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The wave nature of matter remains one of the most striking aspects of quantum mechanics.
Since its inception, a wealth of experiments has demonstrated the interference, diffraction or scat-
tering of massive particles. More recently, experiments with ever increasing control and resolution
have allowed imaging the wavefunction of individual atoms. Here, we use quantum gas microscopy
to image the in-situ spatial distribution of deterministically prepared single-atom wave packets as
they expand in a plane. We achieve this by controllably projecting the expanding wavefunction onto
the sites of a deep optical lattice and subsequently performing single-atom imaging. The protocol
established here for imaging extended wave packets via quantum gas microscopy is readily applica-
ble to the wavefunction of interacting many-body systems in continuous space, promising a direct
access to their microscopic properties, including spatial correlation functions up to high order and
large distances.

In 1924, Louis de Broglie proposed his theory of elec-
tronic waves, where he merged the concepts of particles
and waves through the notion of wave-particle duality,
which became foundational to the theory of quantum
mechanics. A massive particle is associated with a wave-
function whose dynamics is governed by the Schrödinger
equation. This was confirmed in the following years
in a number of seminal experiments, such as the cel-
ebrated observation of electron diffraction by Davisson
and Germer [1], and the diffraction of helium atoms off
a crystal surface by Estermann and Stern [2], demon-
strating the wave nature of composite particles. Since
these historic measurements, wave behavior of massive
particles has been evidenced in a wide range of experi-
ments: wave packets were revealed through interference,
diffraction or scattering [3–15], and for particles of in-
creasing size and complexity, from elementary particles
such as electrons [16, 17] to composite systems such as
atoms, clusters, and molecules composed of up to 2,000
atoms [18, 19].

Another class of experiments has allowed probing the
spatial distribution of individual wave packets. For in-
stance, in quantum dots, the static spatial probabil-
ity density of single electrons has been measured di-
rectly or indirectly via scanning tunneling spectroscopy
[20, 21]. In hybrid atom-ion systems, the vibrational
wave packet dynamics of single molecules within their
molecular potential was directly observed using high-
resolution ion microscopy [22]. On ultracold atom plat-
forms, the tunneling dynamics of single-particle wave
packets in a periodic potential were observed with vari-
ous imaging methods [23–28]. In atom tweezer harmonic
traps, the squared modulus of the wavefunction in mo-
mentum space has been probed for few-particle [29] and
single-particle states [30].

Here, we prepare single atoms near the ground state
of harmonic oscillator wells and probe the associated
Gaussian wave packets in-situ by following their dy-
namics upon release from the trap as they expand in
a plane. By varying the initial momentum spread of the
single-atom wave packets, we observe dynamics that is
in quantitative agreement with the prediction from the
Schrödinger equation. Our measurement represents a
pristine observation of the textbook ballistic expansion
of a single-atom Gaussian wave packet in real space.
This is realized by performing quantum gas microscopy
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FIG. 1. Preparation and in-situ imaging of single-
atom wave packets. (a) Measurement scheme: Individual
atoms are prepared close to the harmonic oscillator ground
state of individual sites of a triangular optical lattice cre-
ated by a self-interfering laser beam with wave vectors k1,k2

and k3. Wave packets initially trapped in the lattice wells,
characterized by a Gaussian probability density distribution
|ψ0(r)|2, are released in a plane, allowing them to expand
for a given time. For imaging after expansion, the lattice is
quickly ramped up again, projecting the wave packet, and
Raman sideband cooling is applied to pin the atom on a
single site. Resulting atomic positions are recorded through
site-resolved fluorescence imaging. From many repetitions
of identically prepared wave packets we create histograms
of the projected positions with a discretization given by the
lattice structure, resulting in a measured probability distri-
bution |ψ(r, t)|2. (b) Experimental single-atom resolved im-
age. The top-right panel shows a subregion containing an in-
dividual atom. The bottom-right panel displays an enlarged
region of the image over which the reconstructed triangular
lattice structure with a spacing of aL = 709 nm is shown
as white dots. (c) Experimental configuration of the oblate
optical dipole trap confining the atoms to a two-dimensional
plane, the Raman beams (R1, R2 and RP) used for cooling
and imaging, and the microscope objective. (d) Top view
of the experimental configuration, showing the geometry of
the optical lattice beam.
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FIG. 2. Experimental sequence and image analysis. (a) Raman sideband cooling scheme for 6Li atoms. The two
Raman beams (R1 and R2) are blue-detuned by ∆ = h · 3 GHz with respect to the first electronically excited state |e⟩
and connect the two hyperfine levels |g1⟩ and |g2⟩ in the ground state manifold, split by EHF = h · 228.2 MHz. A resonant
repumper (RP) beam connects |g1⟩ and |e⟩. In the presence of a deep optical lattice, RSC brings the atoms to lower harmonic
oscillator eigenstates, indicated by eigenvalue n, while producing fluorescence photons for single-particle imaging through the
microscope objective, serving as both a preparation and detection method. (b) Experimental sequence for the preparation,
expansion and pinning of the single-atom wave packets. After the wave packets have been localized in a deep optical lattice
and their initial positions recorded in a first image (1), RSC is turned off and the lattice depth is adiabatically ramped down
to a variable value U0 to adjust the width of their initial momentum distribution. The lattice is then suddenly switched off
and the wave packets expand for a time t after which we take a second image (2) to record the new atom positions. (c) Two
single atom images taken in a single experimental realization (left and right panels). The center panel schematically shows
the most likely assignment of how the atoms moved between the two images. (d) Relative likelihood of the 4000 most likely
assignments based on a combined likelihood computation, for ω = 2π× 600(30) kHz (U0 = 0.38Umax) and an expansion time
of 10µs. The image insets show the assignments ranked 1st, 50th and 2000th. Initial (white dots) and assigned final (red
dots) positions are connected by arrows. The top-right inset shows the relative likelihood in a linear scale.

[31–34] after projecting the wavefunction freely expand-
ing in space onto a deep optical lattice [35–37]. Us-
ing the known single-particle wave packet expansion, we
quantitatively determine a protocol for controlled pro-
jection of a wavefunction evolving in continuous space
and reliable pinning of the corresponding atom for imag-
ing. With this, we achieve a crucial pre-requisite to ex-
tend the use of quantum gas microscopy to interacting
many-body systems in continuous space, offering direct
access to spatially-resolved correlation functions up to
high order and at large distances.

PREPARING SINGLE-ATOM WAVE PACKETS

We start with a dilute ensemble of Lithium 6 (6Li)
atoms prepared near the ground state of the wells of
a deep optical lattice. The optical lattice is gener-
ated by the self-interference of a laser beam in the
horizontal x − y plane forming three arms crossing at
120-degree angles (Fig. 1a), with a vertical polarization
that results in a triangular lattice geometry [38]. Close
to the bottom of the wells, the potential seen by the
atoms is well approximated [39] by a harmonic oscilla-
tor U(x, y) ≃ 1

2mω2
(
x2 + y2

)
, with ω ≃ 2π × 1MHz,

leading to eigenstates |nx, ny⟩ and associated energy
(nx + ny + 1) ℏω. In the vertical direction (z-axis), the
atoms are confined in a single plane using a laser-light
sheet [40]. We typically load a few tens of atoms over the
∼ 6000 available lattice sites in order to sparsely pop-
ulate the lattice. The inter-particle spacing is on the
order of 10µm, more than ten times the lattice spacing
aL = 709 nm, such that each occupied well contains no

more than one atom. The loading of tens of indepen-
dent atoms allows us to obtain as many realizations of
the single-particle expansion dynamics in a single exper-
imental run.

In order to bring the atoms near the ground state
of the lattice wells, we apply Raman sideband cool-
ing (RSC) [40], as depicted in Fig. 2a: a two-photon
process drives a hyperfine transition |F = 3/2, ni⟩ →
|F = 1/2, ni − 1⟩ that reduces the vibrational level
ni (with i = x, y) of atoms in each lattice site,
while a third near-resonant beam excites the atoms in
|F = 1/2, ni − 1⟩ to the upper state |F ′ = 1/2⟩, from
which they in turn decay to the original hyperfine state
|F = 3/2, ni − 1⟩. At the end of one RSC cycle, the
motional energy of a given atom has been reduced
by one quantum. After a number of cycles, and in
the absence of heating sources, this would result in
preparing the atom in the ground state wavefunction
of the harmonic oscillator well. The photons that are
spontaneously emitted during the decay from the ex-
cited state |F ′ = 1/2⟩ to the ground state |F = 3/2⟩ (or
|F = 1/2⟩), serve as a fluorescence signal to detect each
atom while it is held in a given site. This dual-purpose
approach of RSC is routinely used in quantum gas mi-
croscopy [33, 34], where it was developed for the study of
fermionic systems in optical lattices [41–43]. Our imag-
ing method is identical to quantum gas microscopy, ex-
cept that we apply it to probe wave packets in contin-
uous space. In Fig. 1b, we show a typical single-atom
image obtained with our apparatus.

The RSC beam parameters have been optimized to
reach the highest fidelity while bringing the atoms as
close as possible to the vibrational ground state of the
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FIG. 3. Expansion dynamics of a single-particle Gaussian wave packet. (a) Probability density distribution as a
function of expansion time t for wave packets prepared at different lattice depths U0 before release. Hexagons represent the
lattice sites of the triangular pinning lattice, with the central site indicating the position of each atom in the first single-atom
image. The histograms are obtained after 100 measurements, each with around 20 to 50 identically prepared single-atom
wave packets. (b) Cuts of the two-dimensional histograms at U0 = 0.23Umax for t = 3µs, 5µs, 8µs, and 12.5µs. (c) Data
points show the width of the Gaussian wave packet (σ) extracted from the probability density distribution as a function of
t for each preparation lattice depth. Error bars indicate the standard error of the maximum likelihood estimate and are
typically smaller than the symbol size. Dashed lines represent linear fits to the experimental data. (d) Solid points show the
average harmonic oscillator eigenvalues ⟨n⟩ = [0.42(3), 0.47(3), 0.49(3), 0.46(3), 0.45(3)] for each preparation, corresponding
to the lattice depth U0/Umax = 0.072(5), 0.136(5), 0.228(7), 0.376(10) and 0.61(2). The open points are the values extracted
from the linear fits in (b) using Eq. (2) before the correction due the non-instantaneous release is taken into account (see
text). The horizontal red dashed line together with the light red band indicate the average of all five values ⟨n⟩ = 0.46(3).

lattice wells. Based on the measured RSC beam and lat-
tice parameters, we expect average vibrational numbers
⟨nx⟩ ≈ ⟨ny⟩ ≃ 0.4 at the end of the cooling procedure
[40], which we determine experimentally in the follow-
ing. In this first step, we therefore not only prepare an
ensemble of single-atom Gaussian wavefunctions near
the ground state of harmonic oscillators, but also have
an image of their initial positions with a resolution at
the level of a single lattice site.

RELEASE, EXPANSION, AND DETECTION OF
WAVE PACKETS

The diagram of the experimental sequence is shown
in Fig. 2b. Following the initialization phase described
above, we turn off all RSC laser beams, and adiabati-
cally ramp down the lattice depth to a variable fraction
U0 of its initial value Umax, which allows us to control
the frequency of the harmonic oscillator ω ∝ √

U0 while
maintaining the wave packets in their initial vibrational
level. We then suddenly turn off the lattice beams, keep-
ing the light sheet potential on, to let the atomic wave
packets expand in the x− y plane for a variable time t.
We subsequently turn the lattice back on to its maxi-

mal depth using an optimal ramp time (see below), and
perform RSC again to pin the atoms. This step projects
the free atoms to the nearest lattice site after expansion.
We thus obtain a second image displaying the final po-
sitions of the atoms (see Fig. 2c). Assuming no bias
is introduced upon pinning from continuous space and
imaging, other than a discretization of space, each atom
on the second image will be detected at a certain posi-
tion, sampling the probability density - i.e., the modulus
squared - of the wavefunction after release. By relating
each atom of the second image to its original lattice site
in the first image from many realizations [40], we obtain
histograms in position space representing the probabil-
ity density of the expanding wave packets at variable
time t.

In order to reliably assign each atom detected after
expansion to its initial position, we use a self-consistent
analysis based on a maximum likelihood estimate, which
we describe in detail in the supplementary materials
[40]. Finding the permutation of atoms that maximizes
the total likelihood reduces to the linear assignment
problem. In Fig. 2d, we show an example of relative
likelihood as a function of permutation rank, showing
a rapid decrease of the probability. The experimental
parameters were chosen such that the typical distance



4

travelled by each atom is small compared to the inter-
particle distance, which strongly facilitates the analysis
as it ensures that the likelihood decreases quickly as a
function of permutation rank.

FOLLOWING THE EXPANSION DYNAMICS OF A
SINGLE-ATOM WAVE PACKET

We repeat the measurement above for initial wave
packets in traps of different frequencies ranging from
ω = 2π · 260(15) kHz to 2π · 760(30) kHz, by vary-
ing U0 from 7% to 61% of the maximum value. In a
given run we typically produce 20 to 50 independent
but identically prepared wave packets. For each prepa-
ration and expansion time t we record 100 image pairs
(1 and 2) from which we obtain an averaged histogram
reflecting the probability density. In Fig. 3, we show ex-
perimentally measured probability densities for each of
these wave packets at different times of their dynam-
ics, alongside the extracted evolution of their Gaussian
width σ(t), which shows the expected linear behaviour
in t at long times (see Fig. 3c). Indeed, for a wave
packet prepared with an average vibrational number
⟨n⟩ = (⟨nx⟩ + ⟨ny⟩)/2, the Schrödinger equation pre-
dicts that its width σ(t) evolves as:

σ2(t) = σ2(0) +
∆p2(0)

m2
t2 (1)

= (2⟨n⟩+ 1)
ℏ

2mω

[
1 + ω2t2

]
. (2)

In the long time limit ω2t2 ≫ 1, this simplifies to

σ(t) =
√

ℏω
2m

√
2 ⟨n⟩+ 1 · t. The slope of σ(t) in this

regime provides a direct measurement of ⟨n⟩. In Fig. 3d,
we report the measured values of ⟨n⟩ for all trap depths
U0, which all agree to better than 8% with the over-
all average value of ⟨n⟩ = 0.46(3), and are consistent
with the expansion predicted by the Schrödinger equa-
tion. For a thermal distribution of the vibrational state
populations, this corresponds to ∼ 50% of atoms in the
ground state |nx = 0, ny = 0⟩.
These values include a small correction due to the

non-instantaneous release of the wave packet. Indeed,
the turn-off of the lattice power follows a decaying sig-
moid with a characteristic time of ∼ 250 ns. For the
turn-off to be considered instantaneous, this time-scale
should be negligible compared to the harmonic oscillator
period T = 2π/ω. Otherwise, the trapped wave packet
first experiences a continuous opening of the harmonic
trap before release, resulting in an effective reduction of
the kinetic energy, and a lower apparent ⟨n⟩ during the
free expansion. We quantitatively account for this effect
and predict downshifts of the average motional number
δn = [0.014(1), 0.030(1), 0.064(2), 0.108(3), 0.173(4)] for
increasing values of U0 [40], with the largest impact for
the two highest values of U0, with T = 1.65(10)µs and
T = 1.3(1)µs. Correcting for this shift results in the
actual values of ⟨n⟩. Our ability to quantitatively dis-
tinguish this subtle effect demonstrates the high level
of control of our setup and the precision of our imaging
protocol.
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FIG. 4. Continuum pinning dynamics. Effect of the
lattice ramp time on the probability to be correctly pinned
on the closest lattice site when projecting from continuous
space (pideal, yellow data points), and the width of the mea-
sured Gaussian probability density in units of lattice spacing
(σ/aL, red data points) for U0/Umax = 0.23 and an expan-
sion time of 4µs. The vertical grey band displays the ramp
time interval where pideal is maximal and the vertical dashed
line shows the ramp time used for the data presented in
Fig. 3. The yellow dotted line indicates pideal = 1, repre-
senting perfect pinning from continuum. The inset shows a
semi-logarithmic plot of pideal, and σ normalized to the ini-
tial width, with the horizontal red band indicating a ±5%
interval. Dashed lines represent guides to the eye for the
respective data sets. Error bars give the standard error of
the maximum likelihood estimates.

PINNING FROM CONTINUUM

The agreement between the measured and predicted
wave packet dynamics also serves as a validation of our
procedure for pinning atoms initially evolving in con-
tinuous space, which has never been addressed quanti-
tatively. In most quantum gas microscope experiments,
atoms are initially loaded in the lowest band of a shallow
optical lattice, and the pinning is performed by ramp-
ing up the lattice power according to the adiabaticity
criterion ω̇/ω2 ≪ 1. By contrast, pinning atoms from
the continuum leads to a more complex projection dy-
namics of the wavefunction. Although it is impossible
to be strictly adiabatic – due to the absence of an initial
energy gap – one can still mitigate the impact of dia-
batic processes. This requires setting a lower limit on
the lattice ramp-on time τ , as an instantaneous ramp-
on would lead to a non-negligible projection onto higher
bands, where atoms are less efficiently cooled. The fi-
nal lattice frequency ω sets a suitable timescale for this
requirement, i.e. ω · τ ≫ 1. On the other hand, a reli-
able measurement of the initial atom positions requires
the lattice to be ramped fast enough to prevent any
significant expansion of the wave packet over the ramp-
up time τ . Ideally, atoms should be projected to the
nearest site upon pinning, which sets the condition that
v · τ ≲ aL, where v is a characteristic velocity of the
system. The lattice ramp time is therefore constrained
by the double inequality ω−1 ≪ τ ≲ aL/v.

To quantitatively address this question, we performed
the same type of wave packet expansion measurement,
varying the ramp up time of the lattice τ , for a fixed
expansion time t. As figures of merit for the reliability
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of the pinning, we extract the Gaussian width σ, and
the probability pideal to be pinned to the closest lattice
site for different ramp up times. The probability pideal
is directly provided by our maximum likelihood anal-
ysis [40]. In Fig. 4, we present a typical optimization
measurement showing that pideal first increases rapidly
to reach a maximum value of 99% for τ = 2− 5µs and
starts to slowly decrease for longer times. On the other
hand, the Gaussian width σ is essentially constant up to
τ = 5µs and then follows a linear increase. In terms of
the previously discussed time contraints, σ is expected
to grow with τ and hence serves to identify the upper
time limit, while keeping pideal ≈ 1 sets the lower time
limit. We are thus in a favorable situation where we
have a range of values for τ , where pideal is maximal
while σ remains close to its τ = 0 value. This is quan-
titatively consistent with the double inequality above,
which in this specific case yields 0.16µs ≪ τ ≲ 4µs.
For all the data presented in the previous section, we
have used a fixed ramp time τ = 4µs for the sake of
consistency, with a negligible cost on the precision of σ
for the highest trap depths.

This study establishes a general requirement on the
pinning timescale for the projection of an extended
wavefunction from continuous space, which is con-
strained by two limits. While the lower time limit will
remain fixed for most experiments, the upper limit de-
pends on the typical particle velocity. For instance, for
a 2D degenerate Fermi gas with an inter-particle spac-
ing of a few lattice sites, the typical Fermi velocities
are ∼ 0.02m/s, an order of magnitude smaller than
the particle velocities probed here. The upper ramp-
up time limit could therefore be relaxed even further
in that case, which implies that our imaging method is
directly applicable to such a system.

OUTLOOK

In this work, we observed the textbook expansion dy-
namics of a one-atom Gaussian wave packet using a new

protocol for single-atom-resolved imaging in continuous
space. The excellent agreement obtained here with the
scaling dynamics predicted by the Schrödinger equation
constitutes a crucial benchmark for the reliability of our
imaging method. Our work represents a milestone to-
wards applying quantum gas microscopy to continuous-
space many-body systems in the near future.

Alongside recent advances in single-atom imaging of
few particle systems [29, 44, 45], our approach opens
radically new possibilities for exploring correlated bulk
quantum gases at the microscopic level, for instance
by allowing direct access to spatially-resolved correla-
tion functions. In combination with currently available
homogeneous potentials [46–49], our imaging technique
will facilitate the search for exotic phases of matter
that have been elusive so far, such as the Fulde-Ferrell-
Larkin-Ovchinnikov superfluid [50, 51] or atomic quan-
tum Hall fluids with fractional statistics [52–54].
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A. S. Kheifets, L. Argenti, A. Palacios, F. Mart́ın,
T. Jahnke, and R. Dörner, Nat Commun 8, 2266 (2017).

[11] Q. Guan, V. Klinkhamer, R. Klemt, J. H. Becher,
A. Bergschneider, P. M. Preiss, S. Jochim, and
D. Blume, Phys. Rev. Lett. 122, 083401 (2019).

[12] E. T. Karamatskos, S. Raabe, T. Mullins, A. Tra-
battoni, P. Stammer, G. Goldsztejn, R. R. Johansen,
K. D lugo lecki, H. Stapelfeldt, M. J. J. Vrakking, S. Trip-
pel, A. Rouzée, and J. Küpper, Nat Commun 10, 3364
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[37] S. Buob, J. Höschele, V. Makhalov, A. Rubio-Abadal,
and L. Tarruell, A strontium quantum-gas microscope
(2023), arxiv:2312.14818.

[38] S. Jin, K. Dai, J. Verstraten, M. Dixmerias, R. Alhyder,
C. Salomon, B. Peaudecerf, T. De Jongh, and T. Yefsah,
Phys. Rev. Research 6, 013158 (2024).

[39] For the sake of clarity we here ignore a slight difference
between the frequencies in the x and y directions. This
is however taken into account in the data analysis.

[40] Additional details on the experimental setup and the
data analysis can be found in the supplementary mate-
rials.

[41] L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf,
V. V. Ramasesh, W. S. Bakr, T. Lompe, and M. W.
Zwierlein, Phys. Rev. Lett. 114, 193001 (2015).

[42] M. F. Parsons, F. Huber, A. Mazurenko, C. S.
Chiu, W. Setiawan, K. Wooley-Brown, S. Blatt, and
M. Greiner, Phys. Rev. Lett. 114, 213002 (2015).

[43] A. Omran, M. Boll, T. A. Hilker, K. Kleinlein, G. Sa-
lomon, I. Bloch, and C. Gross, Phys. Rev. Lett. 115,
263001 (2015).

[44] M. Holten, L. Bayha, K. Subramanian, S. Brandstetter,
C. Heintze, P. Lunt, P. M. Preiss, and S. Jochim, Nature
606, 287 (2022).

[45] S. Brandstetter, P. Lunt, C. Heintze, G. Giacalone,
L. H. Heyen, M. Ga lka, K. Subramanian, M. Holten,
P. M. Preiss, S. Floerchinger, and S. Jochim, Emer-
gent hydrodynamic behaviour of few strongly interact-
ing fermions (2023), arXiv:2308.09699.

[46] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P.
Smith, and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406
(2013).

[47] L. Chomaz, L. Corman, T. Bienaimé, R. Desbuquois,
C. Weitenberg, S. Nascimbène, J. Beugnon, and J. Dal-
ibard, Nat Commun 6, 6162 (2015).

[48] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic,
T. Yefsah, J. Struck, and M. W. Zwierlein, Phys. Rev.
Lett. 118, 123401 (2017).

[49] N. Navon, R. P. Smith, and Z. Hadzibabic, Nat. Phys.
17, 1334 (2021).

[50] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[51] A. I. Larkin and Y. N. Ovchinnikov, Soviet Physics-

JETP 20, 762 (1965).
[52] N. Cooper, Advances in Physics 57, 539 (2008).
[53] T.-L. Ho, Fusing Quantum Hall States in Cold Atoms

(2016), arxiv:1608.00074.
[54] C. Repellin, T. Yefsah, and A. Sterdyniak, Phys. Rev.

B 96, 161111 (2017).
[55] D. J. Heinzen and D. J. Wineland, Phys. Rev. A 42,

2977 (1990).
[56] A. J. Kerman, V. Vuletic, C. Chin, and S. Chu, Phys.

Rev. Lett. 84, 439 (2000).
[57] R. E. Burkard and E. Cela, in Handbook of combina-

torial optimization: Supplement volume A (Springer,
1999) pp. 75–149.

[58] J. Lewis, H. R. and W. B. Riesenfeld, Journal of Math-
ematical Physics 10, 1458 (1969).

https://doi.org/10.1038/s41557-022-00896-2
https://doi.org/10.1038/s41557-022-00896-2
https://doi.org/10.1119/1.16104
https://doi.org/10.1038/s41567-019-0663-9
https://doi.org/10.1038/s41567-019-0663-9
https://doi.org/10.1103/RevModPhys.84.157
https://doi.org/10.1126/science.290.5489.122
https://doi.org/10.1103/PhysRevLett.91.196804
https://doi.org/10.1103/PhysRevLett.130.023002
https://doi.org/10.1103/PhysRevLett.130.023002
https://doi.org/10.1126/science.1174436
https://doi.org/10.1038/nature09827
https://doi.org/10.1038/nature09827
https://doi.org/10.1038/nphys2561
https://doi.org/10.1038/nphys2561
https://doi.org/10.1103/PhysRevLett.110.190601
https://doi.org/10.1103/PhysRevLett.110.190601
https://doi.org/10.1126/science.1260364
https://doi.org/10.1126/science.1260364
https://doi.org/10.1126/science.abo0608
https://doi.org/10.1103/PhysRevLett.126.020401
https://doi.org/10.1103/PhysRevLett.126.020401
https://doi.org/10.1038/s41567-022-01890-8
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature09378
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/s41567-021-01370-5
https://doi.org/10.1038/s41567-021-01370-5
https://doi.org/10.1126/science.1192368
https://doi.org/10.1126/science.1192368
https://doi.org/10.1038/s41567-019-0696-0
https://doi.org/10.1038/s41567-019-0696-0
https://doi.org/10.48550/arXiv.2312.14818
https://arxiv.org/abs/2312.14818
https://doi.org/10.1103/PhysRevResearch.6.013158
https://doi.org/10.1103/PhysRevLett.114.193001
https://doi.org/10.1103/PhysRevLett.114.213002
https://doi.org/10.1103/PhysRevLett.115.263001
https://doi.org/10.1103/PhysRevLett.115.263001
https://doi.org/10.1038/s41586-022-04678-1
https://doi.org/10.1038/s41586-022-04678-1
https://arxiv.org/abs/2308.09699
https://arxiv.org/abs/2308.09699
https://arxiv.org/abs/2308.09699
https://arxiv.org/abs/arXiv:2308.09699
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1038/ncomms7162
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1103/PhysRevLett.118.123401
https://doi.org/10.1038/s41567-021-01403-z
https://doi.org/10.1038/s41567-021-01403-z
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1080/00018730802564122
https://doi.org/10.48550/arXiv.1608.00074
https://arxiv.org/abs/1608.00074
https://doi.org/10.1103/PhysRevB.96.161111
https://doi.org/10.1103/PhysRevB.96.161111
https://doi.org/10.1103/PhysRevA.42.2977
https://doi.org/10.1103/PhysRevA.42.2977
https://doi.org/10.1103/PhysRevLett.84.439
https://doi.org/10.1103/PhysRevLett.84.439
https://doi.org/10.1063/1.1664991
https://doi.org/10.1063/1.1664991


7

SUPPLEMENTARY MATERIALS

Experimental sequence

In this section we provide additional details on the
preparation and measurement protocol of the single-
atom wave packets. After a laser cooling sequence de-
scribed in [38], we load a balanced mixture of ∼ 4× 106
6Li atoms in the two lowest hyperfine states of the
electronic ground state manifold in the Paschen-Back
regime – denoted as |1⟩ and |2⟩ – in a cylindrically sym-
metric optical dipole trap (ODT) created by a 156W,
1070 nm ytterbium fiber laser. The ODT is perpendicu-
larly crossed with a highly oblate 1064 nm laser beam, a
light sheet with a 1/e2-waist of wx = 80µm, wz = 6µm
in the horizontal and vertical direction respectively, and
a maximum power of 10W. We initiate evaporation by
ramping down the power of both beams to 2.5% of their
initial value, while maintaining a magnetic field of 832G
– corresponding to the center of the broad Feshbach res-
onance between states |1⟩ and |2⟩. The cylindrical ODT
is subsequently ramped off, fully loading the atoms in
the potential of the light sheet, and the magnetic field
is ramped to 0G, effectively removing particle interac-
tions.

In order to create several independently expanding
single-particle wave packets, we reduce the atom num-
ber to N ∼ 20− 50 by briefly turning off the light sheet
for 3ms before ramping it back to its maximum power
and turning on the triangular lattice. The latter is cre-
ated by the self-interference of a single 1064 nm laser
beam (wx ≃ wy ≃ 80µm, Pmax = 30W), crossing at
120◦ angles, as described in the main text. The lat-
tice frequencies differ due to a slight anisotropy, leading
to ωx ≃ 2π × 1020(50) kHz and ωy ≃ 2π × 930(50) kHz.
The average frequency ω = (ωx+ωy)/2 is independently
calibrated using intensity modulation and Raman spec-
troscopy, while the anisotropy is quantified through the
method described in Ref. [38]. In the following, we ig-
nore the anisotropy for simplicity and set ωx ≃ ωy ≃ ω,
although the exact frequencies are used for data analy-
sis.

At full power, tunneling is strongly suppressed and
atoms are locally confined to a single lattice site in
the xy-plane. The light sheet ensures vertical con-
finement with a maximum trapping frequency of ωz =
2π× 50(5) kHz. We then initiate Raman sideband cool-
ing (RSC) simultaneously with the triangular lattice
ramp-on. An initial cooling stage of 3 s brings the indi-
vidual atoms close to the ground state of the individual
lattice sites. Further details on the RSC are provided in
the next section.

After the first RSC stage we record a single-atom
resolved fluorescence image with an exposure time of
600ms. The imaging system consists of a microscope
objective, followed by a 1500mm focal length lens and
an EMCCD camera. The objective has a numerical
aperture of 0.56, an effective focal length of 27mm and
a working distance of 16mm, resulting in a measured
magnification of M = 59.7(6). The vertical confine-
ment provided by the light sheet ensures that all atoms
lie within the 2-µm depth of field of the microscope ob-
jective. During exposure, we collect around ∼ 800 pho-
tons per atom on the camera, 6.5% of the total number
of photons emitted.

This first image allows us to register the initial posi-
tions of the individual atoms in the dilute sample. We
then switch off RSC beams and adiabatically decrease
the lattice and light sheet powers to a fraction of their
maximum value (ranging from 7% to 61% of the maxi-
mum for the lattice, and a fixed 10% for the light sheet),
before turning the lattice off completely and letting each
wave packet expand for a certain time t. During expan-
sion, we keep the light sheet power at 10% of its maxi-
mum value to maintain vertical confinement, while the
effects of the in-plane light sheet potential are negligible
for the considered expansion times. Finally, the lattice
and light sheet are again ramped up to high power, af-
ter which we turn the RSC beams back on. We then
expose the camera for 600ms a second time, and obtain
another single-atom image with different atom positions
due to the expansion of each wave packet.

Raman sideband cooling and single atom imaging

The atomic trapping potential of the individual lattice
sites at the bottom of the wells is accurately modeled
by two-dimensional harmonic oscillators with an energy
spacing given by the lattice trapping frequency ω. We
hence denote their motional quantum states as |nx, ny⟩,
corresponding to an energy E = (nx+ny+1) ℏω. Raman
sideband cooling is used to bring the trapped atoms
close to the motional ground state |nx = 0, ny = 0⟩ of
each lattice site during the initial preparation as well as
to provide fluorescence to obtain single atom images. It
achieves this by coupling a change of the atomic internal
state with a change of the motional state through a two-
photon Raman transition [55, 56].

At zero magnetic field, the electronic ground state
manifold of 6Li consists of the |g1⟩ = |22S1/2, F =

1/2⟩ and |g2⟩ = |22S1/2, F = 3/2⟩ hyperfine lev-
els, with F the hyperfine angular momentum quan-
tum number. When the atoms are trapped in the
sites of the two-dimensional lattice a full description
of their eigenstates must include the motional quan-
tum numbers: |F, nx, ny⟩ =

∣∣22S1/2, F
〉
|nx, ny⟩. Dur-

ing RSC two Raman beams, R1 and R2, drive a two-
photon transition between |F = 3/2, nx, ny⟩ and ei-
ther |F = 1/2, nx − 1, ny⟩ or |F = 1/2, nx, ny − 1⟩. The
beam geometry, represented in Fig. 1c of the main text,
with R1 along y and R2 along x − z, is chosen such
that the differential wave vector δk = k1 − k2 has a
non-zero projection along all three spatial directions,
ensuring momentum transfer along each, and thus cou-
pling to different motional states. The two-photon Rabi
frequencies Ωi with i ∈ {x, y, z}, are directly propor-
tional to the respective momentum-displacement opera-
tors: Ωi ∝ ⟨ni − 1| eiδk·r |ni⟩. Dissipation is introduced
through the addition of a repumper (RP) tuned to the
atomic D1 transition (22S1/2 → 22P1/2), exciting the

atoms in the
∣∣22S1/2, F = 1/2

〉
to the

∣∣22P1/2, F
′ = 1/2

〉
internal state, followed by a spontaneous decay back
into the electronic ground state. For the cooling to
be efficient, the repumping process should preferen-
tially conserve the motional quantum numbers. This
propensity is quantified by the Lamb-Dicke parameter
ηi =

√
ℏ/(2mωi)δki and holds when ηi

√
ni ≪ 1. In

this Lamb-Dicke regime, each cooling cycle reduces the
motional quantum number by one.
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TABLE I. Raman beam parameters. Intensities are provided
in units of the D1 saturation intensity (7.59 mW/cm2).

Beam R1 R2 RP

Waist (µm) 120 120 5000

Power (mW) 4.0 0.4 2.0

Intensity (ID1
sat ) 2300 230 0.7

Propagation axis ey
ex−ez√

2
ex

Polarization ez ey ez

In the combined xy-lattice and light sheet, we obtain
the following Lamb-Dicke factors ηx = 0.19(1), ηy =
0.28(1) and ηz = 0.86(4) at maximal power. Although
we do not strictly reach the Lamb-Dicke limit in the
vertical direction, this does not prevent us from pinning
the atoms in the xy-plane, as we have experimentally
verified that RSC keeps the atoms trapped in a lattice
site for several seconds, orders of magnitude longer than
the observed lifetime in the absence of cooling.

In order to minimize parasitic one-photon transitions
arising from off-resonant processes and to favor two-
photon transitions, R1 and R2 are both blue-detuned
with a one-photon detuning of about ∆ ∼ 2π × 3GHz
with respect to theD1 transition. Additionally, the two-
photon detuning δ = 2π × 1.5MHz with respect to the
F = 1/2 → F = 3/2 hyperfine transition corresponds
to ∼ 1.5ω, which provides a good balance between cool-
ing power and fluorescence. We attribute the necessity
to be red-detuned from the |n⟩ → |n− 1⟩ transition to
the presence of power broadening, which increases the
probability of an off-resonant |n⟩ → |n⟩ carrier transi-
tion. Finally, the repumper frequency is centered on the
F = 1/2 → F ′ = 1/2 transition of the D1 line, as this
excited state has a high probability to decay back to
F = 3/2, maximizing the repumping efficiency.

The Raman beam characteristics are presented in Ta-
ble I. In absence of the lattice we measure a bare two-
photon Rabi frequency Ω = 2π × 800(50) kHz. At full
lattice power, the motional-state coupling alters the
Rabi frequencies by the respective Lamb-Dicke factors
leading to values of Ω̃x = ηxΩ = 2π × 150(15) kHz

and Ω̃y = ηyΩ = 2π × 220(20) kHz, corresponding to
the n = 1 → n = 0 transition. The repumping rate
F = 1/2 → F ′ = 1/2 → F = 3/2 was experimentally
determined to be on the order of 106 s−1.

Numerical Simulation of the Raman Cooling
Process

Using the experimental RSC and lattice parameters,
we determine the RSC efficiency and estimate the aver-
age motional quantum number ⟨n⟩ of the atoms in the
steady state by numerically solving the Lindblad master
equation that describes the time evolution of the density
matrix ρ throughout the cooling process:

dρ

dt
= − i

ℏ
[H, ρ] +

∑
µ

(
LµρL

†
µ − 1

2
L†
µLµρ−

1

2
ρL†

µLµ

)
.

(S1)
The first term on the right-hand side of Eq. (S1) cor-

responds to the Hamiltonian (H) evolution of the sys-
tem while the second part captures the decohering and

dissipative processes through a set of jump operators
Lµ, where µ indexes the relevant transitions. For in-
stance, spontaneous emission from an excited state |e⟩
to the ground state |g⟩ is represented by the operator

L =
√
Γ|g⟩⟨e|, where Γ is the linewidth of the excited

state.

The relevant Hilbert space is spanned by the prod-
uct of the electronic and motional states of the atom.
At zero magnetic field we can simplify the electronic
structure to the two ground states |g1⟩ and |g2⟩, as
well as two excited states; |e1⟩, which represents the∣∣22P1/2, F = 1/2

〉
state addressed by the repumper

beam, and |e2⟩, which encompasses all other excited
states from the D1 and D2 transitions. The mo-
tional spectrum consists of the two dimensional har-
monic oscillator eigenstates |nx, ny⟩ with associated en-
ergy (nx + ny + 1)ℏω. We include a hard cutoff on the
maximal number of excitations nx + ny ≤ Ncutoff = 10,
which we verify to be sufficient for convergence of all
relevant quantities.

The Hamiltonian includes the two-photon transition
between |g1⟩ and |g2⟩ with a Rabi frequency Ω, as
well as the repumper beam coupling |g1⟩ to the ex-
cited state |e1⟩ with a Rabi frequency Ωp (both deter-
mined through experimental calibration). Spontaneous
emission is taken into account via the jump operators
Li,j =

√
Γi,j |gj⟩⟨ei|, with decay rates Γi,j obtained

from the 6Li electronic structure. Off-resonance absorp-
tion events from Raman beams are included through
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FIG. S1. Simulated time-evolution of the motional
degrees of freedom during RSC. Atoms start in a ther-
mal superposition of harmonic oscillator states with ⟨nx⟩ =
⟨ny⟩ = 2. (a) Evolution of the average quantum number
⟨nx,y⟩ and temperature over time. Temperature is obtained
by fitting the (nx, ny) populations to a Boltzmann distribu-
tion. (b) Evolution of the fraction of atoms with nx = 0
(grey line), and the fraction of atoms in the absolute ground
state |nx = 0, ny = 0⟩ (black line).
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(a) (b) (c) (d)

Threshold FT NN

FIG. S2. Image reconstruction procedure. (a) Raw experimental image. (b) A simple threshold is applied to distinguish
the signal from the background. Contiguous bright pixels are grouped together in clusters, and only those that are well-
separated and have a size comparable to the experimental point-spread function (light red clusters) are used for lattice
reconstruction. Others (dark red clusters) are not used for lattice reconstruction. (c) Lattice site positions (white dots)
are found through a Fourier transform (FT) on the center-of-mass position of each of selected clusters. (d) A small region
of interest of 9 × 9 pixels around each lattice site is extracted from the image and sent through the neural network (NN)
described in Fig. S3, which was trained to distinguish between occupied and unoccupied sites. Identified atoms are indicated
by red circles.

an effective jump operator Lheating =
√
γheating|e2⟩⟨g2|,

where γheating is estimated from an independent exper-
imental calibration.

We get the transition coefficients between any two
harmonic oscillator states by multiplying the bare cou-
pling constants defined above (Ω, Ωp, Li,j and Lheating)
by the factor

〈
n′
x, n

′
y

∣∣ eiδk·r |nx, ny⟩, which only de-
pends on the Raman beams geometry and are computed
through the corresponding integral over the eigenstates
of the harmonic oscillator. To obtain the equilibrium
populations, we initialize the density matrix to an ar-
bitrary configuration ρ0 and let it evolve according to
Eq. (S1) until a steady-state is reached. A typical time
evolution of motional degrees of freedom is shown in
Fig. S1. We also obtain an uncertainty estimate on
⟨nx,y⟩ by repeating the simulation with model parame-
ters randomly drawn from a distribution reflecting their
experimental uncertainty. This results in an average of
⟨nx,y⟩ = 0.4(1) across all realizations, in good agree-
ment with the experimentally determined values.

Image analysis

We extract atomic positions from the fluorescence im-
ages obtained with our microscope through a two-step
analysis. For each image, we first reconstruct the struc-
ture of the pinning lattice to identify the position of the
individual lattice sites. We then determine the occu-
pancy of each previously identified lattice sites using a
high-accuracy neural network.

Fig. S2 shows an example of the image analysis proce-
dure on part of a single-atom image. As an initial step,
lattice reconstruction is performed by identifying clearly
resolvable atoms and performing a Fourier transform on
their positions. We first apply a simple threshold on
the pixel values, separating the signal (active) from the
background (inactive). Active pixels are subsequently
joined into contiguous groups of pixels connected to each
other on at least one side. To remove effects of back-
ground noise, the lattice reconstruction only considers
pixel groups with a size compatible with the experimen-
tal point-spread function (light red clusters in Fig. S2b,
with the dark red clusters corresponding to those not

matching the expected size). We then apply a Fourier
transform on the center-of-mass positions of these con-
tiguous active pixel groups. This gives us the reciprocal
lattice vectors, from which we reconstruct the positions
of all individual lattice sites on each image (Fig. S2c).

We determine the occupancy of each reconstructed
lattice site using a neural network trained to recognize
the atomic fluorescence pattern. We take a 9 × 9 pixel
region centered on each site and pass the resulting array
of pixel values to the neural network, which consists of
three fully connected hidden layers and an output layer
(see Fig. S3). To train the network, we simulated single-
atom images by randomly placing atoms on the trian-
gular lattice structure, creating an atomic fluorescence
pattern at each occupied site using the experimentally
determined PSF subject to Poissonian fluctuations, and
adding overall Poissonian background noise to account

Layer

Nodes

Activation

Input

9x9=81

-

HL1

50

ReLU

HL2

25

ReLU

HL3

12

ReLU

Output

1

Sigmoid

FIG. S3. Neural network architecture for atom recog-
nition. For each lattice site, we select a 9 × 9 pixels region
of interest (ROI), which serves as the input layer (81 nodes).
The network itself consists of this input layer, 3 fully con-
nected hidden layers (HL1, HL2 and HL3) – with 50, 25 and
12 nodes, respectively, and a ReLU activation function – and
a single output node with a sigmoid activation. The network
is trained to recognize an atom located at the center of the
ROI, and will ignore neighboring occupied sites, as seen from
the negative result on the fourth image.
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for unfiltered background light. To increase robustness
of the pattern recognition, we deliberately chose the sim-
ulated signal-to-noise ratio to be a factor 2 to 3 worse
than in typical imaging conditions, and the atomic den-
sity to be 5 to 100 times larger than for our experimental
images. Even in these highly degraded conditions, the
neural network differentiates occupied and unoccupied
sites with 99.5% accuracy.
To quantify the percentage of atoms that remain in

their pinned lattice site through RSC, we take two suc-
cessive single atom images (without release) by expos-
ing the camera for 600ms, followed by 400ms wait time
and a second exposure of 600ms, all while maintaining
the lattice and Raman beams. We find that 99.0(3)%
of atoms identified on the first picture are found on the
same exact lattice site on the second picture, with a hop-
ping fraction of 0.8(2)% and a loss fraction of 0.2(1)%
(estimated from the analysis of ∼ 1500 pairs of single
atom images).

Maximum likelihood estimation and assignment
problem

Reconstructing the probability distribution associ-
ated with the expanding wave packet, as shown in Fig. 3
of the main text, requires matching atoms in the first
image with their corresponding position on the second
image. While we are interested in single-particle be-
havior, we load multiple atoms in different lattice sites
(typically 20 − 50). This allows us to obtain multiple
independent realizations in a single sequence, reducing
the measurement time and decreasing the sensitivity to
various changes in experimental conditions, with the
added benefit of making the lattice reconstruction (as
described in the Image Analysis section) more robust.
In assigning the atoms detected after expansion to their
initial position, all possible permutations are in princi-
ple allowed due to the indistinguishability of identical
particles. In order to quantitatively determine the rele-
vance of each permutation, we follow a self-consistent
approach based on a maximum likelihood estimation
summarized in Fig. S4 and presented in the following.

This maximum likelihood analysis consists in an iter-
ative optimization of the parameters of the model de-
scribed below, which represents the probability distri-
bution for the distance traveled by the atoms between
the two images. Because we pin from the continuum, we
model the distance traveled by the atoms between the
first and second image with a multi-modal distribution,
written as the sum of three contributions, corresponding
to the following scenarios for the atom:

• Being recaptured on the nearest lattice site upon
pinning, occurring with probability pideal. The
associated probability density is a 2D Gaussian
distribution with standard deviations σx, σy, i.e.,
the expected density distribution of the expanding
wave packet.

• Being projected onto a high lattice band, leading
to inefficient RSC and resulting in hovering above
the lattice, occurring with probability phover. In
this case the recapture occurs stochastically and
the probability density for the corresponding tra-
jectory is a decaying exponential of characteristic
size L ≫ σx, σy.

FIG. S4. Maximum likelihood estimation algorithm.
We obtain the probability distribution of the relative posi-
tion of atoms after lattice release and recapture, using the
iterative procedure shown in the flowchart. After initializa-
tion (A), the prior distribution pn is used in (B) to compute
the K most likely permutations of atoms. These are used
to update the prior distribution with a maximum likelihood
estimation for the parameters (C). The obtained posterior
distribution is used as a new prior (D). These three steps
are repeated until convergence is reached, leading to the fi-
nal parameters (E).

• Being lost completely with a probability ploss =
1− pideal − phover.

The total distribution is therefore:

f(x, y) =
pideal

2πσxσy
e
− x2

2σ2
x
− y2

2σ2
y +

phover

2πL
√
x2 + y2

e−
√

x2+y2

L .

(S2)
The model is thus described by five parameters Π =

{pideal, σx, σy, phover, L}. At the beginning of the opti-
mization, we initialize the model parameters to realis-
tic values Π0 (step A in Fig. S4), which are improved
through an iterative process described below.

The parameter set at the start of the nth iteration is
denoted Πn, with an associated probability distribution
fn(r). For the ith experimental run of a given lattice
power and release time, fn(r) is used as a prior distri-
bution to compute the log-likelihood matrix M (n,i) for
atoms to go from any of the initial position to any of
the final positions:

M
(n,i)
α,β = log (fn (r = r1,i,α − r2,i,β)) , (S3)

where r1,i,α and r2,i,β are the positions corresponding
to atom α on the first image, and atom β on the second
image of experimental realization i, respectively.
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Finding the most likely pairing of atoms is then equiv-
alent to finding the permutation of matrix columns max-
imizing the trace. This problem, known as the linear as-
signment problem [57], can be solved in polynomial time
O(N3), where N is the matrix size (compared to O(N !)
for the brute force method consisting in testing each pos-
sible permutation). The algorithm can be generalized to
find the K most likely configurations with a O(KN4)
time complexity (step B). For data analysis performed
in this article, we used K = 20000 permutations, at
which point the relative likelihood has decreased to a
typical value of 10−8 - 10−16 (see Fig. S5). We indeed
reach convergence of model parameters at such values
of K, as shown in Fig. S6. The likelihood Ln,i for image
i is then taken as the sum of the likelihood of these K
permutations:

Ln,i =

K∑
k=1

exp

(
N∑

α=1

M
(n,i)
α,Sn,i,k(α)

)
, (S4)

where Sn,i,k : [1...N ] → [1...N ] is the kth most likely
permutation of atoms for experimental run i, calculated
during the nth iteration of the maximum likelihood rou-
tine.

Finally, model parameters are optimized to maximize
the total log-likelihood log(Ln) =

∑
i log(Ln,i) across all

experimental realizations (step C), resulting in parame-
ter set Πn+1. The posterior distribution obtained from
the maximum likelihood estimator is then used as the
prior distribution fn+1 for iteration n+1 (step D). Mul-
tiple iterations are required for self-consistency, because
computing the K most likely configurations relies itself
on the distribution that we are trying to estimate. Steps
(B), (C) and (D) are repeated until convergence of the
model parameters, at which point we obtain the final
probability distribution f∞ (step E). This distribution
is used to construct the various histograms in Fig. 3a of
the main text by computing the K most likely permu-
tations for each image pair and averaging them based
on their relative likelihood. Finally a linear fit of σx, σy

at different release times t is used to obtain the average
quantum number n of the wave packet (Fig. 3b and 3c
of the main text).
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FIG. S5. Typical relative likelihood estimates for dif-
ferent release times. Evolution of the relative likelihood
for the 20000 most likely permutations for U0 = 0.38Umax

and t = 3µs (red line), t = 5µs (blue line), t = 8µs (green
line) and t = 12.5µs (yellow line), and a total atom number
of N ≃ 25. For larger release times t the likelihood decreases
less rapidly due to the atoms traveling further.
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FIG. S6. Convergence of model parameters. Evolu-
tion of σ =

σx+σy

2
(red circles) and pideal (yellow squares)

as a function of the largest permutation rank K taken into
account for the maximum likelihood estimation in equation
(S4), for U0 = 0.23Umax and t = 8µs. Dashed lines are
guides to the eye for the respective parameters.

Impact of non-instantaneity of the trap release

In this section, we describe how we correct the ex-
tracted average motional quantum numbers shown in
Fig. 3d for the finite duration of the lattice ramp-down.
As the lattice power is controlled using an acousto-
optic modulator, this switch-off time is limited to toff =
250 ns. For the momentum distribution after release to
reflect the one before release, toff must be short with
respect to the characteristic lattice timescale 1/ω, i.e.,
ωtoff ≪ 1. This condition is not fulfilled for all of
our data, especially for the highest value of U0, where
ωtoff ≃ 1.2. This results in a difference between the av-
erage kinetic energy of the atoms before release, ⟨Ek⟩0,
and after release, ⟨Ek⟩f , leading to the apparent de-

crease in ⟨n⟩. This effect is to a lesser extent present for
lower values of U0.

The resulting change in kinetic energy of the particles
prior to release can be determined analytically, either
through a full treatment of the time-dependent quantum
harmonic oscillator [58] or through application of the
Ehrenfest theorem. Here, we follow the latter method.

Given a Hamiltonian H(t) = P̂ 2

2M + 1
2Mω2(t)X̂2, the

Ehrenfest theorem leads to a system of three coupled
differential equations:

d
〈
P̂ 2
〉

dt
= −Mω2(t)

〈
X̂P̂ + P̂ X̂

〉
d
〈
X̂2
〉

dt
=

1

M

〈
X̂P̂ + P̂ X̂

〉
d
〈
X̂P̂ + P̂ X̂

〉
dt

=
2

M

〈
P̂ 2
〉
− 2Mω2(t)

〈
X̂2
〉
. (S5)

Assuming we start in a thermal superposition of har-
monic oscillator eigenstates before the lattice release,
the initial conditions are:

〈
P̂ 2

2M

〉
0
=
〈

1
2Mω2

0X̂
2
〉
0
= E0

2〈
X̂P̂ + P̂ X̂

〉
0
= 0.

(S6)
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To determine the change in kinetic energy due to the
non-instantaneous switch off, we use the ω(t) curve ob-
tained from experimental photodiode signals at the dif-
ferent values of U0. The ramp-down profile for each
power is well-fitted by the following equation:

ω2(t) = ω2
0

1− erf(2t/toff)

2
, (S7)

where erf is the error function, and toff ≃ 250 ns. The
lattice frequency goes from ω0 for t → −∞ to ω = 0 for
t → ∞.
By numerically integrating the system of equations

(S5) we obtain the ratio of final to initial kinetic energy
⟨Ek⟩f / ⟨Ek⟩0, which only depends on the dimensionless
parameter ω0toff . Resulting values for this ratio at the
various lattice frequencies and ramp times are shown in
Fig. S7 and amount to 98.5(5)%, 97.0(5)%, 93.5(1.0)%,
89(1)% and 82(1)% for U0/Umax = 0.07, 0.14, 0.23, 0.38
and 0.61, respectively. Reported uncertainties come
from the experimental uncertainty in the ramp-off pro-
file of the lattice intensity. Finally, we use these fac-
tors to correct the observed values of ⟨n⟩ for this non-
instantaneous ramp-down, as shown in Fig. 3d.
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FIG. S7. Energy correction factor due to non-
instantaneous lattice release. Ratio of the final to initial
kinetic energy of a quantum harmonic oscillator with a ramp-
down profile ω(t) given by Eq. (S7). Correction factors for
the measurements presented in the main text are determined
using a monitoring photodiode to extract the time profile of
the lattice intensity and shown as red circles.
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