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We report on the design of a Hamiltonian ratchet exploiting periodically at rest integrable tra-
jectories in the phase space of a modulated periodic potential, leading to the linear non-diffusive
transport of particles. Using Bose-Einstein condensates in a modulated one-dimensional optical
lattice, we make the first observations of this new spatial ratchet transport. In the semiclassical
regime, the quantum transport strongly depends on the effective Planck constant due to Floquet
state mixing. We also demonstrate the interest of quantum optimal control for efficient initial state
preparation into the transporting Floquet states to enhance the transport periodicity.

The ratchet effect is the well-known yet intriguing phe-
nomenon which sees the emergence of a directed current
for particles initially at rest in a space and time peri-
odic modulated potential, while no net average force is
exerted on the system. Its origin is well understood and
relies minimally on the breaking of space and time rever-
sal symmetries [1-3]. Two main families of ratchets can
be distinguished: on one hand, Brownian ratchets are
systems experiencing stochastic forces, where the poten-
tial rectifies the isotropy of Brownian motion [4] into a
net directed transport [5-7]. Such ratchets are thought
to take part in the operation of molecular motors [8, 9], as
for instance in the case of kinesin [10]. They are usually
studied in the overdamped regime to model the strong
dissipation of biological media [7, 11]. On the other
hand, deterministic ratchets, which can be either dissi-
pative [1, 12-19] or Hamiltonian (see below), are systems
for which the classical dynamics is well captured by their
phase space flow. Such Hamiltonian systems, under mod-
erate temporal driving, exhibit a mixed dynamics with
phase portraits displaying islands of regular trajectories
embedded in a chaotic sea of non-integrable ones (see e.g.
Fig. 1).

Studies on Hamiltonian ratchets have mainly fo-
cused thus far on delocalized transport configurations,
where the directed transport originates in a momentum-
asymmetric chaotic sea: in the classical case from trajec-
tories ergodically spanning the chaotic sea [1, 14, 20], and
in the quantum case through state coupling with eigen-
states delocalized over it [20-23]. In contrast, Hamilto-
nian ratchets relying on regular islands of quasi-periodic
trajectories offer a mean to incrementally transport lo-
calized particles on a periodic substrate in a ballistic
way [21]. Note that this transport appears classically and
is distinct from topological pumping effects ([24] and ref-
erences therein). Such regular Hamiltonian ratchets have
been experimentally studied mainly with phase-shifted
kicked-rotors, implemented in cold atom systems, in the
case of step-wise transport along the momentum direc-
tion (an accelerator ratchet) [25-27], and with only up to

20% of an initial atom packet loaded in the transporting
island. Meanwhile, regular Hamiltonian ratchets along
the position coordinate [28] remain unexplored experi-
mentally so far. Beyond the use of regular islands with a
ballistic motion at all times, as found e.g. in the kicked
rotor, of particular interest is the design of a dynamical
system in which the transporting island periodically co-
incides with the ground state of the potential, in which
a collection of particles initially at rest can therefore be
directly loaded and transported.

In this Letter, we solve this non-trivial problem, the
solution of which we refer to as a spatial halting ratchet
(SHR). We show how such a solution can be engineered
with a simple gating ratchet [18, 29], a one-dimensional
space-symmetric potential modulated in amplitude and
phase. We obtain parameters leading to classical or-
bits of initial zero velocity having a ratcheting motion
of one spatial period per modulation period. For these
parameters, we study quantum transport as a function
of the effective reduced Planck constant heg, which sets
the minimal phase-space area of quantum states. As
a modulation parameter such as heg is varied, avoided
crossings in the Floquet spectrum lead to state mixing.
Although this phenomenon is sought after in the case
of diffusive Hamiltonian ratchets [22, 30] where it is the
source of transport, and is also key in chaos-assisted tun-
neling [31, 32], it has a deleterious effect in the regu-
lar transport case, as a wave packet initially prepared
over the classical ratcheting island may dynamically tun-
nel [33] out of it. This may be avoided by a precise
choice of parameter values, or controlled through spe-
cific state preparation. From our theoretical analysis,
we implement and observe experimentally the SHR with
matter waves, using Bose-Einstein condensates (BECs)
in a modulated one-dimensional optical lattice. We first
perform these experiments by loading the ratcheting Flo-
quet state from the ground state of the lattice. For val-
ues of heg for which the ratcheting island is substantially
coupled with the chaotic sea, we then show how one can
account for state mixing by employing quantum optimal
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FIG. 1. Stroboscopic phase portraits and experimen-

tal images for (v, ¢, ¢0) = (1.2,0.3,1.7) at sub-period obser-
vation times t = (n+7) x 27 (withn € Nand r =0, 0.25, 0.5
and 0.75 for (a) to (d) resp.). Left: the ratcheting island and
the trajectory starting in (xo,po,to) = (0,0,0) are in blue,
the other regular structures are in gray and the chaotic sea is
in red. The area of the ratcheting island is A = 0.21. Right:
corresponding time-of-flight absorption images, starting from
the ground state of the lattice during the first period n = 0
for 1/hes =~ 1.27.

control (QOC) [34, 35] to optimize the loading of the
proper Floquet state.

Classical dynamics. We consider the case of an iner-
tial particle in a gating potential [18, 29]. Its dynamics
is governed by the dimensionless Hamiltonian

H(z,p,t) = % — v [1 4 ecos(t)] cos [x — pgsin(t)]. (1)

The Hamiltonian of Eq. (1), with its 1:1 frequency ra-
tio and phase quadrature between amplitude and phase
modulations, breaks the relevant space and time symme-
tries [1, 18], leading to a momentum-asymmetric chaotic
sea carrying diffusive ratchet transport. In contrast, the
dimensionless modulation parameters (7, €, ¢g) can also
be chosen so that a transporting regular region emerges
in the center of the chaotic sea, i.e. such that a bundle
of trajectories starting around (zg, po) = (0,0) at tp =0
goes to the neighborhood of (xg + 27, pg) at t = 2. We
achieve this numerically by minimizing with respect to
(7,2, ¢0) (using a Nelder-Mead algorithm) the total vari-
ation of mechanical energy over one modulation period
for a set of trajectories that start near (xg, pg) and change
site. This yields several solutions [36]. In the following
we use (7,¢,¢0) = (1.2,0.3,1.7), a set of parameters that
generates a SHR with the ratcheting island seen in the
stroboscopic phase portraits of Fig. 1.

Quantum ratchet in a reqular island. The natural ba-
sis to stroboscopically study quantum dynamics in a
time-periodic potential is the set of Floquet states, the

eigenstates of the evolution operator over one period of
modulation. The quantum study leaves as a free param-
eter the effective reduced Planck constant fiegs = —i[Z, p]
that dictates the minimal phase-space area AxAp of
quantum states in the system. As we are interested in
the transport of a quantum particle on the ratcheting
island, we place our study at the onset of the semiclas-
sical regime, that is for Aeg ~ A, with A the area of the
studied regular structures in phase space (Fig. 1). In the
semiclassical regime, Floquet states are generally either
localized on regular islands or spread over the chaotic
sea [37, 38], with only one state per island for Aeg ~ A.
The quantum analogue of the periodic classical trajecto-
ries at the center of the stroboscopic phase portraits of
Fig. 1(a) is therefore the Floquet state |Fya.t) that can
be associated with the ratcheting island. This state is
identified from its overlap with the ground state |¢g) of
the static lattice potential (that is ¢ = 0 and ¢ = 0 in
Eq. (1) ; a state readily accessible in the experiment).
Furthermore, we define the expected transport of a state
|1)(to)) between the times ¢y and ¢ as

t1
A‘/E(to,h)(w) :[ <ﬁ>w(t) dt. (2)

The transport over one period Az (g o) (F) for a Floquet
state |F) is related to its time-averaged group velocity T,
in the Floquet spectrum, Az (g oq) (F) = 277, (see Sup-
plemental Material). In the semiclassical regime, one ex-
pects regular Floquet states to behave as their associated
region of regular classical trajectories, and, in particular
for the ratcheting Floquet state, Az (g ox)(Frat) ~ 27.

We illustrate these notions in Fig. 2 where numerical
results for the transport of non-interacting wave func-
tions in the ratcheting island as a function of 1/h.g are
shown. Figure 2(a) shows the overlap between |Fa¢)
and the ground state |¢g). This metric informs on the
phase-space centering of |Fya), as well as on its expected
loading when running the experiment with |¢g) as the
initial state. Figure 2(b) shows the expected periodic
transport of [Frat). As 1/heg varies, both [(¢o|Frat)|?
and Az(g2x)(Frat) (Fig. 2(a) and (b) resp.) display
sharp non-monotonic fluctuations ascribed to Floquet
state mixing: the variation of quasi-energy levels in the
Floquet spectrum gives rise to avoided crossings leading
to sharp changes of the Floquet states near the crossings
(see Supplemental Material).

Figures 2(c-e) shows the Husimi quasi-distributions of
|po) and |Fat) for different values of 1/fieg. With 1/hieg =
1.27, Fig. 2(d) is an example of a semiclassical, island-
shaped |Fya¢), with a ground state overlap |{¢o|Frat)|? =
0.86 and a periodic transport Az (g o) (Frac) = 0.93 x 27,
meaning that this state exhibits a stationary flux of par-
ticles, periodically at rest at the bottom of the lattice
wells. On the other hand, Fig. 2(c) and (e) correspond to
respectively smaller and larger values of 1/heg for which



FIG. 2.

Eigenstate and transport dependences on
the effective Planck constant. (a) Overlap between the
ground state |¢o) of the lattice and the ratcheting Floquet
state |Frat) and (b) transport (2) of |Frat) over one modula-
tion period as a function of 1/heg. (c-e) Stroboscopic phase
portraits in the unit cell of system (1) and Husimi represen-
tations of |¢o) (top, purple) and |Frat) (bottom, green) for
the values of 1/hieg = 0.70,1.27,1.56 respectively, identified
by vertical lines on the panels (a-b). The color range for each
Husimi function extends from zero to its maximum value, with
a truncation to a quarter of this value in the inset of panels
(d,e) in order to reveal details.

the system initialized in |¢o) evolves out of it (towards
a mode of high momentum for Fig. 2(c) and over the
chaotic sea for Fig. 2(e)). Figure 2 shows overall that,
for sufficiently large values of 1/fi.g and while paying
attention to Floquet state mixing, a SHR with a semi-
classical periodic transport of quantum states can be
achieved, with Az 2x)(Frat) fluctuating around 27 for
1/heg > 0.75.

Ratchet transport from the ground state. We experi-
mentally observe a SHR with matter waves using BECs
of 5-10° 8 Rb atoms initially obtained in a hybrid trap
setup [39]. The atoms are adiabatically loaded at time
To = 0 in the ground state |¢g) of the optical lattice
potential

2w X

V(X,T) = —A(T)%EL cos< — + <p(T)>, (3)
with A(Tp) = 1 and ¢(Tp) = 0 (we denote with capital
X, P and T dimensional quantities). The optical lattice
is produced by the superposition of two counterpropagat-

ing far-detuned laser beams of wavelength A = 1064 nm.
Before each experiment, we independently calibrate [40]
the depth s of the lattice in units of the lattice energy
scale By, = h?/2md?* (with d = \/2 the lattice spacing, m
the atomic mass and h Planck’s constant). The driving
amplitude of an acousto-optic modulator (AOM) placed
before the splitting of the lattice beams controls A(T),
while the relative driving phase of two AOMs following
the beams splitting controls ¢(7"). The optical lattice
potential (3), with the correlated modulation functions
A(T) = (1 4+ ecos(wT)) and o(T) = —pg sin(wT’) where
w is the modulation angular frequency, yields the dimen-
sionless gating Hamiltonian (1) for v = s(Eyp,/hw)? and
an effective reduced Planck constant fieg = 2F1, /hw [41].

The 1/heg range of Fig. 2 corresponds in practice to
a lattice depth range s € [0.5,14]. A weak harmonic
trapping with angular frequencies (Qx, Qy,Qz) = 27 X
(10.4, 66, 68) Hz remains present during experiments, but
its impact is negligible over the short experimental times
of up to ~ 500 us in this work. In the subspace of null
quasi-momentum, the BEC state along the z-axis is thus
described by a superposition of plane waves

(7)) =D ce(T) [xe) s (4)

LET

with the coefficients ¢;(T') € C, >, |ce(T)|* = 1 and
(X|xe) = e X /\/d, where ki, = 27/d is the lattice
wavevector. Finally, we access at time T the BEC mo-
mentum distribution by absorption imaging following a
35ms time-of-flight. We obtain the typical diffraction
patterns of Fig. 1, from which we extract |c,(T)|?. The
experimental transport (2) is then computed by sampling
the average momentum (P)w(T)/hkL =Y, ce(T)|* in
the course of the ratchet modulation.

We first perform ratchet transport experiments with
|po) as the initial state. We acquire 4 images per mod-
ulation period over 10 periods (as shown in Fig. 1 for
the first period). Figure 3 shows, for two values of 1/heg,
the experimental evolution of the momentum distribution
and the resulting integrated transport compared with nu-
merical simulations of the same quantities from the inte-
gration of Schrodinger equation. The values of 1/heg in
Fig. 3(a) and (b) correspond to those of Fig. 2(d) and (e)
respectively. For Fig. 3(a), |¢o) is rather well projected
onto |Fyat) (Fig. 2(a,d)). We thus observe an almost pe-
riodic evolution of the momentum distribution, mainly
carried by plane waves of positive momentum and re-
sulting in a linear semiclassical ratchet transport over 10
lattice sites in 10 modulation periods (Fig. 3(c)). In the
experiment of Fig. 3(b) however, as |¢o) has limited over-
lap with |Fyat), which moreover extends over the chaotic
sea (Fig. 2(e)), we observe a non-periodic evolution of
the momentum distribution associated with a diffusion
over the chaotic sea as seen from the increase of the mo-
mentum dispersion. This results in a non-linear evolu-
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FIG.3. Transport of the ground state. (a) Top: Numer-
ical simulation of the momentum distribution during the mod-
ulation as a function of time for 1/hes &~ 1.27 (correspond-
ing to Fig. 2(d)). Bottom: Corresponding experimental inte-
grated absorption images. (b) Same as (a) for 1/heg ~ 1.56
(corresponding to Fig. 2(e)). (c¢) Expected numerical (solid
red line) and experimental (blue markers) transport (see text)
for data (a) and (b) as a function of time, and transport re-
versability (a’) for ¢o — —¢@o and 1/hes =~ 1.30 (see text).

tion of the transport (Fig. 3(c)), in contrast to its classi-
cal counterpart. Interestingly, this non-classical behavior
happens for a smaller value of fi.g, highlighting the quan-
tum nature of the underlying mechanism of state mixing
(see Supplemental Material).

A key feature of the ratchet effect is the ability to
reverse the transport direction via adequate symme-
tries [3, 7]. In our gating system, this transport direc-
tion is imposed by the sign of the phase quadrature be-
tween the amplitude and phase modulations (Eq. (1)).
The change ¢(t) = —gosin(t) — +psin(t) is thus
expected to result in a reversed ratchet transport in
the lattice. In Fig. 3(c), the integrated transport for
(7,€,00) = (1.2,0.3,—1.7) and a value of g similar to
that of panel (a) is shown (with label (a’)). We mea-
sure as expected a symmetric ratchet transport over —10
sites in 10 modulation periods. We get an overall excel-
lent agreement between experiments and simulations.

Optimized loading through quantum optimal control.
Even for values of 1/heg for which Az (g ox)(Frat) = 27,
semiclassical ratchet transport can be limited when work-
ing with |¢p) as the initial state (see e.g. Fig. 2(a,b,e)).
To enhance this transport, we use, in a second set of
experiments, the phase of the lattice ¢ as a control pa-
rameter to optimally prepare |Fy,:) before applying the
ratchet modulation. To that end, after determination
of |Frat), an optimal phase variation ¢(0 < T < Tg) in
the lattice of fixed depth s is computed using a first-order
gradient-ascent algorithm (detailed with its experimental
implementation in previous works [42, 43]), to drive the
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FIG. 4. Transport of the ratcheting Floquet state pre-
pared by QOC. (a-c) Example of QOC for ratchet trans-
port at 1/fies =~ 1.56. (a) Husimi representation of |¢o) (pur-
ple) in the phase space of the static lattice (solid black lines).
The color range for the Husimi function extends from zero
to its maximum value. (b) Phase of the lattice along time
to drive the system from |¢o) to |Frat). (c) Same as (a) for
the prepared state |)qoc). (d) Top: Numerical simulation of
the momentum distribution during the modulation as a func-
tion of time for 1/hes & 1.27 (corresponding to Fig. 2(d) and
Fig. 3(a)). Bottom: Corresponding experimental integrated
absorption images. (e) Same as (d) for 1/heg = 1.56 (corre-
sponding to panels (a-c) as well as Fig. 2(e) and Fig. 3(b)).

BEC from |¢g) to |Fyat). We set in this work T =~ 80 ps.
The QOC algorithm converges to a control field that
theoretically prepares a state |¢qoc) with a fidelity of
|(Frat|¥qoc)|® > 0.995 [44]. We illustrate in Fig. 4(a-
¢) the QOC protocol of Floquet state preparation, with
an optimized ¢(T) driving |¢g) to |Fia) for a given
value of 1/heg (corresponding to Fig. 2(e) and Fig. 3(b)).
Figure 4(d,e) shows experimental results and numerical
simulations for the same parameters as Fig. 3(a,b) re-
spectively, with a preliminary QOC preparation applied.
While the experiment of Fig. 3(a) already featured a clear
linear quantum transport, Fig. 4(d) demonstrates how
the QOC preparation of the ratcheting Floquet state en-
hances the periodicity of the momentum evolution. Com-
paring Fig. 4(e) with Fig. 3(b), the gain is even more
spectacular. Interestingly, Fig. 4(e) display a broad mo-
mentum dispersion from the beginning of the modula-
tion, which demonstrates the preparation of a ratcheting
Floquet state partially extending over the chaotic sea as
expected (see Fig. 2(e)).

Conclusion In this Letter, we have studied a spa-
tial Hamiltonian ratchet effect exploiting regular trajec-
tories in phase space to transport particles periodically
at rest. We showed how such a SHR can be obtained
classically within a gating ratchet. We then considered



quantum transport in the near semiclassical regime, for
small but realistic values of the effective Planck con-
stant heg, and discussed how quantum transport can be
strongly affected by Floquet state mixing as heg varies.
We experimentally observed the SHR transport of matter
waves with a BEC of 8 Rb in a modulated optical-lattice.
For values of o coupling the ratcheting island with the
chaotic sea, we witnessed how atoms loaded in the island
evolve out of it through dynamical tunneling. Finally, we
demonstrated how this effect can be mitigated through
the use of state control methods such as QOC, to pre-
pare the ratcheting Floquet state and thus enhance the
periodicity of the dynamics.

Our modeling relies on an infinite lattice description,
and is in good agreement with experimental data. Finite-
size effects therefore have a limited impact on our exper-
iments, which is due both to the extension of the BEC
(= 100 lattice sites) and to the fact that in the cases
studied here the ratcheting Floquet state has a uniform
group velocity in the vicinity of zero quasi-momentum
(see Supplemental Material).

The regular ratchet effect we demonstrated constitutes
a novel way to coherently transport matter wave in a pe-
riodic potential, alongside conveyor belt approaches [45-
47]. Our results lend themselves to further investigations,
such as the extension to higher dimensional modulated
lattices, the investigation of the impact of interactions
on the transport dynamics, or the use of optimal control
to optimize the actual shape of the transporting state, in
order e.g. to maximize its initial overlap with the ground
state of the potential.
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SUPPLEMENTAL MATERIAL: AVOIDED
CROSSINGS AND STATE COUPLING

In Fig. 5 we illustrate the mechanism of Floquet state
mixing under the variation of 1/feg, responsible for the
non-monotonous variations of the loading and transport
of the ratcheting Floquet state (Fig. 2(a,b)).

T T T
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FIG. 5. Avoided crossings and state coupling.
(a) Part of the Floquet quasi-energy spectrum as a function
of 1/heg for the modulated Hamiltonian (1) with parameters
(v,€0,%0) = (1.2,0.3,1.7). The quasi-energy e is plotted re-
duced by the characteristic lattice energy FEr. (see main). The
Floquet states associated with the quasi-energy marked by
the letters (c¢) and (d) are identified near 1/fieg = 1.19 from
their overlap with a coherent state centered in (z,p) = (0,0)
and associated to green and red colors. The whole spectrum
is then colored depending on the overlaps with these states.
In practice the ratcheting Floquet state |Frat) corresponds to
the most green quasi-energy across the spectrum. (b) Overlap
between |Frat) and the ground state |¢o) of the static poten-
tial (i.e. magnified excerpt from Fig. 2(a)). The black vertical
lines in (a,b) mark the position of the two avoided crossings
seen in (a) corresponding to the two drops in ground state
overlap seen in (b). (c-e) Stroboscopic phase portraits and
Husimi representations of the three states associated with the
quasi-energies identified in (a).

SUPPLEMENTAL MATERIAL: FLOQUET
SPECTRA OF RATCHET SYSTEMS

For the three values of 1/fi.g considered on Fig. 2, we
represent a part of their Floquet spectrum on Fig. 6.
More specifically, we represent for each quasi-momentum
g in the Brillouin zone, the quasi-energies € of the peri-
odic Hamiltonian (1), with the weight of the drawn line
denoting the weight of the projection of a given Floquet
state at quasi-momentum g on the corresponding state in
the lowest band of the static lattice |¢4). The ratcheting
state |Frat) (see main text) corresponds therefore to the
dominant quasi-energy level at ¢ = 0. Its transport over
one period (see main text) is related to the time-averaged
group velocity that can be extracted from the spectrum
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FIG. 6. Floquet spectra for the modulation parameters of
Fig. 2(c,d,e) (panels (a,b,c) respectively). On each spec-
trum, the quasi-energies € are drawn over a Brillouin zone
(lgl < kr/2 and |e| < hw/2) and weighted by the projection
of the Floquet state onto the corresponding ground state of
the static lattice |¢q) at the same quasimomentum ¢. The
ratcheting state |Frat) corresponds therefore to the dominant
quasi-energy level at ¢ = 0. On each panel, an inset provides
a zoom on the central region of width Ag/kr, = 0.05. In the
dimensionless units chosen, a transport of one lattice site d
per period of modulation 27 /w corresponds to a local slope
of 1.

(in dimensionless units):

. 2m1 Oe B Ax(g,2r)
Y9 wdhdq | 2m

The spectra in Fig. 6 further illustrate the character-
istics of ratcheting states presented in Fig. 2. For the
state Fig. 2(c), the spectrum Fig. 6(a) demonstrates that
the sharp change in transport, as well as projection on
the ground state, is mostly due to a very narrow avoided
crossing in quasi-momentum near ¢ = 0. For the state
Fig. 2(e), the spectrum Fig. 6(c) shows that the ratchet-
ing state belongs to an energy band with slope ~ 1, there-
fore has an average transport Az (g o) (Frat) ~ 27. How-
ever the ground state of the lattice projects on several
Floquet states at ¢ = 0 (with different transport prop-
erties), which explains the poor transport from ground
state loading observed in Fig. 3(b,c). Finally in the case
of Fig. 2(d), the good loading of the ratcheting state
from the ground state is also evidenced by the spectrum
Fig. 6(b), where |¢g) projects almost solely on |F..t), and
the slope of the quasi-energy band is equal to 1. The fact
that this remains true for a neighborhood of ¢ = 0 im-
plies that a finite-size wavepacket should then propagate
non-dispersively across lattice sites [23].
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