1)2 +

1
2
p(tf)

2
+
α

2

ˆ tf

0
f 2 (t)dt.

The Pontryagin Hamiltonian can be expressed as

HP = Λx
p
m

+Λpf−
αf 2

2
,

where Λ0 has been set to−1 (the abnormal case plays no role
in this problem). Hamilton’s equations can then be written
as ẋ= p/m, ṗ= f, Λ̇x = 0, Λ̇p =−Λx/m, and the maximiza-
tion condition reads f = Λp/α. The extremal trajectories are
therefore regular. Note that we find the same expressions as in
example 4.
Plugging the expression of f into HP, a true Hamiltonian H

is obtained

H= Λx
p
m

+
Λ2
p

2α
,

and the optimal trajectories are given by the Hamilton’s
equations derived from H. Since Λx is a constant of motion,
it is straightforward to show that

f(t) =
Λp (t)
α

=− Λx

αm
t+

Λp (0)
α

,

and the system dynamics read

p(t) =− Λx

2αm
t2 +

Λp (0)
α

t,

x(t) =− Λx

6αm2
t3 +

Λp (0)
2αm

t2,

(21)

where we use the initial state (x(0),p(0)) = (0,0). The optimal
trajectory is derived from the final conditionΛx(tf) = 1− x(tf)
and Λp(tf) =−p(tf). A linear system of equations then allows
to find Λx and Λp(0)(

1−
t3f

6αm2

)
Λx+

t2f
2αm

Λp (0) = 1,(
−

t2f
2αm

−
tf
m

)
Λx+

( tf
α
+ 1
)
Λp (0) = 0.

(22)

Optimal trajectories are represented in figure 3 for different
values of the parameters. □

Example 7. We consider the same control problem but in min-
imum time. To simplify the description of the optimal solu-
tion, we exchange the roles of the initial and target states
which in this case are respectively (1, 0) and (0, 0). There is
no constraint on the control energy, only on its amplitude,
f(t) ∈ [−f0, f0] where f0 is the maximum force allowed. For
time-optimal problems, it is often preferable to reach the tar-
get exactly, the cost functional is defined from a running cost
as C =

´ tf
0 dt= tf. Again, the abnormal extremals are not relev-

ant and the parameterΛ0 is normalized to−1. The Pontryagin
Hamiltonian can be written as

HP = Λx
p
m

+Λpf− 1,

and Hamilton’s equations are the same as in the preced-
ing example. Since the final time is free, the Pontryagin
Hamiltonian is zero at any time t. We deduce thatΛx

p
m +Λpf =

1 is a constant along the optimal trajectory. In the open inter-
val, the maximization condition ∂HP

∂f = 0 leads to Λp(t) = 0 on

a non-zero time interval and thus to Λ̇p(t) = 0=−Λx/m. We

8
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Figure 3. Plot of the optimal trajectories in the space (x, p) and of the corresponding control f (t) for α= 0.25 (black) and α= 1 (red).
Numerical parameters are set to tf = 10 and m= 1.

deduce that the condition Λx
p
m +Λpf = 1 cannot be satisfied

and that the optimal control takes values on the boundary of
the interval, i.e. f(t) =±f0. The sign of f has to be chosen to
maximize HP at any time t. The only Hamiltonian term depend-
ing on f being Λpf, we deduce that the optimal control can
be expressed as f(t) = sign[Λp]f0. The latter is a square wave
with switchings at times for which Λp(t) = 0. Such a solu-
tion is referred to as bang-bang in the control literature. The
Hamilton’s equations can be directly integrated which leads
for a trajectory in the interval [ti, t] to

x(t) = f
(t− ti)

2

2m
+
p(ti)
m

(t− ti)+ x(ti) ,

p(t) = f(t− ti)+ p(ti) ,

where f is a constant equal to +f0 or −f0. Note that p is an
increasing (resp. decreasing) function of time when f =+f0
(resp. f =−f0). We also deduce that the optimal trajectories
in the space (x, p) are parabolas. For the adjoint state, we
arrive at

Λx (t) = Λx,

Λp (t) =−Λx

m
(t− ti)+Λp (ti) ,

where Λx is a constant. Λp is a linear function of time with at
most one zero. The optimal control therefore has at most one
switching and the candidates to optimality are of the form:

- f(t) = +f0 for t ∈ [0, tf],
- f(t) =−f0 for t ∈ [0, tf],
- f(t) = +f0 for t ∈ [0, ts[ and f(t) =−f0 for t ∈]ts, tf],
- f(t) =−f0 for t ∈ [0, ts[ and f(t) = +f0 for t ∈]ts, tf],

where ts is the switching time to be determined. The two bang
solutions, i.e. the trajectories without switching, correspond
to the arcs of parabolas passing through the target state (0, 0)
as shown in figure 4. We denote this set of points by P . If the
initial state belongs to P then the time-optimal solution is a
constant control equal to +f0 when x(0)> 0 and −f0 other-
wise. In the general case, two arcs must be concatenated. This
is the situation of the example for which (x(0),p(0)) = (1,0).

Figure 4. Plot of the time-optimal trajectory to go from the state
(1, 0) to (0, 0) represented as black dots. The optimal control is
bang-bang with first a control equal to −f0 and then to +f0. The red
curve depicts the set P .

A first bang with f =−f0 is used to reach P and then f =+f0
to attain the target state, as depicted in figure 4. □

Example 8. We now give an example of abnormal control. We
follow the example presented in [158]. The control problem
is almost the same as in example 7 where the minimum time
t∗ to reach the origin is derived. The unique optimal control
switches at time ts from −f0 to +f0. The time tf is set to t∗ and
we consider a running cost C to minimize

C =

ˆ t∗

0
f(t)
√
|t− ts|dt.

Since the control time is equal to the minimum time, the con-
straints on the control being the same, it is clear that the only
solution to the optimal control problem is the one previously
derived and that this process does not depend on the chosen
cost functional.

9
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Using the PMP in this case, we arrive at the following
Pontryagin Hamiltonian

HP = Λx
p
m

+Λpf(t)+Λ0 f(t)
√
|t− ts|.

The Hamiltonian equations are the same as before, but the
maximization condition is modified due to the new cost func-
tional. Note that Λp(t) is a linear function of time. The control
f is chosen to maximize the expression f(t)(Λp+Λ0

√
|t− ts|).

Since the optimal solution has a switching at t= ts, we deduce
that Λp(ts) = 0. If Λ0 ̸= 0 then there is a small interval around
t= ts such that Λp(t)+Λ0

√
|t− ts|) ̸= 0 because a square

root function grows faster than a linear function at the ori-
gin. There is a contradiction because ts is a switching time.
We conclude that Λ0= 0 and that the optimal solution is an
abnormal extremal of the control problem. □

3. QOC

3.1. From the Schrödinger equation to the Pontryagin
Hamiltonian

We are now interested in applying OCT to a quantum system.
Let H be the Hilbert space of the system, and assume that the
quantumHamiltonian operator of the system can be written as

Ĥ(t) = Ĥ0 +
m∑
k=1

uk (t) Ĥk, (23)

with real control parameters uk. The quantum operators are
denoted by a hat in the rest of the paper. We restrict the dis-
cussion to bilinear systems whose dynamics are linear with
respect to the state and the control. This kind of model can be
applied to many experimental situations with a good accur-
acy. However, optimal control can also be applied to other
configurations, when the control enters non-linearly in the
Hamiltonian [159–162] or in non-linear systems [163–167].
The state of the system at time t is described by the vec-
tor |ψ(t)⟩ ∈ H whose trajectory is the solution of the time-
dependent Schrödinger equation (in units where h̄= 1)

d|ψ ⟩
dt

=−ıĤ(t) |ψ ⟩, (24)

with a fixed initial state |ψ0⟩. The norm of |ψ⟩ is a constant of
motion equal to one at any time t, ⟨ψ|ψ⟩= 1. Equation (24)
is a complex-valued first-order differential equation, and a
method must be found to define real-valued optimal control
quantities. An idea is to define the adjoint state as an element
of the Hilbert space, |χ⟩ ∈ H. Then, the Lagrangian can be
defined as:

L= F0 (|ψ ⟩,u, t)+ℜ
(
⟨χ |ψ̇ ⟩+ ı⟨χ |Ĥ(t) |ψ ⟩

)
, (25)

where ℜ(·) and ℑ(·) denote respectively the real and imagin-
ary parts of a complex number. The conjugate variablesℜ(⟨χ|)
and ℑ(⟨χ|) of respectively ℜ(|ψ⟩) and ℑ(|ψ⟩) are defined as

ℜ(⟨χ|) = ∂L

∂ℜ
(
|ψ̇⟩
) , ℑ(⟨χ|) = ∂L

∂ℑ
(
|ψ̇⟩
) ,

in which we use the convention that the derivative of a scalar
with respect to a ket yields a bra, and vice versa.We emphasize
here that |χ⟩ is not necessary normalized to one. Using the
Euler Lagrange equations for the variablesℜ(⟨χ|) andℑ(⟨χ|),
i.e. here

∂L
∂ℜ(⟨χ |)

= 0=
∂L

∂ℑ(⟨χ |)
,

we arrive at the following equations of motion

dℜ(|ψ ⟩)
dt

= ℜ
(
−ıĤ(t) |ψ ⟩

)
,

dℑ(|ψ ⟩)
dt

= ℑ
(
−ıĤ(t) |ψ ⟩

)
,

which correspond to the Schrödinger equation (24). An
optimal control problem for a quantum system can then be
defined using the action:

S= G(|ψ (tf)⟩)+
ˆ tf

0
dt
(
F0 (|ψ ⟩,u, t)

+ ℜ
(
⟨χ |ψ̇ ⟩+ ı⟨χ |Ĥ(t) |ψ ⟩

))
. (26)

The Pontryagin Hamiltonian can be expressed as

HP = ℜ
(
⟨χ|ψ̇⟩

)
+χ0F0 (|ψ ⟩,u, t) ,

which can be transformed into

HP = ℑ
(
⟨χ |Ĥ(t) |ψ ⟩

)
+χ0F0 (|ψ ⟩,u, t) , (27)

where χ0 is the abnormal multiplier, χ0 ⩽ 0. The Hamilton
equations can be written as

|ψ̇⟩= 2
∂HP

∂⟨χ|
=−ıĤ|ψ⟩,

⟨χ̇|=−2
∂HP

∂|ψ⟩
= ı⟨χ|Ĥ− 2χ0

∂F0

∂|ψ⟩
,

(28)

where the factor 2 comes from the definition of the
derivative with respect to |ψ⟩ as ∂/∂|ψ⟩= 1

2 (∂/∂ℜ(|ψ⟩)−
ı∂/∂ℑ(|ψ⟩)). We observe that the dynamics of |χ⟩ are gov-
erned by the Schrödinger equation plus an additional term
depending on the running cost. It reduces to the Schrödinger
equation if F0 does not depend on |ψ⟩. In this case, since the
pair (|χ⟩,χ0) is defined up to a multiplicative constant, it is
always possible to assume that ⟨χ|χ⟩(t) = 1 and to interpret
|χ⟩ as an abstract wave function. In addition, the adjoint state
satisfies a boundary condition at final time

⟨χ(tf) |= 2χ0
∂G

∂|ψ (tf)⟩
. (29)

When there is no constraint on the control, i.e. U= Rm, the
condition ∂HP

∂uk
= 0 of the PMP yields for k= 1, . . . ,m:

∂HP

∂uk
= ℑ

(
⟨χ |Ĥk (t) |ψ ⟩

)
+χ0

∂F0

∂uk
(|ψ ⟩,u, t) = 0. (30)

10
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Example 9. We consider several G and F0 functions that can
be used in quantum control. The role of G is often to measure
the distance of the final state |ψ(tf)⟩ to the target state |ψf⟩.
Standard terminal costs are

G1(|ψ(tf)⟩) = 1− |⟨ψf|ψ(tf)⟩|2,
G2(|ψ(tf)⟩= 1−ℜ(⟨ψf|ψ(tf)⟩).

The function G2 is related to the minimization of the square
modulus of |ψf⟩− |ψ(tf)⟩ since

|||ψ(tf)⟩− |ψf⟩||2 = 2(1−ℜ(⟨ψ(tf)|ψf⟩).

In the case of the cost G1, the target state is reached up to a
global phase, whereas this phase is fixed to 0 in the second
case. Different choices of the running cost F0 are possible to
penalize either the control parameter u or the trajectory fol-
lowed by the system. An example is given by

F0 (|ψ (t)⟩,u(t)) = |⟨ψ1|ψ (t)⟩|2 + u2

2
,

where the goal is to minimize both the energy of the
pulse and the projection onto a forbidden state |ψ1⟩. Using
equation (28), we deduce that the adjoint state is the solution
of the differential equation

|χ̇⟩=−ıĤ|χ⟩− 2χ0⟨ψ1|ψ (t)⟩|ψ1⟩,

with the final condition given respectively by |χ(tf)⟩=
−2χ0⟨ψf|ψ(tf)⟩|ψf⟩ and |χ(tf)⟩=−χ0|ψf⟩ for G1 and G2. The
maximization condition (30) can be written as

∂HP

∂uk
= ℑ

(
⟨χ |Ĥk (t) |ψ ⟩

)
+χ0uk. □

This formulation of the optimal control problem is of
practical interest because it remains close to usual quantum
mechanical equations. Nonetheless other procedures exist to
transform complex-valued functions into real-valued ones.
Alternatives are preferred when the system is described in
terms of a density matrix or an evolution operator. As an
illustrative example, we discuss here the case of a two-level
quantum system whose state is given by the Bloch vector. For
a pure state, the density matrix ρ̂ of a two-level quantum sys-
tem can be written as

ρ̂= |ψ ⟩⟨ψ |= 1
2

(
Î2 + xσ̂x+ yσ̂y+ zσ̂z

)
=

1
2

(
1+ z x− ıy
x+ ıy 1− z

)
, (31)

where x,y,z are real numbers such that x2 + y2 + z2 = 1 and
σ̂x, σ̂y, σ̂z are Pauli matrices. In the case of a mixed state, a sim-
ilar result can be established, but with x2 + y2 + z2 ⩽ 1. The
vector q= (x,y,z) is called the Bloch vector. The interesting
point is that x= ⟨σ̂x⟩= Tr(σ̂xρ̂), and similarly for y and z. It
is then straightforward to derive the equations of motion for
the three real variables x, y, z by computing d

dt ⟨σ̂x⟩,
d
dt ⟨σ̂y⟩,

and d
dt ⟨σ̂z⟩. Assume, for instance, that the dynamics of |ψ⟩ are

governed by the following Schrödinger equation

i|ψ̇⟩=
[
∆
σ̂z
2
+ ux

σ̂x
2

+ uy
σ̂y
2

]
|ψ⟩,

where ∆ is a fixed parameter. It can be shown that

ẋ=−∆y+ uyz,

ẏ=∆x− uxz,

ż= uxy− uyx.

(32)

The PMP can then be applied to this real differential system.
The Pontryagin Hamiltonian can be written as

HP =∆(pyx− pxy)+ ux (pzy− pyz)+ uy (pxz− pzx) ,

where (px,py,pz) are the real coordinates of the adjoint state.
This approach is particularly well adapted to study the optimal
control of open quantum systems [119, 156, 157], whose
dynamics are governed by, e.g. the Lindblad–Kossakovski
equation [168, 169].

3.2. Time-optimal control of a two-level quantum system

In this section, we are interested in the design of time-optimal
controls for state-to-state transfer of a two-level quantum sys-
tem which is one of the most relevant and simple systems in
quantum technologies [1, 170, 171]. We also discuss the res-
ults from the point of view of the QSL [46, 47, 54]. In order
to keep the discussion as simple as possible, we consider situ-
ations in which any interaction with the environment can be
neglected so that the system is described by a pure state. We
can leave aside the density matrix formalism.

We consider the time-optimal control of a two-level
quantum system with respectively one and two independ-
ent control parameters. This issue has been considered in
detail in [16, 172–180]. When the approximation of a closed
quantum system is not satisfied, the optimal control prob-
lem has to be extended to account for interactions with the
environment [11, 156, 163, 181–191].

3.2.1. The case of two controls. As a first example, we con-
sider the time-optimal control of a two-level quantum system
whose Hamiltonian can be written as:

Ĥ(t) =
uz (t)
2

σ̂z+
ux (t)
2

σ̂x. (33)

The control u(t) = (ux(t),uz(t)) is assimilated to a time-
dependent electromagnetic field, with components in two dif-
ferent directions x and z. In experiments, the strength of the
field is limited such that ∥u(t)∥ ∈ [0,u0], where u0 is the max-
imum available amplitude. The Hilbert space is spanned by the
basis {| ↑⟩, | ↓⟩} with | ↑⟩= (1,0) and | ↓⟩= (0,1).

We focus on the control process that transforms the state
| ↑⟩ into |ψf⟩= eıθ| ↓⟩, where θ is a phase factor which is not
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relevant for this quantum state. The cost functional to minim-
ize is given by

C =

ˆ tf

0
dt. (34)

We are interested in control protocols reaching exactly the
set of target states, so there is no terminal cost in this case.
Moreover, control time is kept free in a time-optimal process.
The Pontryagin’s Hamiltonian reads

HP = ℑ
(
⟨χ |Ĥ(t) |ψ ⟩

)
+χ0

=
uz (t)
2

ℑ(⟨χ |σ̂z|ψ ⟩)+ ux (t)
2

ℑ(⟨χ |σ̂x|ψ ⟩)+χ0

= uz (t)Hz (t)+ ux (t)Hx (t)+χ0,

(35)

with

Hx,y,z (t) =
1
2
ℑ(⟨χ(t) |σ̂x,y,z|ψ (t)⟩) . (36)

The next step is to compute Hamilton’s equations which can
be expressed as

d|ψ (t)⟩
dt

=−ıĤ(t) |ψ (t)⟩, (37)

d|χ(t)⟩
dt

=−ıĤ(t) |χ(t)⟩. (38)

The time derivatives of the quantities Hx,y,z satisfy the follow-
ing differential system

Ḣx =−uz (t)Hy (t) ,

Ḣy = uz (t)Hx (t)− ux (t)Hz (t) ,

Ḣz = ux (t)Hy (t) .

(39)

from which it can be shown that H2
x +H2

y +H2
z is a constant

of motion.
The maximization condition on HP leads to both regu-

lar and singular trajectories. In the interior of U, we have
∂HP/∂ux = ∂HP/∂uz = 0, which leads to Hx(t) = Hz(t) = 0
on a non-zero time interval. This corresponds to a singular
trajectory. Plugging these conditions into equation (39), we
obtain that Hy(t) is constant. The case Hy(t) = 0 is not rel-
evant since it gives |χ(t)⟩= 0 using (36). When Hy(t) ̸= 0,
we have ux(t) = uz(t) = 0, which is obviously not optimal.
Consequently, the optimal control is regular. The regular tra-
jectory corresponds to the boundary of U for which u2x + u2z =
u20. Introducing the angle θ such that ux = u0 cosθ and uz =
u0 sinθ, we get HP = u0(cosθHx+ sinθHz)+χ0. The max-
imization condition implies that ∂HP

∂θ = 0, i.e. tanθ = Hz

Hx
and

finally

ux = u0
Hx√

H2
x +H2

z

, uz = u0
Hz√

H2
x +H2

z

.

The maximum value of HP is given by HP = u0
√
H2
x +H2

z +
χ0 which is a constant of motion. The abnormal multiplier can
be set to −1 which leads to

H2
x +H2

z =
1
u20
,

using HP = 0 for this time-optimal control. The optimal solu-
tion can then be described as follows. We emphasize that the
control uz only produces a modification of the phase associ-
ated with each state | ↑⟩ and | ↓⟩ and cannot influence the pop-
ulation transfer which is only due to ux. We deduce that the
control ux(t) =±u0, uz(t) = 0 (for all t) allows us to reach the
state with the maximum speed (if uz ̸= 0, we have ux ̸= u0,
and thus the velocity of rotation around the direction x is
not maximum). When ux(t) = +u0, it is straightforward to
integrate the Schrödinger equation as |ψ(t)⟩= cos(u0t/2)| ↑
⟩+ ısin(u0t/2)| ↓⟩. Simultaneously, the adjoint state can be
determined to be |χ(t)⟩=−(2ı/u0)σ̂x|ψ(t)⟩ from the con-
straints on Hx,y,z (notice that |χ⟩ is not necessarily normalized
here). For a given control time tf, we deduce that |⟨ψ(tf)| ↓⟩|2 =
sin(u0tf/2)2. The minimum time t∗ to exactly reach the target
state is therefore given by

t∗ =
π

u0
, (40)

the optimal trajectory corresponding to a π- pulse, i.e. a pulse
with a time-integrated area equal to π for any maximum pulse
amplitude u0.

3.2.2. The case of one control with a drift. As a second
example of application, we consider the same control problem
as in section 3.2.1, but with the following Hamiltonian:

Ĥ=
∆

2
σ̂z+

u(t)
2
σ̂x, (41)

where ∆ ∈ R is a constant (a drift, also called frequency off-
set), and u(t) ∈ [−u0,u0] is a one-dimensional control para-
meter. The analysis is only slightly modified as follows. The
Pontryagin Hamiltonian can be written as

HP =∆Hz (t)+ u(t)Hx (t) , (42)

and the Hamilton’s equations are given by:

d|ψ (t)⟩
dt

=−ıĤ(t) |ψ (t)⟩,

d|χ(t)⟩
dt

=−ıĤ(t) |χ(t)⟩.

The maximization condition of the PMP consists in maxim-
izing the only term of HP depending on u(t), i.e. u(t)Hx with
the constraint−u0 ⩽ u(t)⩽ u0. When Hx(t) ̸= 0, it is straight-
forward to show that the control satisfies u(t) = u0 sgn[Hx(t)],
while we cannot conclude if Hx(t) = 0. We deduce that we
have a regular trajectory when u(t) =±u0 and singular arcs
whenHx(t) = 0 on a non-zero time interval. We start the study
with the description of regular controls.

12



J. Phys. B: At. Mol. Opt. Phys. 57 (2024) 133001 Tutorial

3.2.2.1. Regular controls. From u(t) = u0 sgn[Hx(t)], we
observe that the control is a piecewise constant function and
a change of sign occurs when Hx(t) = 0 in an isolated point.
In control theory, the function Hx is called a switching func-
tion. We obtain a bang-bang control that suddenly jumps from
a control of maximum (or minimum) amplitude to its opposite.
We can go one step further by calculating the time derivatives
of Hx,y,z, which yields

Ḣx =−∆Hy (t) ,

Ḣy =∆Hx (t)− u(t)Hz (t) ,

Ḣz = u(t)Hy.

(43)

We observe that equation (43) gives a closed-form system of
differential equations, similarly to equation (39), that can be
integrated on a bang (between two switchings). By denoting ti
the switching time i, we have

 Hx (t)
Hy (t)
Hz (t)

= exp

(t− ti)

 0 −∆ 0
∆ 0 −u
0 u 0


·

 0
Hy (ti)
Hz (ti)

 , (44)

with u= u0 sgn[Hx(t)] a constant, t ∈ [ti, ti+1] and we use the
fact that Hx(ti) = 0. The explicit calculation of the matrix
exponential leads us to

Hx (t) =−
∆

Ω2
[ΩHy (ti)sin(Ω(t− ti))− uHz (ti)(1− cos(Ω(t− ti)))] ,

(45)

withΩ=
√
u20 +∆2. The duration of the bang, given by ti+1 −

ti can be determined from equation (45). We arrive at

ti+1 − ti =


π n
Ω if uHz(ti)

ΩHy(ti)
= 0,

2
Ω

[
πn+ arctan

(
ΩHy(ti)
uHz(ti)

)]
if uHz(ti)

ΩHy(ti)
̸= 0,

(46)

where n is an integer chosen such that ti+1 − ti is the smallest
positive non zero solution. We also observe that the function
Hx is 2π/Ω periodic. We deduce that the maximum duration
between two switchings is 2π/Ω. Similar calculations as for
Hx(t) show that Hz(ti+1) = Hz(ti) and Hy(ti+1) = Hy(ti). This
means that at switching i+ 1, the system is in the same con-
figuration as at switching i. All bangs have the same duration.
For an arbitrary regular trajectory, we cannot start or end at a
switching. Therefore, such a trajectory has the following struc-
ture: a first bang with control amplitude u=±u0 and duration
t1, followed by a series of bangs of amplitudes ±u0 and dura-
tion tb and a final bang of duration t2. Note that t1 and t2 are
both less than or equal to tb.

3.2.2.2. Singular controls. The control is singular when
Hx(t) = 0 on a non-zero time interval, which gives d

dtHx =
d2

dt2Hx = 0. From equation (43), we deduce that Hy(t) = 0 and
−u(t)Hz(t) = 0. Therefore, the control is always equal to 0,
or the vector (Hx,Hy,Hz) is zero. The latter condition is only
satisfied if the adjoint state is always zero, which is a trivial
solution.

3.2.2.3. Calculation of the optimal control. The final step is
to determine the time-optimal trajectory. First, we argue that
singular control (or concatenation of regular and singular con-
trols) cannot be optimal. For a singular control equal to zero,
the Hamiltonian operator can be simplified to Ĥ= ω

2 σ̂z, which
cannot produce a population transfer between the initial and
target states, and thus is not optimal. The optimal trajectory is
therefore regular. To find the switching times of the optimal
procedure, we analytically compute the evolution operator for
an increasing number of switchings, stopping when the cor-
responding control can steer the system to the target. If there
are several solutions with the same number of switchings, we
keep the one(s) with the shortest duration.

We integrate the Schrödinger equation on a single bang
with a control amplitude u=±u0. The evolution operator
associated with this bang is given by

Ûbang = e−ı(∆σ̂z+uσ̂x)t/2

= cos

(
Ωt
2

)
Î− ı

(
∆

Ω
σ̂z+

u
Ω
σ̂x

)
sin

(
Ωt
2

)
. (47)

Since Ω=
√
∆2 + u20, we observe that the maximum for a

population transfer with a single bang is u2/Ω2 < 1 unless
∆= 0, hence, there is at least one switching. With two bangs
we have:

Û2-bangs = e−ı(∆σ̂z−uσ̂x)t2/2e−ı(∆σ̂z+uσ̂x)t1/2, (48)

where t1 and t2 are the respective duration of the two bangs.
The final distance to the target state can be expressed as

∣∣∣⟨↓ |Û2-bangs| ↑⟩
∣∣∣2 = u2

Ω4

[
4∆2 sin2

(
Ωt1
2

)
sin2

(
Ωt2
2

)
+ Ω2 sin2

(
Ω(t1 − t2)

2

)]
. (49)

We have to maximize this function such that t1 + t2 is min-
imum. The solution to this problem is given by

t1 =
1
Ω

(
π − arccos

(
∆2/u20

))
, (50)

t2 =
1
Ω

(
π + arccos

(
∆2/u20

))
, (51)

when |∆|< u0, with a total control time given by

tf = t1 + t2 =
2π
Ω
. (52)
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Figure 5. Plot of the time-optimal trajectories on the Bloch sphere
in the case of a two-level quantum system with one control and a
drift. The two optimal trajectories are represented in blue (solid and
dashed lines) while the green curve depicts a geodesic going from
the north to the south pole. The black solid line represents the
equator of the sphere.

Note that t1 and t2 can be permuted and the initial sign of the
control plays no role. The optimal trajectories are represen-
ted in figure 5 using the Bloch vector representation. There
are two equivalent solutions with a switching on the equator
of the sphere. To show that this solution is the global optimal
solution, it must also be compared with controls with a lar-
ger number of switchings. This is the case as described in [16,
175]. The number of bangs of the optimal solution is strictly
larger than 2 when |∆|> u0 [175, 180, 192].

3.2.3. QSL. In this section, we present the results obtained
from the point of view of QSL [46, 54, 193, 194]. First, we
review the main idea on which QSL is based, and then we dis-
cuss its relation to the optimal control formalism.

QSL can be described as a way to generate, as quickly
as possible, a state orthogonal to the initial one. Since this
concept does not take into account dynamical constraints, it
provides only a lower bound on the minimum time to reach the
orthogonal state. This statement can be formalized rigorously
as follows. The speed in the Hilbert space is naturally given by
the Schrödinger equation: |ψ̇ ⟩=−ıĤ|ψ ⟩. Similarly to clas-
sical dynamical systems, the velocity vector can be decom-
posed into parallel and transverse contributions

|ψ̇∥⟩= |ψ ⟩⟨ψ |ψ̇⟩=−ı⟨ψ |Ĥ|ψ ⟩ |ψ ⟩, (53)

|ψ̇⊥⟩= |ψ̇ ⟩− |ψ̇∥⟩. (54)

By construction, we have ⟨ψ̇⊥|ψ ⟩= 0. The transfer is maxim-
ized when the norm of |ψ̇∥⟩ is minimized and the one of |ψ̇⊥⟩
maximized. The latter can be expressed as

|ψ̇⊥|2 = |ψ̇|2 − |ψ̇∥|2 = ⟨Ĥ2⟩ψ −⟨Ĥ⟩2ψ, (55)

which is the variance of Ĥ, denoted below∆H2. In the case of
Hamiltonian (33) for two independent controls, the variance
reads

∆H2 =
u20
4
− 1

4
(uzz+ uxx)

2
, (56)

in which the Bloch coordinates (x,y,z) are used. The max-
imum of this variance, u20/4, is obtained when uzz+ uxx= 0.
The maximum value of ∆H gives the QSL of Mandelstam–
Tamm [46]. Note that other estimates have been proposed
in the literature [193, 195] with similar properties as the
Mandelstam–Tamm bound. The lower bound on the minimum
time given by the QSL is

tQSL =
π/2√
∆H2

=
π

u0
.

We observe that t∗ = tQSL. This point can also be verified with
the optimal solution derived from the PMP. For the optimal
control ux = u0,uz = 0, we find from the state evolution that
the quantity x= 0 at all times, therefore the condition uzz+
uxx= 0 is satisfied. The corresponding trajectory on the Bloch
sphere is the half of the great circle from the north to the south
pole, in the zOy plane. It is also a geodesic connecting the
initial and the target states for which the speed of travel is
maximum.

However, the relation t∗ = tQSL is not generic, as shown
in the case with one control of section 3.2.2. For the
Hamiltonian (41), the variance is given by

∆H2 =
Ω2

4
− 1

4
(∆z+ ux)2 .

The maximum of ∆H2 is Ω2/4 which leads to tQSL = π/Ω,
whereas the minimum time is t∗ = 2π/Ω. In this example, the
lower bound cannot be saturated because the geodesic does not
correspond to a dynamical trajectory of the system. In other
words, the condition∆z+ ux= 0 to reach themaximum speed
cannot be satisfied by the control u. The geodesic correspond-
ing to the trajectory used in the QSL approach is represented
for this example in figure 5.

4. Numerical methods

In this section, we present the state-of-the-art numerical meth-
ods that can be used to solve QOC problems. The literat-
ure in this field is important [56, 196–202] and we do not
claim to be exhaustive. Our aim is to introduce the main ideas
and technical details that can be found in the references men-
tioned. Numerical examples are described below with pseudo-
codes, while Python codes are provided in the supplementary
material.
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We begin with a general presentation of optimization
algorithms found in scientific computing software. These
algorithms can be used as black boxes and are generally effect-
ive when the number of parameters to be optimized is rel-
atively small. A list of software to solve QOC problems is
given in a second step. Special emphasis is then placed on the
description of two algorithms, namely the shooting techniques
and the gradient-based algorithms which are two direct applic-
ations of the PMP.

4.1. A general overview of standard optimization algorithms

Optimization algorithms are generally implemented in most
scientific computing softwares [203–206]. An optimization
algorithm can be described as a systematic iterative method
to find the minimum or maximum of a function. The function
must have a finite number of entries, and thus, continuous con-
trols must be discretized in someway using e.g. piecewise con-
stant functions, Taylor or Fourier expansions, etc. The optim-
ization algorithms are usually presented in the following form

OptAlgo(Cost function, Constraints,
Initial guess, Options) (57)

where Cost function is the cost function or figure of
merit C to minimize or maximize, defined in equation (6),
Constraints are constraints that limit the domain of defin-
ition of the control, the set U, Initial guess is an initial
guess of the control, used by the algorithm to find a better
solution. Options are additional parameters that depend on
the algorithm. They correspond either to a choice of a numer-
ical method or to parameters that influence the convergence of
the algorithm. We can roughly divide the algorithms into two
different families, namely the gradient-free and the gradient-
based algorithms [14]. As their name suggests, they are based
either on the calculation of the gradient of the figure of merit or
on some other procedure that allows the control protocol to be
improved at each step of the iterative process. Both approaches
have clear advantages depending on the system dimension and
on the precision of the control process.

− Gradient-free algorithm. This set of methods includes
different algorithms. As the number of variants is very
large, only a few examples are mentioned. In the Simplex
method [199], the space of control parameters Rn is
explored with a n-simplex whose size decreases recurs-
ively around a minimum of the cost function. This approach
has been applied in QOC with the algorithm CRAB [207],
which can be used to control many body systems [208].
Another optimization procedure is based on Evolutionary
algorithms [200–202, 209] (differential evolution, genetic
algorithms, simulated annealing, JAYA...). The basic idea of
this approach is to iteratively explore the parameter space
with N particles, also called ‘walkers’. The method used
to update the position of the particles is specific to each
method, but usually the particles are moved randomly with
a probability law, designed to favor a direction towards
the global minimum of the cost function. An example of a

particle path towards the minimum of a function using the
JAYA algorithm [209] is shown in figure 6. Evolutionary
algorithms are well-known in quantum control and are used
experimentally to design a control protocol in a model-free
approach [210].

− Gradient-based algorithm. The gradient of the func-
tion with respect to the control parameters is calculated,
and it allows to know in which direction the cost takes
a lower value [56, 211]. Based on the gradient, a new
control is designed, and the minimum of the cost func-
tion is found iteratively. For the optimization of piece-
wise constant controls, two different procedures have been
developed in QOC [212], namely the Krotov-type meth-
ods [57, 213–217] and the GRAPE-type procedures [218].
While GRAPE updates the control in all time slices con-
currently, the Krotov procedure updates the control sequen-
tially from one time slice to the next. A full comparison of
the two methods is given in [132, 212]. Such approaches
can be improved by using the second order derivative of
the cost function with respect to the control parameters [22,
74–76]. These improvements are not discussed in the main
text but are included in some Python codes that can be found
in the supplementary material. The GRAPE algorithm and
its connection to the PMP is presented in section 4.3.

We conclude this section by some general comments
about the application of such algorithms to quantum control.
First, we point out that machine learning techniques such as
Reinforcement Learning can also be applied to find optimal
control protocol [70, 71]. The coefficients of a neural network
are optimized by trial and error in a learning step using in gen-
eral gradient procedures. This network is then used to map
each state of the system to the best action (or control) to take
to reach the target state. From a more general point of view,
Reinforcement Learning can be described as a kind of dynamic
programming approach that can be mathematically justified in
the continuous limit by the Hamilton–Jacobi–Bellman formu-
lation of optimal control [73].

For quantum control problems, simplex methods are gener-
ally not the most effective, but they are able to design control
procedures in very complex dynamics or when strong con-
trol constraints are considered. The accuracy achieved with
evolutionary or gradient-based algorithms is generally bet-
ter. Evolutionary algorithms are interesting when the num-
ber of parameters is small (≲ 20) or when the cost func-
tion cannot be differentiated. Among the different methods,
we particularly recommend the simulated annealing method,
which is a good compromise between the computation time
and its ability to find the global minimum. Another interest-
ing choice is the JAYA algorithm [209] which is very simple.
Its main advantage lies in the absence of external paramet-
ers that influence the convergence (in most algorithms, one
or more parameters have to be adjusted manually to obtain
a good and fast convergence). Gradient-based algorithms are
interesting when the number of parameters to be optim-
ized is very large (≳ 100). They can be complemented by
second-order formulations to improve convergence to a local
extremum [22, 74]. Gradient-based algorithms are particularly
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Figure 6. Example of particle search of the global minimum of the function f : (x,y) 7→ −(x2 + xy− y3/2)e−(x4+y4)/2 in the domain
x ∈ [−2,2], y ∈ [−2,2] using the JAYA algorithm [209]. The position of the particles is given by black points while the global minimum is
located by a gray star. The boxed numbers at the top right of each panel correspond to the number of iterations of the algorithm. Initially, the
positions of all particles are generated randomly. They gradually move to regions of the control landscape where the function is likely to be
a minimum. In the end, all the particles are located around the global minimum of the function.

efficient when the gradient can be computed from an analytic
expression. Otherwise, it can be estimated using a finite dif-
ference approach, at the expense of computational time. Many
factors can influence the choice of algorithm. The way the
library is coded and the different options available are also
important factors. It is generally advised to test a few different
algorithms on a given QOC problem, as a preliminary step.
This can also provide a good insight into the control prob-
lem since different algorithms may return different solutions
(which can be only local extremums of the cost function).
Many optimization algorithms are provided in scientific com-
puting softwares. MATLAB [205] proposes a global optimiz-
ation toolbox with e.g. the function simulannealbnd (sim-
ulated annealing with constraints) or the function fmincon
(gradient algorithm which takes into account the Hessian). In
Python/ScyPy [203], different approaches can be found in the
routine scipy.optimize (mostly simplex and gradient-based
methods). In Mathematica [206], the function NMinimize can
be used. It has built-in methods that cover all the families of
algorithms listed here above. An advantage of this function is
that it is not necessary to provide an initial guess control, the
algorithm works simultaneously on several optimization pro-
cesses in which the initial controls are chosen automatically.

4.1.1. Packages and software for QOC. We provide below
a list of freely available packages and softwares designed for
QOC applications. The list is given in alphabetical order.

− Bocop [219]: Bocop is an open-source toolbox for solving
optimal control problems. It is a general optimization soft-
ware that can be used for any optimization problem. Its key
features are global optimization for both deterministic and
stochastic systems, computation of switching and stopping
times, parallel execution with OpenMP, and Matlab/Python
interfaces.

− DYNAMO: Dynamic Framework for QOC [212].
DYNAMO is a Matlab package with integrated GRAPE
and Krotov methods.

− HamPath [220, 221]: HamPath is a general optimization
package written in Fortran, and compatible with Matlab,
Python, and GnuPlot. It is specifically designed to solve
the equations of the PMP (shooting algorithm). Advanced
higher-order optimal control methods are implemented,
such as the computation of conjugated points [11].

− Krotov [216]: An open-source Python package based
on the Krotov algorithm to solve problems of QOC
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extending from state-to-state transfer to quantum gate
implementation.

− OCTBEC: A Matlab toolbox for optimal quantum control
of Bose–Einstein condensates [222].

− QEngine: AC++ library for QOCof ultracold atoms [223].
QEngine is a C++ library for performing optimal control
of Bose–Einstein condensates, Bose–Hubbard typemodels,
and two interacting particles.

− QOPT: An Experiment-Oriented Software Package for
Qubit Simulation andQOC [224]. QOPT is a Python library
with a scope similar to the optimization package of QuTiP,
but it supports computations with stochastic noises.

− Quandary: An open-source C++ package for high-
performance optimal control of open quantum sys-
tems [225]. Quandary is fully compiled and supports paral-
lel computation of system dynamics. It is therefore possible
to optimize quantum controls for a system of large dimen-
sion. The optimization algorithm is a homemade gradient
algorithm that has some similarities with GRAPE.

− QuOCS: The QOC suite [226]. QuOCS is a Python lib-
rary that combines several gradient-based optimization
algorithms, such as GRAPE. The software performs both
open- and closed-loop optimizations, and it can be connec-
ted to real-time quantum experiments.

− Qocttols: A Python code that performs optimization
calculations on quantum systems using gradient-based
algorithms [227]. It is an open and free software that works
on closed and open systems. Floquet formalism with peri-
odic perturbations can also be used.

− QuTiP: Quantum Toolbox in Python [228]. QuTiP is an
open-source Python package for simulating the dynamics
of open quantum systems. It contains an optimization tool-
box with integrated GRAPE and CRAB algorithms.

− Spinach: Spinach is an open-source Matlab package [229]
for computations in Nuclear Magnetic Resonance (NMR),
Electron Paramagnetic Resonance (EPR), Magnetic
Resonance Imaging (MRI), Dynamic Nuclear Polarization
(DNP) and Magic Angle Spinning (MAS). Optimal
Control, and other topics of Magnetic Resonance spec-
troscopy are available.

− SpinDrops [230]: SpinDrops is an interactive quantum spin
simulator. The software includes several state-of-the-art
pulse sequences, but controls can also be created with an
editor or with an optimizer based on GRAPE. This is a stan-
dalone software with android, iOs, Linux, macOS, and win-
dows supports. An online version is also available.

− Travolta: An open-source software for parallelized QOC
computations in photo-excited systems using gradient-
based algorithms [231]. A CPU-based version of the code,
called NIC-CAGE, is also available [232].

− WavePacket: A Matlab package for numerical quantum
dynamics [233]. WavePacket is designed to solve a wide
range of quantum dynamical and optimization problems.
The optimization is based on the gradient-based algorithm
described in [234–236].

The majority of the packages incorporate GRAPE and
sometimes, one or two other algorithms are also included. In

this list, QuTiP and Spinach are the libraries with the largest
number of functionalities. Their scope goes beyond control
optimization.

4.2. Shooting techniques

Behind the name ‘shooting techniques’ hides a large class of
more or less sophisticated algorithms [24, 149, 219, 237–239].
They are also called indirect methods in the literature [24]. The
general idea is inspired by a shooting problem, where the goal
is to place a bullet or an arrow on a target. The only parameters
that can be modified are the orientation of the gun and the ini-
tial velocity of the bullet, i.e. the dynamics of the system can
only be influenced by a precise choice of initial conditions.
Random shots can be taken to get an estimate of these initial
conditions, but more sophisticated strategies can be used for
this purpose.

Using Hamilton’s equations of the PMP, the optimal con-
trol problem can be cast into this form. The parameters to be
optimized correspond to the initial value of the adjoint state
(see section 2.2.1). The estimation of this initial adjoint state
may be improved by optimization algorithms such as those
described in section 4.1. The pseudo-code of the algorithm can
be written as follows:

Function (X(t),u(t)) = Xtraj (Λ0,tf)
(∗ Integrate from 0 to tf the equations of motion Λ̇ =
−∂XHP and Ẋ= ∂ΛHP, where the control is expressed
using the maximization condition of the PMP in the form
u(t) = u(X(t),Λ(t)).
The initial conditions for Λ are given by Λ0, and
the ones for X are fixed by the definition of the control
problem. ∗)

Function C = Cost(X(t),u(t),tf)
(∗ Return the value of the cost functional∗)
Λopt = Minimize(Cost (Xtraj(Λ0,tf),tf),Λ0 ∈ D)
uopt(t) = Xtraj(Λopt,tf)[2]

Here above, Minimize is an arbitrary optimization
algorithm (see e.g. section 4.1), and D is the domain of
definition of Λ0. The shooting technique is efficient when
the solutions of the PMP are regular and without switching.
The singular case can be difficult to solve numerically and
switching times may not be detected by the algorithm [240,
241]. Efficient numerical codes have been developed to
tackle these kinds of computation, such as Bocop [219] or
Hampath [220, 221].

Example 10. We illustrate the application of the shooting
algorithm on the state-to-state transfer of a two-level quantum
system with two controls and no drift. The Hamiltonian of the
system is given by

Ĥ=
ux
2
σ̂x+

uy
2
σ̂y.
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We describe the state of the system in terms of Bloch coordin-
ates (x,y,z). Using equation (32), we get:

ẋ= uyz,

ẏ=−uxz,
ż=−uyx+ uxy.

The goal of the control problem is to bring the system from
(1,0,0) to (0,1,0) in minimum time with the constraint u2x +
u2y ⩽ 1. The cost functional is thus C = tf. It can be shown
that the optimal protocol consists of saturating the bound at
any time, that is u2x + u2y = 1 [16]. The idea is that the fastest
control protocol requires generally maximum control intens-
ity. The Pontryagin Hamiltonian can be expressed as

HP = ux (pzy− pyz)+ uy (pxz− pzx)+ p0,

where (px,py,pz) is the adjoint state which also satisfies the
Bloch equation, and p0 the abnormal multiplier. Since the final
time is free, we haveHP = 0. Themaximization condition of HP

leads in the regular case to the following optimal controls

ux = (pzy− pyz)/H,

uy = (pxz− pzx)/H,

where H=
√
(pzy− pyz)2 +(pxz− pzx)2.

As described in [16], the control problem can be integ-
rated exactly. The minimum time is tf = t∗ = π

√
3

2 and the cor-
responding initial adjoint state at time t= 0 has the coordin-
ates (px(0), 1√

3
,±1). Note that the first component is not fixed

but the same control process is obtained for any value of
px(0). The two possible values of pz(0) =±1 correspond to
the two symmetric trajectories with respect to the equator on
the Bloch sphere. A global description of the control land-
scape can be made by representing the initial adjoint state
on a sphere as px = Rp sinΘp cosΘp, py = Rp sinΘp sinΦp and
pz = Rp cosΘp. We choose to normalize Rp to one, i.e. the
adjoint state (px,py,pz) belongs to the sphere of unit radius,
while the abnormal multiplier is not known. For each couple
of initial values (Θp(0),Φp(0)), we numerically compute the
corresponding optimal trajectory and the Euclidean distance d
to the target state at time t∗. By definition, the optimal solutions
verify d= 0. The corresponding control landscape is plotted in
figure 7.
The same problem can also be solved numerically by using

an iterative shooting technique. In this case, the goal is not to
calculate all the trajectories to obtain the control landscape,
but to iteratively find the right solution that reaches the target
state. We choose to normalize the abnormal multiplier to −1
which leads to HP = 1, but the modulus of (px,py,pz) is not
fixed. A very good convergence of the algorithm is observed.
We find the optimal solution and the corresponding initial val-
ues of the adjoint state with high numerical precision. The cor-
responding Python code shooting.py is provided in the supple-
mentary material. □

Figure 7. Euclidean distance d to the target state (0,1,0) at time
tf = t∗ for the trajectories with different initial adjoint states
parameterized by the angles Θp and Φp. The minimum time
solutions corresponding to the minimum of d are represented by
solid lines.

4.3. Gradient-based algorithms designed for quantum
control

In this paragraph, we focus on a gradient-based algorithm
called GRAPE, for Gradient Ascent Pulse Engineering [76,
181, 184, 218, 242–244]. This algorithm was used to solve
a large amount of quantum control problems. The references
[86, 89, 92, 97, 137, 138, 157, 191, 245–249] is a very short
list of studies in which GRAPE plays a key role. This list is by
no means exhaustive [13, 14]. GRAPE and its variants are one
of the most famous gradient-based algorithms in the quantum
control community.

4.3.1. A direct gradient algorithm. We first present a direct
derivation of a gradient-based algorithm. The explicit relation
to the PMP is discussed in a second step. The basic assump-
tion which may be experimentally relevant is that the con-
trol is a piecewise constant function with a finite number N
of time steps of duration ∆t= tf/N. We denote by un the
amplitude of the control in the time interval [(n− 1)∆t,n∆t)
with n ∈ {1, . . . ,N}. The control u is now described by a set
of N real values (u1,u2, . . . ,uN). The core of the algorithm
is based on a standard gradient descent algorithm for finite-
dimensional optimization [56, 211], which greatly simplifies
its derivation. The basic principle comes from the observation
that if the cost function C(u) is differentiable then C(u) has the
fastest decrease in the direction −∂unC(u) given by the gradi-
ent of the cost function with respect to the control parameters.
An iterative algorithm to estimate the optimal control can then
be designed. Starting from a given control u, a new control u′

such that C(u ′)< C(u) can be computed from the relation

u ′
n = un− ϵ

∂C (u)
∂un

, (58)
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where ϵ> 0 is a parameter chosen small enough to guarantee
the convergence of the algorithm, but large enough to limit the
number of iterations. The cost C(u ′) can be estimated at first
order in ϵ as follows

C (u ′) = C
(
u− ϵ

∂C (u)
∂u

)
= C (u)− ϵ

(
∂C (u)
∂u

)2

+O
(
ϵ2
)

≲ C (u) .

(59)

The strict inequality is achieved for ϵ small enough. The para-
meter ϵ is a free parameter that must be set by hand. Its
automatic adjustment can be performed using a line-search
algorithm, which aims to find the optimal value of ϵ at each
iteration step. A line-search improves convergence but at the
cost of increased computation time. Another way to speed up
the convergence of the algorithm is to replace ϵ by gradients
of previous iterations as in conjugate gradient approaches or
by the inverse of the Hessian in second-order methods. The
latter is the core of Newton’s type algorithms. The Hessian
can be difficult to compute in practice, but it can be estim-
ated simply by knowing the gradient and the cost function.
Such algorithms are called quasi-Newton [250]. We will not
discuss these questions about the choice of ϵ, and we assume
in the following that this parameter is known. General ideas
can be adapted to more advanced algorithms.

To summarize, the pseudo-code for a standard gradient
algorithm is the following:

Choose an initial guess control u0.
Function (C1,u) = GradientMinimize (u0, ϵ,kmax)

u= u0
C1 = C(u)
For [1⩽ k⩽ kmax,

u ′ = u− ϵ∂C(u)∂u
C2 = C(u ′)
If[C2 > C1,

Break,
C1 = C2

u= u ′]]

The constant kmax which corresponds to themaximumnum-
ber of iterations is set large enough such that the convergence
to a minimum of C is reached.

4.3.2. Calculation of the gradient. We have not yet clari-
fied how ∂C(u)

∂un
is calculated, and this is the difficult part of

the algorithm. GRAPE provides a clever calculation trick to
save computational time and derive analytical formulas. For
simplicity, we consider that the Hamiltonian of the quantum
system is of the form:

Ĥ(t) = Ĥ0 + u(t) Ĥ1, (60)

where Ĥ0 and Ĥ1 are two time independent Hamiltonian oper-
ators which do not commute and u is a one-dimensional piece-
wise constant unbounded function (i.e. u(t) ∈ R, and on the
step interval n, u(t) = un). The generalization to several con-
trol parameters is straightforward. The evolution operator dur-
ing a time step can be expressed as

Ûn = Û(n∆t,(n− 1)∆t) = e−ı∆t(Ĥ0+unĤ1), (61)

and |ψ(tf)⟩= ÛNÛN−1 · · · Û1|ψ0⟩. We denote by |ψn⟩=
Ûn · · · Û1|ψ0⟩ the state at time t= n∆t.

To simplify the description, we consider only the
case of a terminal cost of the form C = G(|ψ(tf)⟩) =
G(ÛNÛN−1 · · · Û1|ψ0⟩). Since Ûn is the only term depend-
ing on un, we deduce that the derivative of G with respect to
un can be expressed as

∂G
∂un

=
∂G

∂|ψ (tf)⟩
∂|ψ (tf)⟩
∂un

+
∂⟨ψ (tf) |
∂un

∂G
∂⟨ψ (tf) |

,

which leads to

∂G
∂un

=
∂G

∂|ψ (tf)⟩
ÛN · · ·

∂Ûn

∂un
· · · Û1|ψ0⟩

+ ⟨ψ0|Û†
1 · · ·

∂Û†
n

∂un
· · · Û†

N
∂G

∂⟨ψ (tf) |
.

(62)

It remains to compute ∂Ûn
∂un

which is not trivial because

[Ĥ0, Ĥ1] ̸= 0. A formal expression can be obtained from the
Wilcox formula [251, 252] which gives the derivative of the
exponential of a matrix A(θ) with respect to a parameter θ

∂etA

∂θ
= etA

ˆ t

0
e−t ′A ∂A

∂θ
et

′Adt ′.

We deduce that

∂Ûn

∂un
=−ı∆tÛnĤ1,

where Ĥ1 =
1
∆t

´∆t
0 eıt

′(Ĥ0+unĤ1)dt ′Ĥ1e−ıt
′(Ĥ0+unĤ1)dt ′ is the

average of Ĥ1 in the Heisenberg representation over the dura-

tion ∆t. For a sufficiently small time step ∆t, Ĥ1 can be iden-
tified to Ĥ1 and we arrive at

∂Ûn

∂un
≃−ı∆tĤ1Ûn.

Introducing an adjoint state |χ⟩ defined by a backward
propagation in time from the target state such that ⟨χ(tf)|=
⟨χN|= ∂G

∂|ψ(tf)⟩ and ⟨χn|= ⟨χN|ÛN · · · Ûn, the gradient can be
expressed as

∂G
∂un

=−ı∆t
(
⟨χn|Ĥ1|ψn⟩− ⟨ψn|Ĥ1|χn⟩

)
,
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which can be simplified into

∂G
∂un

= 2∆tℑ
(
⟨χn|Ĥ1|ψn⟩

)
. (63)

We finally arrive at

δun = u ′
n− un =−ϵℑ

(
⟨χn|Ĥ1|ψn⟩

)
. (64)

Example 11. We consider the same terminal costs G1 and
G2 as in example 9. We recall that G1 = 1− |⟨ψf|ψ(tf)⟩|2
and G2 = 1−ℜ(⟨ψf|ψ(tf)⟩). We deduce that the final con-
dition of the adjoint state is given respectively by |χN⟩=
−⟨ψf|ψ(tf)⟩|ψf⟩ and |χN⟩=− |ψf⟩

2 for G1 and G2. □

Using equation (63), we observe that the gradient can be
computed in a very efficient way with a forward and a back-
ward propagation in time of the dynamics from the initial and
the target states, respectively. The pseudo-code for this com-
putation can be written as follows.

Function |ψ(t)⟩ = PropforwardSchrodingerEq (u,|ψ0⟩)
(∗Propagate forward the Schrodinger equation using the
control u and the initial state |ψ0⟩. Compute and store the
quantum state at each time step, ∗)

Function |χ(t)⟩=PropbackwardSchrodingerEq(u,|χ(tf)⟩)
(∗Propagate backward the Schrodinger equation using
the control u and the final state |χ(tf)⟩= 2χ0

∂G
∂⟨ψ(tf)| .

Compute and store |χ(t)⟩ at each time step.∗)

Function δu = GradientGRAPE (u, ϵ)
|ψ(t)⟩ = PropforwardSchrodingerEq(u(t),|ψ0⟩)
|χ(t)⟩=PropbackwardSchrodingerEq(u(t),|χ(tf)⟩)
For [1⩽ n⩽ N, δun =−ϵℑ(⟨χn|Ĥ1|ψn⟩)]

Using this method, the time evolution of a quantum state
is computed twice at each evaluation of the gradient, while
N+ 1≫ 2 evaluations of the dynamics are necessary when
the gradient is estimated from a finite difference (i.e. with
a formula ∂unG≈ (G(un+∆un)−G(un))/∆(un)). When the
number of time steps is large (hundreds or thousands of time
steps), this approach can significantly reduce the computa-
tional time.

4.3.3. GRAPE versus PMP. The relation between GRAPE
and the PMP can be established in the limit when the time
step becomes infinitesimally small. In this case, the stand-
ard derivative is replaced by a functional one. Starting from
equation (16), we see that the choice δu= ϵ∂HP

∂u leads to

δS=−ϵ
ˆ tf

0

(
∂HP

∂u

)2

dt,

which is negative to first order in ϵ. Using HP = ℑ(⟨χ|Ĥ|ψ⟩),
we deduce that

δu=−ϵℑ
(
⟨χ|Ĥ1|ψ⟩

)
,

which is the continuous version of the time-discretized gradi-
ent derived in equation (64). In other words, a gradient-based
algorithm can be viewed as a time digitalization of an equival-
ent algorithm derived from the PMP. Note that this equivalence
is only valid when U is open, i.e. in the weak PMP.

Over the years, several versions of GRAPE have been
developed. Some possible modifications are presented below.

4.3.4. Parameterized continuous functions. An interesting
modification of the algorithm is to replace a piecewise constant
control by parameterized functions [253, 254]. The control u is
then expanded over a set of functions {fk(t)}k=1,...,kmax such as
u= v({ak fk(t)}) where v is a smooth function. The goal is to
find the real coefficients (ak) to minimize the cost functional.
In the case of Fourier series, this would be:

u(t) = a0 +
kmax∑
k=1

ak cos(kωt)+ bk sin(kωt) , ω = 2π/tf. (65)

At each step of the iterative algorithm, the values of the para-
meters are corrected from the gradients ∂G

∂ak
, ∂G
∂bk

. Using the

chain rule derivation, the gradient ∂G
∂ak

for example can be
expressed as

∂G
∂ak

=
N∑
n=1

∂G
∂un

∂un
∂ak

=
N∑
n=1

∂G
∂un

∂v
∂ak

fk (tn) ,

where the functions fk are approximated by piecewise constant
functions with the same time step as u. The following pseudo-
code can be used to implement this variant of GRAPE.

Function u = Control ({ak,bk})
(∗ Compute uk = u(tk) for each tk using the parameters
{ak,bk}k=0,...,kmax

∗)

Function δa, δb = GradientGRAPE2({ak,bk})
u = Control ({ak,bk})
|ψ(t)⟩ = PropforwardSchrodingerEq(u(t),|ψ0⟩)
|χ(t)⟩=PropbackwardSchrodingerEq(u(t),|χ(tf)⟩)
For [1⩽ n⩽ N,

δun =−ϵℑ⟨χ(tn)|Ĥ1|ψ(tn)⟩]
For [1⩽ k⩽ kmax,

δak =
∑N

n=1 δun
∂u
∂ak

(tn)

δbk =
∑N

n=1 δun
∂u
∂bk

(tn)]

4.3.5. Exact gradient. A slight modification of the system
can be used to compute the gradient exactly. The idea is to
consider a larger system given by the Hamiltonian H̃
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H̃=

(
Ĥ 0
∂uĤ Ĥ

)
. (66)

In the standard case, we have ∂uĤ= Ĥ1. The matrix exponen-
tial of H̃ has interesting properties such as

eαH̃ =

(
eαĤ 0
∂ueαĤ eαĤ

)
,

which can be shown by using a Taylor series expansion of the
exponential function. The parameter α is a complex constant.
We deduce that the evolution operator Ũ corresponding to the
Hamiltonian H̃ can be expressed as

Ũ=

(
Û 0
∂uÛ Û

)
.

This result suggests that the propagator Û and its gradient
can be computed simultaneously by solving the Schrödinger
equation associated to the Hamiltonian H̃ with the initial con-
dition (̂I,0). The gradient can then be used directly in GRAPE
to correct the control at each step of the algorithm. This variant
is known in the literature as the auxiliary matrix approach of
GRAPE.

Example 12. To illustrate the method, we study the control of
a state-to-state transfer in a two-level quantum system with
minimal energy. The goal is to steer the system from the initial
state | ↑⟩ to the target | ↓⟩ at time tf fixed with the Hamiltonian
Ĥ(t) = ∆

2 σ̂z+
u
2 σ̂x. The cost functional to minimize can be

expressed as

C = 1− |⟨↑ |ψ (tf)⟩|2 +
p0
2

ˆ tf

0
u(t)2 dt,

where p0 is a factor allowing to adjust the relative weight of the
two terms in the cost. The control time tf is set to 2π/

√
1+∆2.

The Hamilton’s equations of the PMP show that the dynamics
of the state |ψ(t)⟩ and adjoint state |χ(t)⟩ are governed by the
Schrödinger equation with respectively the initial condition
|ψ(0)⟩= | ↑⟩ and the final condition |χ(tf)⟩= ⟨↑ |ψ(tf)⟩| ↑⟩
with χ0 =−1/2 (see example 9). In the GRAPE algorithm,
the correction δu at each step can be written as

δu=−ϵ
(
ℑ(⟨χ(t)| σ̂x

2
|ψ(t)⟩+ p0

2
u(t)

)
.

The convergence of the algorithm is very good in this example.
An example is plotted in figure 8. The corresponding Python
code GRAPE.py is provided in the supplementary material.
The Python code GRAPE2.py solves the same optimal control
problem but with a polynomial parameterization of the control
pulse. □

Figure 8. Optimal control u (black line) designed by GRAPE for
example 12. Numerical parameters are set to u0 = 1 and ∆= u0

2 .
The red line represents the time-optimal solution with the constraint
|u(t)|⩽ u0. The blue line depicts the guess control used in the
algorithm. The parameter p0 is set to 0.1/tf.

5. From theory to experiment: optimal control of a
BEC in an optical lattice

We propose to demonstrate the different steps of the applic-
ation of QOC to a specific experimental system, namely the
control of a BEC in an optical lattice. We refer the reader to the
[137–139] for additional theoretical and experimental details
on these results.

5.1. The model system

Dilute BECs are routinely produced in cold atom experiments:
a gas of identical bosons, cooled to a temperature close to
absolute zero condenses into a single quantum state, and is
therefore described by a single wave function [129]. On typ-
ical experimental timescales (see section 5.3), we can neglect
both the interactions between the atoms of the gas and the para-
bolic magnetic potential used to confine the system. Such con-
ditions allow us to simplify the description of the dynamics of
the system which are governed by the Schrödinger equation
with a periodic sinusoidal potential [255]. This trapping poten-
tial originates from a one-dimensional optical lattice produced
by two interfering laser beams of wavelength λ propagating in
opposite directions, whose relative phase and amplitude can be
modulated in time with good precision. The goal of the con-
trol is then to manipulate the motional state of the BEC in this
potential.

The wave function |ψ(t)⟩ which belongs to the Hilbert
space H= L2(R,dx), evolves in time according to the
Schrödinger equation,
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ıh̄
d|ψ (t)⟩

dt
=

(
p̂2

2m
− s(t)EL

2
cos(kLx̂+φ(t))

)
|ψ (t)⟩, (67)

where p̂=−ıh̄ ∂∂x and x̂= x are respectively the momentum
operator and the position operator in the position representa-
tion with x the spatial coordinate along the optical lattice axis.
We denote bym themass of the atom, kL = 2π/(λ/2) the wave

vector and EL =
h̄2k2L
2m = 4ER (with ER the recoil energy) the

energy associated with the lattice. The control parameters are
the dimensionless depth s(t) and the phaseφ(t). In this section,
we focus on using φ(t) as a single control parameter, while the
dimensionless lattice depth s is kept constant. Varying φ as a
function of time corresponds to moving or shaking the lattice
position along the x- axis. We consider the following change
of variables to obtain dimensionless coordinates:

t→ EL

h̄
t,

x→ kLx.

This yields,

ı
d|ψ (t)⟩

dt
≡ Ĥ(t) |ψ (t)⟩=

(
p̂2 − s

2
cos(x̂+φ(t))

)
|ψ (t)⟩,

(68)

with p̂=−ı ∂∂x and x̂= x in the position representation.

We denote by |ϕα⟩ the eigenvectors of the momentum oper-
ator with eigenvalue α and wavefunction ϕα(x) = 1√

2π
eıαx.

Since the potential is periodic in x, the Bloch theorem states
that the parameter α can be expressed as α= n+ q, where n ∈
Z and q ∈ [−0.5,0.5] is the quasimomentum. The quasimo-
mentum can formally take any real value, but due to the peri-
odicity of the potential, two quasimomenta separated by an
integer are equivalent. Furthermore, this periodicity implies
that the quasimomentum q is conserved during the control pro-
cess. In the subspace of a given quasimomentum q, we can
expand a generic state on the plane wave basis as,

|ψ ⟩=
∑
n∈Z

cq,n|ϕq+n⟩.

Using this decomposition, the dynamic is given in terms of the
coefficients cq,n as

ıċq,n = (n+ q)2 cq,n−
s
4

(
eıφ(t)cq,n−1 + e−ıφ(t)cq,n+1

)
.

The Schrödinger equation can be written in matrix form as
follows,

ı
d|ψ (t)⟩

dt
=
(
Ĥ0 + cos(φ(t)) Ĥ1 + sin(φ(t)) Ĥ2

)
|ψ (t)⟩,

where

|ψ (t)⟩=



...
cq,n−1

cq,n
cq,n+1

...

 , (69)

Ĥ0 =



. . .

. . . 0 ((n− 1)+ q)2 0 0 0 . . .

. . . 0 0 (n+ q)2 0 0 . . .

. . . 0 0 0 ((n+ 1)+ q)2 0 . . .
. . .


, (70)

and

Ĥ1 =



. . .
. . .

. . . − s
4 0 − s

4 0 0 . . .
. . . 0 − s

4 0 − s
4 0 . . .

. . . 0 0 − s
4 0 − s

4 . . .
. . .

. . .

 , Ĥ2 =



. . .
. . .

. . . −ı s4 0 ı s4 0 0 . . .

. . . 0 −ı s4 0 ı s4 0 . . .

. . . 0 0 −ı s4 0 ı s4 . . .
. . .

. . .

 .
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Figure 9. Eigenvalues E(q) of Ĥ (colored solid lines) and p̂2 (black
dashed lines) as a function of q.

5.1.1. Landau-Zener-type Hamiltonian. Interestingly, a two-
level approximation can be derived from theBEC systemwhen
s≪ 1.

Calculating the eigenvalues of Ĥ as a function of the
quasimomentum yields the lattice band structure Em(q) (m ∈
N), as shown in figure 9. We denote the corresponding Bloch
eigenfunctions |Ψm(q)⟩. For a small value of s (typically
s< 0.5) and q close to 0.5, the first two energy bands E0(q)
and E1(q) are well-separated in energy from the others, and
may be considered as an effective two-level system. If the BEC
is initially prepared in the subspace formed by these first two
bands, it will remain in this subspace.

Experimentally, while the quasimomentum can be tuned
from its initial value by the application of a force (inducing
a Bloch oscillation), it is most often equal to zero, corres-
ponding to a homogeneous BEC, or to the ground state of
the lattice |Ψ0(0)⟩ (prepared adiabatically). We therefore do
not consider the quasimomentum as a control parameter here,
and assume q= 0 for the rest of this section. Using the unitary
transformation,

|ψ ⟩ → Û|ψ ⟩,

Ĥ→ ÛĤÛ† + ı ˙̂UÛ†,

where Û= e−ıp̂φ(t), we obtain the following Hamiltonian,

Ĥ=

(
p̂+

φ̇(t)
2

)2

− s
2
cos(x̂) ,

where φ̇(t)
2 plays the role of a controlled quasi momentum

(effectively, φ̇(t)2 is the quasimomentum of the BEC in the ref-

erence frame of the moving lattice). If we set φ̇(t)2 = 1
2 +

˙̃φ(t)
2 ,

with ˙̃φ(t) a control parameter close to 0, we can isolate the
first two energy levels and write the Hamiltonian in the basis
(|ϕ0−1⟩, |ϕ0+0⟩) such that,

Ĥ=


(

1
2 −

˜̇φ(t)
2

)2
− s

4

− s
4

(
1
2 +

˜̇φ(t)
2

)2

 . (71)

Up to a term proportional to the identity, we obtain a two-level
quantum system whose Hamiltonian can be expressed as

Ĥ=
∆(t)
2

σ̂z+
ω

2
σ̂x, (72)

where ω =− s
2 and ∆(t) =− ˙̃φ(t). This expression is similar

to the Hamiltonian of a two-level quantum system with an off-
set term and a single control, for which time optimal control
strategies are studied in section 3.2.2. With the following basis
change,

|ϕ0−1⟩ →
1√
2
(|ϕ0−1⟩+ |ϕ0+0⟩)

|ϕ0+0⟩ →
1√
2
(|ϕ0−1⟩− |ϕ0+0⟩)

the correspondence is exact and allows to implement optimal
solutions in this system as shown in section 5.3.

5.2. Numerical optimal control

We consider the application of GRAPE to the control of a BEC
in an optical lattice. The BEC system has a Hamiltonian given
by

Ĥ= Ĥ0 + cos(u(t)) Ĥ1 + sin(u(t)) Ĥ2, (73)

where we set u(t) = φ(t) to use the same notation as in the
general description of GRAPE. The goal is to find a control
that minimizes the cost function C at a fixed final time tf

C = 1− |⟨ψf|ψ (tf)⟩|2, (74)

where |ψ(tf)⟩ is the state at final time, and |ψf⟩, the target state.
The application of the PMP yields a Pontryagin Hamiltonian
of the form (27) with F0 = 0. The adjoint state |χ(t)⟩ whose
time evolution is also governed by the Schrödinger equation,
has the final condition

|χ(tf)⟩=−2χ0⟨ψf|ψ (tf)⟩|ψf⟩. (75)

The abnormal multiplier is set to χ0 =−1/2 in the numerical
simulation. Using the maximization condition of the PMP, the
control is iteratively updated such that

u ′
n = un− ϵℑ

(
⟨χ(tn) |

(
−sin(un) Ĥ1 + cos(un) Ĥ2

)
|ψ (tn)⟩

)
.

(76)

The control time is set to a multiple duration characteristic of
the dynamical timescale of the system (usually the inverse spa-
cing between the two lowest energy levels), and discretized
into several hundred steps, so that the step duration is small
with respect to this dynamical timescale, and the control is
therefore quasi-continuous. The infinite dimensional Hilbert
space is truncated so that |n|⩽ nmax, where nmax is chosen with
respect to the initial and target states to avoid boundary effects.
In the numerical simulations, the control usually involves 400
steps and nmax = 10. Thus the truncated space has a dimension
of 2× nmax + 1= 21. Under these conditions, one iteration of
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the algorithm takes 0.17 s, and it takes about 100 iterations,
i.e. 17 s to obtain a cost function of order 10−4. The numerical
simulations, written in Python, were conducted on a standard
laptop computer.

5.2.1. State-to-state transfer. We first illustrate the optimal
control of state-to-state transfer. The initial state of the BEC is
represented by the state |ϕ0+0⟩ and several target states are
considered, which can be expressed in the canonical basis
|ϕ0+n⟩ with q= 0. Attainable states range from individual
momentum basis vectors to superposition of states [137].
Alternatively, they can also be Gaussian states, corresponding
to a localized probability density in position and momentum
within a lattice site [138]. Here we define as Gaussian a
state whose x and p probability density functions are normal
distributions with standard deviations σx0 and σp0 equal to
those of the ground state |Ψ0(0)⟩ of the lattice Hamiltonian.
The Gaussian state tends to the exact ground state for s≫
1, with σx0 = s−1/4, and σp0 = s1/4/2. A displaced Gaussian
state |g(xc,pc)⟩ has non-zero position and momentum aver-
ages within a lattice site, ⟨x⟩= xc and ⟨p⟩= pc. We can further
define a squeezed Gaussian state |g(xc,pc, ξ)⟩, for which the
standard deviations are modified as σx = ξ σx0 and σp =

σp0
ξ ,

where ξ is the x- squeezing parameter (ξ= 1 corresponding
to a Gaussian state). The smaller ξ becomes, the more the
standard deviation σx decreases and σp increases. Gaussian
and squeezed states can be projected on the basis (|ϕ0+n⟩)with
the coefficients [138],

c0,n (xc,pc, ξ ) =

(
2ξ2

π
√
s

)1/4

eıxcpc/2e−ınxce−ξ
2(n−pc)2/

√
s.

(77)

Three numerical examples of optimal controls for state to
state transfer are considered in figure 10. In each case, the
initial state is |ϕ0+0⟩, and we set q= 0, s= 5, nmax = 10 and
tf = 7.6, which corresponds to a duration of 150 µs. The tar-
get states are chosen to be |ϕ0+2⟩, the centered Gaussian state
|g(xc = 0,pc = 0, ξ = 1)⟩ and the centered squeezed Gaussian
state |g(xc = 0,pc = 0, ξ = 1/3)⟩. The numerical results can
be obtained from a code provided in the supplementary
material.

5.3. Experimental optimal control

In this section, we present some illustrative optimal control
results applied to a BEC manipulated in an optical lattice,
following the previous formalism. Other examples can be
found in [137–139]. We focus here on the experimental imple-
mentation of the control in a real system, namely the experi-
mental setup at LCAR in Toulouse, themanipulation of the full
quantum state of the BEC in the lattice, and a realization of an
optimal control in an effective two-level quantum system.

5.3.1. Experimental setup. In a typical implementa-
tion [137], a BEC of 87Rb atoms is trapped in a one-
dimensional optical lattice, created by two counter-
propagating laser beams. The beams’ wavelength,

λ= 1063.9nm, is chosen far from the main optical reson-
ances of the atom, in order to minimize light scattering and
heating of the condensate. This also sets the lattice spa-
cing d= λ/2≃ 532nm, and the characteristic energy scale
EL = h2/(2md2) = h · 8.111kHz, which also sets a character-
istic timescale for the dynamics.

In the Schrödinger equation (67) governing the dynam-
ics, both the dimensionless lattice depth s(t) and its position
φ(t) can be varied arbitrarily in time, and therefore act as
control parameters. This is achieved by using Acousto-Optic-
Modulators (AOMs) placed in the path of the lattice beams,
which can adjust the amplitude and phase of the outgoing
beam by varying the amplitude and phase of the RF signal
applied to the AOM crystal. A common modulator varies the
amplitude of a first laser beam which is then split to form
the two arms of the lattice, after which one of the arms goes
through an AOM which modulates its phase, thus varying the
relative phase between the lattice beams and controlling φ(t).

To ensure that optimal control solutions can be successfully
applied in this system, it is important to consider the times-
cales involved. On the one hand, the dynamical timescale is
determined by both the atoms’ inertia and the depth of the sine
potential: for a typical depth s= 5, the energy spacing between
the two lowest bands at q= 0 is 1.975EL (close to the level
spacing in the harmonic approximation h̄ω ≃ 2.236EL), cor-
responding to a characteristic duration of T0 = 62.4µs. On the
other hand, through a combination of bandwidth limitations
from the driving electronics and the AOM itself, changes in
the amplitude and phase of a beam exiting the AOM occur
on a typical duration of 100ns for sudden changes, corres-
ponding to a spectral bandwidth of about 3 MHz. This sets
the main limit on the speed with which the controls can be
varied: the 3MHz bandwidth nonetheless allows changes to
be made almost instantaneously with respect to the dynamical
timescale.

This leads to the typical choice for the control ramps
applied experimentally: a duration of 100µs≃ 1.6T0, discret-
ized in 400 intervals of 250ns with a constant phase. Any
change in the value of the phase occurs much faster than the
inertial response of the atoms: the control is therefore quasi-
continuous.

In addition to these considerations on the lattice control, it
is also crucial to consider other experimental effects that are
not included in the modeling of the experiment:

− The laser wavelength λmust be known precisely as it effect-
ively enters in the dimensionless timescale ELt/h̄= αt. For
commercially available fiber lasers, the wavelength is typic-
ally known to an accuracy of 10−4.

− The 87Rb atoms used here experience repulsive interac-
tions within the BEC, characterized by a scattering length
a= 104a0 [256]. These interactions can be described in
the mean-field approximation by an additional, non-linear
potential term in the Schrödinger equation (67), Vint =
β|ψ(x, t)|2, yielding the Gross–Pitaevskii equation. The con-
stant β characterizes the non-linearity for the 1-D dynamics
in the lattice. In the experiments presented here, it is typic-
ally small (β < 0.5) due to the dilute nature of the BEC.
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Figure 10. Examples of control for the state-to-state transfer of a BEC: In red the transfer from |ϕ0+0〉 to |ϕ0+2〉, in dotted-blue to the
Gaussian state |g(0,0,1)〉 and in dashed-yellow to the squeezed state |g(0,0,1/3)〉. The transfers are computed for q= 0 and s= 5. (a)
Control phase. (b) Bar diagram of the momentum distribution reached at time tf. (c) Probability density in position within a lattice cell at
final time.

− In a realistic experiment, the BEC loaded in the optical lat-
tice has a finite size, which may also be affected by inter-
actions. This corresponds to the occupation of a finite inter-
val of quasimomenta around a central value (here q= 0). In
experiments shown here, about 100 lattice sites are popu-
lated, leading to an estimate of the quasi-momentum width
∆q∼ 0.02 [257].

− Last but not least, the lattice depth s is a fixed parameter for
the optimal control using φ(t), but it must be known with
a good precision to derive efficient controls. This means
that it is crucial to have a precise calibration of the lattice
depth [258] before optimizing the control, as well as excel-
lent stability of the experimental setup.

To illustrate the role of these parameters, we show in
figure 11 how the fidelity of the state preparations studied
in section 5.2 are affected by variations around the value for
which the optimal control is calculated, with relevant uncer-
tainty ranges highlighted. For realistic values of the para-
meters, figure 11 demonstrates that the timescale factor is
very well characterized and that the effect of interaction is
mostly negligible. It also highlights the importance of a well-
calibrated lattice depth, and a small quasimomentum distribu-
tion width for the success of the state transfer. The quasimo-
mentum effect is all the more important the more squeezed the
target state is (i.e. extended in momentum).

There are other important constraints on the controls avail-
able experimentally, namely on the maximum depth s that can
be applied to the atoms, and on the maximum available con-
trol time. The former is limited by themaximum laser intensity
available, to s≲ 40 for the experimental setup described here.
The latter is constrained, when using 87Rb, by interaction-
induced dynamical instabilities that may occur on a timescale
of several milliseconds [259].

Finally, we emphasize that in an experimental situation, it
is not possible to directly measure the complex coefficients
cq,n characterizing the quantum state. A single measurement
of the BEC consists in imaging the absorption from a reson-
ant infrared laser beam by the atoms, which is imaged on a
CCD camera. This imaging is performed after a time-of-flight,
during which the various momentum components of the BEC

will separate spatially. Such a measurement, when good care
is taken to remove any parasitic signal on the camera, will only
provide a measurement of the probabilities |cq,n|2. A full char-
acterization of the prepared state may therefore require mul-
tiple measurements, in order to extract relative phases [137],
or to perform a full state reconstruction [138].

5.3.2. Full quantum state control. A clear demonstration of
optimal transfer between quantum states with control of prob-
ability amplitudes is provided by the preparation of energy
eigenstates. The Bloch eigenstates corresponding to the energy
spectrum for the lattice potential, as shown in figure 9,
are defined by their coefficients c(m)q,n , stationary solutions of
equation (69), with specific amplitudes and signs. When such
a state is prepared in the lattice, its stationary nature means that
the momentum distribution (the measured probabilities |cq,n|2)
do not evolve at subsequent times.

This control process is illustrated in figure 12. We first
apply an optimal control ramp to transfer the lattice ground
state |Ψ0(0)⟩ to the P band Bloch state at q= 0, as denoted in
figure 12(a), in a lattice of depth s= 8.2. After the preparation,
we measure the momentum distribution obtained for increas-
ing hold times, up to 110 µs≃ 1.5T0. The result of this meas-
urement is shown in figure 12(b1): the momentum distribution
shows no significant evolution, as expected for an eigenstate.
For comparison, figure 12 (b2) shows the numerical evolution
of themomentum distribution, as expected from the theoretical
final state of the optimal control ramp (which has a numerical
fidelity of 99% to the theoretical P band eigenstate in good
agreement with the experimental results).

It is also possible to prepare eigenstates in a subspace
with non-zero quasi-momentum q0, by taking advantage of a
change of reference frame. We first prepare the plane wave
superposition with coefficients c(m)q0,n, starting from the lattice
ground state. At the end of the preparation ramp φ(t), instead
of returning the phase to φ= 0 (in which case we remain in
the q= 0 subspace where the prepared state is not an eigen-
state), we set the lattice in linear motion with a ramp φ(t>
tf ) = 2q0(t− tf ) (in reduced units). This effectively translates
the state into the q= q0 subspace in the reference frame of the
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Figure 11. Examples of the influence of various parameters on the performance of the optimal control ramps for the state-to-state transfer of
a BEC. (a) Fidelity of the preparation for a control ramp computed at an expected depth s0 = 5, when the ramp is applied in a lattice of
actual constant depth s, as the value of s is varied. The full orange line (resp. blue dotted line and yellow dashed line) corresponds to the
transfer from |ϕ0+0〉 to |ϕ0+2〉 (resp. to the Gaussian state |g(0,0,1)〉 and to the squeezed state |g(0,0,1/3)〉), here and throughout the
figure. Likewise, throughout the figure, the control ramps are calculated for fixed values of the parameters: s= 5, q= 0, β= 0 and α= 1,
and are the ramps obtained in figure 10. (b) Similarly, fidelity of the preparation against a variation of the quasi-momentum: the control
ramp is applied to the initial state |ϕq+0〉, with q varied. (c) Similarly, fidelity of the preparation against a variation of the timescale factor α
(see text). (d) Fidelity of the preparation against a variation of the interaction parameter β (see text). In each graph, the gray shaded area
denotes typical experimental uncertainty intervals for the varied parameter.

lattice, and the prepared superposition is then an eigenstate.
This is illustrated in figure 12(c1), which shows the evolution
of the momentum distribution after preparation of the D band
eigenstate at q0 = 0.25kL (as denoted in figure 12(a)) in the
moving lattice. Again the distribution shows very little evolu-
tion, in good agreement with the numerically expected result
shown in figure 12(c2). Further examples of state preparation
and state characterization can be found in [137–139].

5.3.3. Two-level optimal control. Finally, the BEC system
lends itself to the emulation of a two-level quantum system,
as introduced in section 5.1. The control protocol derived in
section 3.2.2 can be used to perform a time-optimal transfer
between the states,

|+⟩= 1√
2
(|ϕ0−1⟩+ |ϕ0+0⟩) ,

|−⟩= 1√
2
(|ϕ0−1⟩− |ϕ0+0⟩) .

In this context, the lattice depth plays the role of the con-
stant offset ∆= s/2, while the phase variation φ̇= 1+ u(t)
provides the variable control. To perform the bang-bang pro-
tocol of section 3.2.2, we choose a lattice depth of s≃ 0.5, and
a maximum control u0 = 0.5. This yields typical control times
for the experiment of t1 ≃ 64µs and t2 ≃ 156µs.

In order to assess the result of the transfer, we need to
characterize the initial and final states. However both |+⟩ and
|−⟩ are approximate eigenstates of the Hamiltonian at a small
depth, and they cannot be distinguished from a simple meas-
urement of the (equally weighted) populations in |ϕ0−1⟩ and
|ϕ0+0⟩. To circumvent this issue, we use a quench of these
states into a deeper lattice smeas ≃ 6, in which they are not
eigenstates. The population dynamics in the deeper lattice then
allow us to clearly distinguish |+⟩ and |−⟩. These state super-
positions can be prepared using an optimal transfer ramp, in
the deeper lattice of depth smeas, both as initial states for the
bang-bang protocol, and to characterize their evolution. We
use a preparation rampwith numerical fidelityF> 99.5%, and
a duration of 1.5T0 (about 84µs). The state is then charac-
terized by recording the momentum distribution dynamics for
200µs at 10µs intervals.

The realization of such a procedure is shown in figure 13.
Panels figures 13(a) and (b) present both the numerical and
experimental evolution of the states |+⟩ and |−⟩ in the
quenched lattice of depth smeas. This demonstrates that the
change in relative phase can be clearly identified through the
non-equilibrium dynamics in the deeper lattice, and shows
at the same time that the two superposition states can be
prepared efficiently as initial states for the bang-bang con-
trol. Figure 13(c) (resp. (d)) shows the experimental results
from the time-optimal control for the transfer from |−⟩ to |+⟩
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Figure 12. Preparation of lattice eigenstates. (a) Lattice band structure for s= 8.2 (colored lines) with labels for the eigenstates prepared in
(b) and (c). The shaded area denotes the sine potential depth. (b) Preparation of the P band eigenstate at quasi-momentum q= 0 for a depth
s= 8.15± 0.30. (b1) Experimental evolution of momentum distribution of the prepared state in the static lattice. (b2) Corresponding
theoretical evolution. (c) Same as (b) for the preparation of the D band eigenstate at quasi-momentum q= 0.25kL for a depth
s= 8.26± 0.10.

(resp. |+⟩ to |−⟩), followed by a quench to the depth smeas.
The control is realized by applying two successive constant
phase drifts φ̇= 1± 0.5 for times t1 and t2 and is identical for
both transfers (only the initial state is changed). After the trans-
fer, the quenched dynamics confirm that the states have been
exchanged with good accuracy, the dynamics being almost
identical to those of panels figures 13(a) and (b).

Note that a more thorough characterization of the initially
prepared and final states can be achieved by state reconstruc-
tion techniques using the lattice dynamics data [138]. This
goes beyond our purpose here, which has been to illustrate how
the BEC platform can be used to emulate optimal control of a
two-level quantum system.

6. Conclusion

In this introduction to the toolbox of QOC, we present both
analytical and numerical methods based on the PMP. The key
elements of this mathematical theory are described from an
analogy with classical Lagrangian and Hamiltonian mech-
anics. It is then shown how these results can be used to
design optimal control strategies for quantum systems. A com-
prehensive description of existing optimization algorithms is
provided with a discussion of their advantages and areas of
applicability. Particular attention is paid to shooting tech-
niques and gradient-based algorithms that are directly derived
from the PMP. Several problems of state-to-state transfer in a
two-level quantum system have been analyzed in detail. The

link between the optimal solution and the QSL is also explored
in this case. The experimental implementation in the case of
BEC in a one-dimensional optical lattice is described in a final
section. Starting from the modeling of the quantum dynam-
ics, we show step by step how the optimal control is com-
puted and then implemented experimentally, to realize both
two-level and many-level controls. Experimental constraints
and limitations are also discussed.

The goal of this tutorial paper is to provide an overview
of the toolbox of QOC that we hope is accessible to phys-
icists with a background in quantum dynamics. Simple and
concrete physical examples have been used throughout this
paper to illustrate the different mathematical concepts. In par-
ticular, we have successively reused and adapted the same
examples to illustrate different important points. Therefore,
the examples presented in this introduction are not represent-
ative of the systems encountered in the literature. For instance,
a key aspect which has not been discussed concerns the con-
trol of open quantum systems. Most experimental configura-
tions must be modeled by taking into account the interaction
of the system with its environment, and such features must be
integrated into the optimization process [121]. The degree to
which OCT techniques have been applied to that end depends
on the characteristics of the open quantum system considered.
In the Markovian regime in which the memory effect is neg-
lected, optimal control procedures are now quite well under-
stood. The main difficulty lies in the loss of complete contro-
lability and therefore in the fact that certain target states are
not reachable [118]. The situation is not at the same stage of
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Figure 13. Time-optimal control of an effective two-level quantum system on the BEC platform. (a) Theoretical (a1) and experimental (a2)
dynamics of the momentum distribution after preparation of the state |+〉 in the lattice of depth smeas = 6.07± 0.05. The numerical fidelity
after preparation is F> 0.995. (b) Same as (a) for the preparation and characterization of state |−〉. (c) Experimental evolution of the
momentum distribution for a bang-bang transfer between |−〉 and |+〉 in a lattice of depth s= 0.57± 0.03 (c1), followed by a quench to a
deep lattice smeas = 5.90± 0.09 (c2). The optimal control parameters are u0 = 0.5, t1 = 63.66µs, and t2 = 159.5µs. (d) Same as (c) for a
bang-bang transfer between |+〉 and |−〉. The color map for probabilities on all graphs extends from 0 to 1.

maturity for non-Markovian dynamics. Although this aspect
has been explored in a few examples, the usefulness of the
memory effect as a resource for optimal control remains to be
clarified.

A wide range of problems have been already solved in
QOC, but with the advent of quantum computers and the
progress of quantum technologies, new objectives are emer-
ging. A first one concerns optimization performed on a
quantum computer [260–262]. Such optimizations are based
on quantum algorithms and the realization of quantum circuits
in order to solve optimal control problems. The optimization
can focus on the control design for the computer itself, but
it can also be a totally independent control problem. Different
quantum optimization algorithms can be distinguished extend-
ing from purely quantum algorithms, such as Grover’s type
algorithms [263] and quantum annealing methods [264, 265]
or to hybrid algorithms based on a gradient descent [266–268].

In the latter case, the core of the algorithm is classical and it
is the same as the one presented in section 4.3. The difference
resides in the evaluation of the gradient, which is computed
using quantum algorithms. This is particularly well adapted
to QOC, but it does not offer any significant advantage, since
the core of the algorithm remains classical. Breakthroughs
are expected with pure quantum algorithms. Recently a few
properties of the PMP have been combined with a Quantum
Approximate Optimization Algorithm (QAOA) [269, 270],
but a general and versatile quantum algorithm based on the
PMP remains to be found. Ideally, a PMP based quantum
optimization algorithm should be designed for any type of
cost function (not only restricted to bang-bang controls, like
in [269]), and it would solve the shooting problem using the
advantages offered by quantum computations.

A second family of open questions concerns the inclusion
of energy efficiency and sustainable development criteria in
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quantum technologies [271]. The latter are not exempt from
the challenge of global warming. Despite the fact that we
are working with a very small number of quantum quantities,
energy consumption is far from ideal. With the most power-
ful devices, we are beginning to achieve quantum suprem-
acy, but we are far from having a quantum energy advantage.
Part of the huge energy consumption comes from the cool-
ing system needed to keep noise levels low, while a second
source is due to controls. So far, we have mostly focused on
time-optimal strategies, to avoid noise or dissipation effects.
However, energy-optimal strategies can achieve a similar res-
ult with a drastic reduction in energy consumption. Optimizing
energy consumption at all stages of quantum computing (and
other quantum technologies) will be one of themajor problems
to be solved in the near future.
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Appendix A. List of mathematical symbols and
acronyms

X is the state of a dynamical system and Xa is a vector
component of X.
δX is the infinitesimal difference between two states of a
dynamical system.
S is an action functional.
δS is the functional derivative of the action S for two tra-
jectories close to each other.
L is a Lagrangian.
F is a vector function defining the system dynamics.
u is a control parameter, ua is a vector component of u, and
un is the value at step n of a piecewise constant control.
U is the domain of definition of u(t) (a subset of Rm).
G is a terminal cost function.
F0 is a running cost function.
C is the cost functional to minimize in an optimal control
problem.
Λ is the adjoint state, and Λa is a vector component.
Λ0 is the abnormal multiplier.
Hp is the Pontryagin’s Hamiltonian
ℜ and ℑ are respectively the real and imaginary parts of a
complex number.
|ψ ⟩ is a quantum state.
ρ̂ is a density matrix.

Ĥ is the Hamiltonian operator of a quantum system.
σ̂x, σ̂y and σ̂z are the Pauli matrices.
(x,y,z) are the coordinates of the Bloch vector for a two-
level quantum system.
Û(tf, ti) is the evolution operator from t= ti to t= tf.
|χ⟩ is the adjoint state of |ψ ⟩.

The following acronyms are used in this paper:

OCT: Optimal control theory
QOC: Quantum optimal control theory
PMP: Pontryagin maximum principle
QSL: Quantum speed limit

Appendix B. Lagrange multiplier

We recall in this section basic results on Lagrange multiplier
in the finite-dimensional case.We are particularly interested in
abnormal multipliers which are less described in the literature.

The method of Lagrange multiplier is a standard technique
in finite-dimensional optimization problem that transforms a
constrained optimization into an unconstrained one at the cost
of an increase in dimension. Consider for instance the maxim-
ization (or minimization) of a smooth function F0 on R2 with
variables (x, y). In absence of constraints, a necessary condi-
tion to fulfill for the extrema of the function is given by

∇F0 =

(∂F0
∂x
∂F0
∂y

)
=

(
0
0

)
.

A slightly more difficult task is to find the maximum of F0

under a constraint of the form F(x,y) = 0 where F is also a
smooth function on R2. The extrema of F0 are to be found on
the level curve F(x,y) = 0. In the generic case, the extremum
is located at the point of R2 where the level curves of F and
F0 intersect at one point. At this point, the two curves have a
common tangent and their gradient vectors are parallel. This
gives the following condition

∇F0 =−λ∇F,

where λ is a non-zero real parameter called a Lagrange multi-
plier. Note that the exact value of λ is not important for find-
ing the extrema. A systematic way to solve this problem is to
introduce a new function L on R3 as

L(x,y,λ) = F0 (x,y)+λF(x,y) .

The extrema are characterized by ∇L= 0, which leads to the
same equations as those established previously. The extremum
point is denoted (x0,y0).

A singular behavior occurs when ∇F(x0,y0) = 0 and in
this case it is necessary to adapt the procedure. A typical
situation corresponds to the problem where the condition
F(x,y) = 0 is satisfied at only one isolated point. It is then
clear that the value of F0 at this point cannot be compared
to its neighboring points. Consider for instance the func-
tion F0 to be maximized F0(x,y) = x+ y under the constraint
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F(x,y) = x2 + y2 = 0. The point (0, 0) is the only point that sat-
isfies the constraint. It therefore corresponds by construction to
the point maximizingF0. Note that we also have∇F(0,0) = 0.
This solution can be obtained by the general approach by
modifying the definition of L which is now a function on R4

such that

L(x,y,λ,λ0) = λ0F0 (x,y)+λF(x,y) ,

where the real parameter λ0 is called the abnormal multi-
plier. Note that (λ,λ0) is defined up to a real factor and
that the two multipliers cannot be simultaneously equal to 0.
The extrema are given by the conditions ∂L/∂x= ∂L/∂y=
∂L/∂λ= 0. When λ0 ̸= 0, we recover the previous formula-
tion of the optimization problem. New solutions appear when
λ0 = 0 and ∇F= 0. They have the peculiarity of not depend-
ing on F0, i.e. the function to maximize. They are called abnor-
mal extremal solutions. In the previous example, the point
(0, 0) corresponds to such a solution for which λ0 = 0.

Appendix C. Pontryagin maximum principle

We describe in a heuristic way the origin of the maximization
condition of the PMP described in theorem 2 [73]. This also
leads to a valuable geometric interpretation of the adjoint state
and of the optimal control problem.

We first consider a time-optimal control process where the
goal is to steer the system from X0 to Xf in minimum time.
We denote respectively by u∗ and X∗ a smooth optimal con-
trol and the corresponding trajectory such that Ẋ∗ = F(X∗,u∗).
We consider another admissible control u close to u∗ which
generates the dynamic X(t) with Ẋ= F(X,u). The two traject-
ories are very close to each other and the small difference
between the two is δX= X−X∗. Starting from Ẋ∗ + δẊ=
F(X∗ + δX,u), a linearized equation of motion is used to cal-
culate the dynamics around the reference trajectory X∗ (up to
terms of order two in δX)

δẊ= AδX+F(X∗,u)−F(X∗,u∗) , (C.1)

where the elements of the n× n- matrix A are given by Aij =
∂XjFi|(X∗,u∗). The rigorous derivation of equation (C.1) can be
done under the assumption of regularity of F and convexity of
the set F(X,u) for u ∈ U [73]. The solution of equation (C.1)
can be expressed as

δX(t) =
ˆ t

0
V(t, t ′) [F(X∗,u)−F(X∗,u∗)]dt ′, (C.2)

where δX(0) = 0 and V is the propagator from times 0 to
t associated to the differential equation V̇(t,0) = A(t)V(t,0),
with V(0,0) = In [22]. The different elements of the optimal
control problem are schematically represented in figure C1.
We then introduce the reachable set A(tf,X0) at time tf from
the state X0 as the set of all the states X(tf) that can be reached
by a trajectory starting from X0 at time t= 0, the trajectory
being associated to an admissible control u. If the target state
Xf is attained exactly by the optimal solution at t= tf then Xf

Figure C1. Schematic description of a time-optimal control
problem from X0 to Xf. The vector space is R2 and the coordinates
of X are (X1,X2). The set A(tf,X0) is the reachable set at time tf
from X0 (different reachable sets are plotted in shades of gray at
different times). Two trajectories are plotted in black reaching
respectively the points Xf (optimal trajectory) and X(tf)
(non-optimal trajectory). The blue line corresponds to the tangent to
the reachable set in Xf. The adjoint state Λ(tf) is orthogonal to this
line, while Ẋ is tangent to the trajectory.

is on the boundary of A(tf,X0). It is clear that if Xf belongs to
the interior ofA(tf,X0) then a smaller time t ′ < tf can be found
such thatXf ∈ A(t ′,X0) and tf is not theminimum time to reach
the target (see the reachable sets at different times in figure C1
to be convinced of this point). Assuming that the reachable set
is convex in a neighborhood of Xf, we consider the plane tan-
gent to A(tf,X0) in Xf and we define the adjoint state Λ(tf)
at time tf as a vector orthogonal to this plane and pointing
outwards. For any final state X(tf) close to Xf and associated
to a non-optimal trajectory, we have δX(tf) ·Λ(tf)⩽ 0 where
δX(tf) = X(tf)−Xf.

We introduce a time-dependent vector Λ(t) ∈ Rn such that
Λ(t)⊺ = Λ(tf)⊺V(tf, t). Using the relation V̇(tf, t) =−V(tf, t)A,
we arrive at Λ̇⊺ =−Λ(t)⊺A or

Λ̇ (t) =−A⊺Λ(t) . (C.3)

As expected,Λ(t)which is defined by a backward propagation
of the dynamic can be identified with the adjoint state of the
PMP. The Pontryagin Hamiltonian HP reads HP = Λ⊺F. The
corresponding Hamiltonian equation for the adjoint state can
be written as

Λ̇i (t) =−∂HP

∂Xi
=−Λ⊺∂XiF(X,u) =−

∑
j

∂XiFj (X,u)Λj,

which is equivalent to equation (C.3). Starting from
equation (C.2) and the condition δX(tf) ·Λ(tf)⩽ 0, we obtain

Λ(tf)
⊺
ˆ tf

0
V(tf, t

′) [F(X∗,u)−F(X∗,u∗)]dt ′ ⩽ 0,
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which leads to
ˆ tf

0
Λ(t ′)

⊺
[F(X∗,u)−F(X∗,u∗)]dt ′ ⩽ 0.

This inequality can be transformed into

ˆ tf

0
[HP (t

′)−H∗
P (t

′)]dt ′ ⩽ 0, (C.4)

where HP = Λ⊺F(X∗,u) and H∗
P = Λ⊺F(X∗,u∗). Consider

now for u a control equal to u∗ except on a very short time
interval [t, t + dt], we deduce that the condition (C.4) is satis-
fied if and only if

HP (t)⩽ H∗
P (t) ,

for t ∈ [0, tf], i.e. u∗ maximizes the function HP along the
optimal trajectory.

We consider in a second step the relative position of Λ(tf)
and Ẋ as represented in figure C1. For the optimal solution, we
deduce by construction that HP(tf) = Λ(tf) · Ẋ(tf)⩾ 0. In this
case, Xf does not belong to A(X0, tf− dt) for any sufficiently
small time step dt> 0. Note that if Ẋ points inwards the reach-
able set, the trajectory will be time-maximal. When HP does
not depend explicitly on time, the Pontryagin Hamiltonian is a
constant of motion. It is straightforward to show this property
if U is an open set. In this case, we have ∂HP

∂u = Λ · ∂F∂u = 0 at
any time t. We deduce that ḢP = Λ̇F+ΛḞ can be expressed
as

d
dt
HP =−Λ

∂F
∂X

F+Λ
∂F
∂X

F= 0.

We denote by −Λ0 the positive constant equal to Λ · Ẋ at any
time t ∈ [0, tf]. A new Pontryagin Hamiltonian can then be
defined as

HP = Λ · Ẋ+Λ0,

where HP = 0 along the optimal trajectory. The abnormal
extremals for which Λ0 = 0 can be identified here to the tra-
jectory tangent to the boundary of the reachable set since in
this case Λ(tf) · Ẋ(tf) = 0.

This argument can be extended to an optimal control prob-
lem with a fixed control time tf where the goal is to minimize
the cost functional C = G(X(tf)). This cost can be for instance
the distance from the target Xf to X(tf). A geometric descrip-
tion of this case is given in figure C2. We consider the level
sets of the function G as the set of points where G(X) is a con-
stant. The optimal situation corresponds to the case where the
boundary of the reachable set at tf and the level setG(X(tf)) are
tangent in X(tf). We introduce the plane tangent to the two sets
in X(tf). The adjoint state Λ(tf) is then defined up to a factor
as the opposite of the gradient of the level set in X(tf), such
that the two vectors point outwards of their respective sets. We
denote by Λ0 this negative constant and we finally have

Λ(tf) = Λ0
∂G(X(tf)
∂X(tf)

.

Figure C2. Same as figure C1 but for the case of a fixed final time,
the goal of the control problem being to minimize the distance to the
target defined by the function G. The different reachable sets and the
level surfaces of G are plotted respectively in shades of gray and
red. The blue line represents the common tangent plane to the
boundary of the reachable set A(tf,X0) and the level curves of the
distance G(X(tf)). ∂G denotes the gradient vector pointing outwards
of the level surface at X(tf).

By definition of the optimal solution, we have

G(X∗ (tf))⩽ G(X(tf)) .

At first order in δX, we deduce that

∂XG
⊺δX(tf)⩾ 0. (C.5)

It is then straightforward to show that

Λ(tf)
⊺
ˆ tf

0
V(tf, t

′) [F(X∗,u)−F(X∗,u∗)]dt ′ ⩽ 0,

which gives

ˆ tf

0
Λ(t ′)

⊺
[F(X∗,u)−F(X∗,u∗)]dt ′ ⩽ 0.

We obtain the same inequality (C.4) by introducing the
Pontryagin Hamiltonian.

Appendix D. Description of the numerical
optimization codes

This section aims to briefly present the different codes
provided in the supplementary material. All codes are in
Python and are executable independently of each other. The
two GRAPE codes require only the use of the standard Python
scientific libraries Numpy and SciPy.
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D.1. Shooting algorithm

The code shooting.py implements the shooting method, an
algorithm used in section 4.2. The integration of the equations
of motion given by the PMP is performed using the Python
package Nutopy [272] and the function ivp.exp. The optim-
ization uses the function nle.solve. The final part of the code
returns two graphs, one with the Bloch coordinates (x,y,z) of
the two-level quantum system, and the other with the optim-
ized control. We also provide a second code shooting2.py
without the package Nutopy.

D.2. GRAPE for a two-level quantum system

GRAPE.py provides a minimal working code for the optim-
ization of a control with GRAPE. It allows to derive the res-
ults of section 4.3, i.e. state-to-state transfer from the ground
to the excited states. Several build-in functions are defined in
the code, to perform the forward and backward propagation
of the Schrödinger equation using the split-operator method.
The optimization uses the Scipy function minimize with the
BFGS method. Here, the exact gradient is provided to the
solver (with the functionGradientGRAPE), and the Hessian is
estimated numerically from minimize. An initial control must
be provided to the algorithm. Many different choices would
lead to the same result. Here, a cosine wave function is used.
It is chosen different from zero, and smooth in order to obtain
a good starting point for the algorithm. GRAPE2.py considers
the same control problem but with a polynomial parameteriz-
ation of the control pulse. The computation of the gradient is
modified accordingly.

D.3. GRAPE for a BEC system

The code GRAPE_BEC.py implements the algorithm GRAPE
for state-to-state transfer in the case of BEC in a one-
dimensional optical lattice. The results are those presented in
section 5.2. The code is composed of several sections. The first
is a class (’BEC’) which generates from the size of the system
Nk, the value of the quasimomentum q and the depth of the lat-
tice s, the Hamiltonian of the system (the matrices H0, H1 and
H2). The second section (’propagation’), also a class, defines
the functions which return the fidelity and the correction to be
made to the control given by the PMP. The third section groups
together the functions of the code. The fourth section describes
the system parameters, the constants, the control time, the val-
ues of q and s, the initial state and the initial guess for the
control. The fifth section aims to calculate the optimal con-
trol. The scipy.optimize.minimize algorithm is used to iterat-
ively find the solution to the state-to-state transfer problem,
where the function to be minimized is ‘Cost’ and the gradient
‘dCost’ (based on class ‘propagation’). The algorithm uses a
L-BFGS-B method, it is therefore a second order algorithm
since the Hessian is iteratively approximated at each step. The
user can define a maximum number of iterations, a tolerance,
and a bound for the control. The final sixth section displays the
results for the three transfers, namely the controls, the popula-
tion |cq,n|2, and the probability density. At each iteration, we

can also perform a line search approach to find the best value
of the parameter ϵ. This is done by computing a step that sat-
isfies the Wolfe condition with scipy.optimize.line_search.
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