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We report on speeding up equilibrium recovery in the previously unexplored general case of the
underdamped regime using an optically levitated particle. We accelerate the convergence towards
equilibrium by an order of magnitude compared to the natural relaxation time. We then discuss
the e�ciency of the studied protocols, especially for a multidimensional system. These results pave
the way for optimizing realistic nanomachines with application to sensing and developing e�cient
nano-heat engines.

In the quest to achieve better control over physical
systems in the classical, quantum and stochastic realms,
the ability to perform transformations between equilib-
rium states is paramount. The opportunity to real-
ize such transformations at high speed could then im-
prove the system’s e�ciency. For instance, in the con-
text of stochastic thermodynamics, shortcuts to equilib-
rium protocols have been proposed to optimize force sen-
sors [1], nano-heat engines [2] or computing [3]. These
applications have triggered significant works devoted to
one-dimensional shortcut protocols, where the relaxation
path of the system is designed to reach equilibrium in
an arbitrarily short time tf , faster than the natural re-
laxation time trelax that governs the time evolution after
a sudden change of the system parameters [4–8]. For
instance, protocols accelerating isothermal compression
and expansion have been experimentally demonstrated
for overdamped systems [2, 5, 9]. However, to under-
stand the fundamental nature of the shortcuts to equi-
librium protocols, one must address the more general un-
derdamped regime, where the inertia of the system can-
not be neglected and for which the position, the velocity,
and their correlation must be taken into account [6, 10].
The underdamped regime gives access to non-thermal
states, that are ideally suited for studying nonequilib-
rium fluctuations for transitions between arbitrary steady
states [11]. It also provides equilibrium information from
nonequilibrium measurements [12], and is essential for
temperature-changing transitions [13, 14]. Beyond these
fundamental questions, extending shortcuts to equilib-
rium to the underdamped regime is also essential to im-
prove nano-mechanical systems that usually operate in
this regime, or to take advantage of the control that
one can enforce on weakly damped systems, and which
may lead for example to the development of all-optical
nano-heat-engines [15]. A first step toward answering
this question has been taken with the demonstration of
accelerated transport protocols using an underdamped
micro-mechanical oscillator [1]. Nevertheless, in this one-
dimensional example, only the average system position is

engineered, and the resulting protocol is oblivious to fluc-
tuations. More subtle protocols are required in general
to control the system’s position and velocity standard
deviations simultaneously, including more spatial dimen-
sions. This is a much harder task, which should take into
account fluctuations and the coupling between degrees of
freedom [10]. In that context, extending experimentally
underdamped shortcut to equilibrium to more general
protocols can benefit from the recent developments on
optically levitated particles [16–18], which provide ex-
cellent tools to track particle dynamics and where the
system damping can be easily tuned [19].
In this work, we implement the first experimental ac-

celeration of a harmonic expansion in the underdamped
regime. We also demonstrate that accurate measurement
of levitated nanoparticles’ position and velocity makes it
perfectly fitted to monitor the out-of-equilibrium dynam-
ics of stochastic systems, by allowing to easily follow dy-
namics in the entire phase space, which is not the case in
the overdamped regime. Finally, we discuss the robust-
ness of shortcuts to equilibrium protocols by studying the
particle relaxation for its di↵erent degrees of freedom.
Figure 1 shows a sketch of the experimental setup. A

73 nm silica particle is trapped by an optical tweezer
made from a high-power near-infrared (NIR) laser beam.
The particle dynamics is measured with a common path
interferometer using an ancillary green laser beam and a
quadrant photodetector [20]. The potential experienced
by the particle is well approximated by a 3D harmonic
potential, whose transverse trap sti↵ness, kxtrap, can be
modified by changing the light intensity of the tweezer.
We study an expansion of the potential corresponding to
a change of the trap sti↵ness from ki to kf < ki. The
objective is to develop a protocol acting on a control pa-
rameter of the system, here the trap sti↵ness, to acceler-
ate the equilibration of the system in a chosen time tf ,
shorter than the system’s natural relaxation time trelax.
The three eigen angular frequencies of the harmonic trap-
ping are non-degenerate. We measure !x/2⇡ ⇡300 kHz,
!y/2⇡ ⇡250 kHz, and !z/2⇡ ⇡90 kHz. The trap sti↵-
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FIG. 1. (a) Shortcut to equilibration for a trap expansion.
The trap sti↵ness is changed from ki to kf . Using shortcut
protocols, equilibrium is reached in a target time tf shorter
than the natural relaxation time of the system trelax. The
equilibration dynamics can be tracked through the probabil-
ity distribution function ⇢(x, vx, t). (b) A NIR laser beam
traps a silica nanoparticle at the focus of a high-NA micro-
scope objective. The NIR laser power is controlled with an
AOM (acousto-optic modulator). The particle dynamics is
measured with a green laser and a quadrant photodiode.

ness along each of these axes q = {x, y, z} is kqtrap = m!2
q ,

where m is the particle mass; it is then directly propor-
tional to the NIR trapping laser power Plas [20]. Using an
acousto-optic modulator, we can dynamically tune Plas

and thus finely control the trap sti↵ness. The trapping
setup is enclosed inside a vacuum chamber to control the
particle’s interaction with its environment. Indeed, the
system damping rate � is directly proportional to the
gas pressure pgas inside the chamber [19]. Here, we are
specifically interested in the underdamped regime. Thus,
we set a gas pressure of pgas = 5 hPa, corresponding to
a reduced damping rate �/2⇡ ⇡ 3 kHz, such that the
underdamped condition � < !q is fulfilled for the three
axes q = {x, y, z} [21]. Nevertheless, note that our ex-
perimental setup allows to readily extend the presented
work to a wide range of damping rates, and notably to
the overdamped regime [21]. More details about the ex-
perimental setup can be found in [21].

To determine the natural relaxation time of the sys-
tem trelax, we perform a STEP protocol, consisting of an
instantaneous change in the trap sti↵ness ktrap from an
initial value ki to a final value kf , as shown in Fig. 2-(a).
We introduce the compression factor � = kf/ki. In the
following, we focus on the case of isothermal expansion
� < 1, while our experimental setup can also naturally
address isothermal compressions [21]. We study the dy-

namics of the particle along the x-axis over a set of 2⇥104

isothermal expansions with � = 0.6. Interestingly, the
good signal-to-noise ratio of our measurement scheme al-
lows us to determine the particle velocity vx from a point-
by-point derivative of x. We thus study the particle re-
laxation after the STEP protocol by computing the stan-
dard deviation in position �x and velocity �vx , as shown
in Fig. 2-(b) and (c). These data exhibit a couple of inter-
esting features. First, at equilibrium, we observe steady-
state values �eq

x,{i,f} =
p

kBT/k{i,f} and �eq
vx =

p
kBT/m

as expected from the equipartition theorem. Besides,
contrasting with the overdamped case [2, 5], we observe
in the transient regime damped oscillations in phase op-
positions for �x and �vx . These oscillations can be seen
as a coherent exchange of the system’s average poten-
tial and kinetic energy, in analogy with a classical un-
derdamped harmonic oscillator. Finally, from a fit to
the analytical solution, we confirm that in the strongly
underdamped regime achieved here (� ⌧ !f ), the os-
cillation frequency is twice the natural trap frequency,
!relax = 2!x,f = 2⇡⇥519 kHz and that the system’s char-
acteristic relaxation time is given by the velocity relax-
ation time trelax = tv = 1/� = 43 µs, leading to a STEP
equilibration in a time close to 3trelax [21].These obser-
vations starkly contrast with previous overdamped ex-
periments, where the system thermalizes instantaneously
with the environment, and in which the limiting timescale
is given by the position relaxation time tx = �/!2 nec-
essary for the nanoparticle to explore the new poten-
tial [2, 5]. They thus highlight the importance of ad-
dressing the underdamped regime to fully capture the
nature of nanosystems.
Once this natural relaxation time is measured, we focus

on shortcutting the system equilibration time. In that
context, the theoretical proposal by Chupeau et al. [10] is
particularly interesting. Indeed, it extends the engineer-
ing of swift equilibration (ESE), initially developed for
overdamped systems, to the underdamped regime. The
idea behind this ESE formalism is to find a probabil-
ity density function ⇢(x, vx, t) that is a solution of the
Fokker-Planck equation describing the dynamics of the
particle,

@⇢

@t
+ vx

@⇢

@x
�

kxtrap
m

x
@⇢

@vx
=

�

m

@vx⇢

@vx
+

�kBT

m2

@2⇢

@v2x
, (1)

and that reaches the final aimed equilibrium state in an
arbitrary small finite time tf . To this end, and by virtue
of the linearity of the applied force, one may search for a
Gaussian solution of the form

⇢(x, vx, t) = N(t) exp(�(↵(t)x2+�(t)v2x+�(t)xvx)) , (2)

where ↵,� and � are functions to be determined, andN is
a normalization factor [21]. Solving this problem provides
a continuous-time evolution of the trap sti↵ness kxtrap(t)
as the control parameter of the system equilibration. For
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FIG. 2. (a) Evolution of the trap sti↵ness for a harmonic expansion in the case of a STEP protocol (blue) and the accelerating
ESE protocol described in the main text (orange). (b) and (c) Evolution of the standard deviation in position �x (b) and velocity
�vx (c) for the STEP (blue) and the ESE protocol (orange) presented in (a). The black dotted vertical line corresponds to the
final time tf = 26 µs of the ESE protocol. Dashed red lines are the expected theoretical values for �x and �vx Inset: zoom on �x

highlighting the oscillations. A fit (dashed purple line) provides the value of !relax/2⇡ = 519±1 kHz and �/2⇡ = 3.1±0.2 kHz.
(d) Evolution of ↵, � and � (as defined in text) during the out-of-equilibrium regime of the ESE protocol pictured in (a). The
experimental values (blue) are compared with those calculated for the ESE protocol (dashed red lines).

example, we depict in Fig. 2-(a), the trap sti↵ness evolu-
tion we compute for an ESE protocol corresponding to a
five-fold acceleration over the nominal equilibration time
3trelax = 129 µs, and to a protocol duration tf = 26 µs.

Applying this ESE protocol to our particle leads to the
evolution of the standard deviations �x and �vx shown in
orange in Fig. 2-(b) and (c). We verify that the system’s
relaxation is actually shortened and that both position
and velocity variances reach their equilibrium values ex-
actly at the protocol’s final time tf = 26 µs (black dotted
line in Fig. 2). Furthermore, our ability to measure both
x and vx allows us to fully monitor the probability distri-
bution function. Specifically, we can compute from these
data the values of ↵, �, and � during the protocol. As
shown in Fig. 2-(d), we observe a good agreement with
the theoretical target functions enforced by the protocol,
demonstrating the power of the ESE approach to engi-
neer equilibration [21].

These results are thus the first demonstration of ac-
celerated equilibration of a particle in the underdamped
regime. They stress that trap sti↵ness can be used as
a single experimental control parameter acting on both

position and velocity to design shortcuts protocols. They
also show that we can fully measure and reconstruct the
evolution of the distribution of probability ⇢(x, vx, t) dur-
ing state-to-state transformations, highlighting levitated
particles as a perfect system for out-of-equilibrium stud-
ies. Also, knowing the dynamics of the levitated particle,
we can retrieve the heat and work exchanged by the par-
ticle to the environment, which constitutes an important
metric for nanothermodynamics protocols. We thus ob-
serve the expected excess of work for an ESE expansion
protocol compared to the reference STEP protocol [21].

Beyond accelerating equilibration, a natural question
related to ESE protocols is their resilience to changes or
uncertainties in the system’s parameters. Of particular
interest is the design of robust protocols that shorten
equilibration of a set of oscillators at di↵erent frequen-
cies. Indeed, this could provide protocols insensitive to
frequency fluctuations [22] or able to address systems
with multiple degrees of freedom, such as arrays of os-
cillators [8], Brownian gyrators [23, 24], or multimode
oscillators [1].

To test the robustness of the ESE protocols, we take
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advantage of the three-dimensional nature of our sys-
tem. Indeed, the three normal modes are non-degenerate
and uncoupled to first order. Recording the three-
dimensional dynamics of the particle allows us to study
the system equilibration along di↵erent axes, correspond-
ing to uncoupled oscillators at di↵erent frequencies un-
dergoing the same relative sti↵ness evolution. Specifi-
cally, we focus on comparing x and z-axes that repre-
sent the largest frequency mismatch in our experiment
!x/!z⇡ 3.4. We thus apply the ESE protocols studied
previously and designed for the x-axis (Fig. 2). To study
the relaxation of each axis, we compute the standard de-
viation for the particle position along these x and z axes.
As shown in Fig. 3-(a), for this five-fold accelerated equi-
libration, the protocol designed for the x-axis works sur-
prisingly well for the lower frequency z-axis, which also
reaches equilibrium at the final protocol time tf = 26 µs.
Note that similar results are also observed for the relax-
ation along the y-axis, that is at a natural frequency !y

close from the one of the x-axis !x ⇡ 1.3!y [21].
To push the limits of the robustness of the ESE proto-

cols, we have also designed a faster protocol with a final
time tf = 7.75 µs, corresponding to a 17-fold accelerated
equilibration compared to natural relaxation. The faster
protocols are more demanding in terms of required total
laser power. Due to experimental constraints, we thus
reduce the expansion factor of the protocol to � = 0.75.
Fig. 3-(b) shows the corresponding relaxation of the stan-
dard deviation of position along x and z. First, we verify
that the protocol is e�cient for the design axis (x-axis),
and that �x actually reaches its steady state value at the
protocol’s final time tf = 7.75 µs (black dotted line in the
figure). We thus demonstrate that ESE protocols applied
to a single oscillator can achieve equilibration accelerated
by more than an order of magnitude in the underdamped
regime. Conversely, along the z-axis, the protocol drives
the system out of equilibrium. After the protocol final
time t = tf , the system thus relaxes to equilibrium, dissi-
pating its extra energy to the bath, as observed for STEP
protocols in Fig. 2. We therefore observe oscillations of
the position standard deviation �z at the frequency 2!z,f

with a characteristic relaxation time tv = 1/�.
Hence, we observe that for moderate equilibration ac-

celeration, ESE protocols are resilient to changes in fre-
quency. We can engineer equilibrium states even far from
the target frequency. When the protocol speed is in-
creased, this property becomes harder to meet. For the
fastest protocols studied here, to observe an e�cient equi-
libration, the actual system frequency must match the
one of the protocol within a few percents.

To conclude, we have shown that engineering swift
equilibration can be successfully applied in the under-
damped regime. We demonstrate accelerated equilibra-
tion by more than an order of magnitude for expansion
protocols for a single frequency oscillator, and intermedi-
ate speed-up for a multidimensional one. In addition, we

(a)

(b)
0 40 80 120 160

time (µs)

0 40 80 120 160
time (µs)

0.75

1.001.00

1.25

1.50

1.751.75

0.8

0.9

1.0

1.1

1.2

tf

tf

FIG. 3. Evolution of the position standard deviation �, nor-
malized by its final equilibrium value �eq, along the x-axis
(orange) and z-axis (green) during an ESE protocol defined
on the x-axis at the frequency !x,i/2⇡ = 340 kHz, and with
!z ⇡ !x/3.4. (a) Equilibration for a five-fold accelerating
equilibration protocol for a � = 0.6 expansion. (b) Equili-
bration for a 17-fold accelerating equilibration protocol for a
� = 0.75 expansion. The black dotted vertical lines corre-
spond to the final times tf = 26 µs (a) tf = 7.75 µs (b) of the
two ESE protocols.

highlight that by using optically levitated particles, we
can reconstruct the particle’s dynamics, providing com-
plete information about the system’s probability density
function. Taking advantage of the levitated particle’s dif-
ferent degrees of freedom, we also address our shortcuts
to equilibrium protocols’ robustness. Finally, we report
that moderate acceleration can be applied to oscillators
with a broad frequency range. Our work paves the way
for developing generic state-to-state protocols and dis-
cussing the fundamental physical limits of shortcuts to
equilibrium protocols’ robustness. Thus, future works
may include fast multidimensional shortcuts, taking ad-
vantage of the vast space of relaxation paths o↵ered by
ESE-like protocols [6, 7, 10, 24] or by optimal control
theory framework [25]. Also, by taking advantage of the
recent developments of thermal bath engineering [26, 27]
and fine temperature control [28, 29] of levitated parti-
cles, a natural extension rests in the use of shortcuts to
equilibrium and optimal protocols for the optimisation of
power and e�ciency of nano-heat engines [15].
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I. EXPERIMENTAL METHODS

The particle is optically trapped at the focus of a NA=0.85 objective (Olympus LCPLN100XIR)

using a high-power near-infrared laser beam (Coherent Mephisto MOPA up to 7 W,

� = 1064 nm). The laser power is tuned using an acousto-optics Modulator (AA Opto-

Electronic MT110-A1.5-IR) driven with a fast arbitrary wave generator (Spectrum In-

strumentation M4i.6621-x8). The particle dynamics are measured with a common path

interferometer using an ancillary laser beam (Laser Quantum GEM, �meas = 532 nm,

Pmeas ⇡ 7 mW) and a quadrant photodetector (Hamamatsu S4349). The 3D dynamics

of the particle is recorded onto a digital scope (Picoscope 4824A) at 5 MSamples/s. The

particle position x(t) is corrected by subtracting its mean value at equilibrium after each

protocol realization, to eliminate experimental drifts.

II. DAMPING � OF LEVITATED PARTICLES

For a spherical particle of radius r in a rarefied gas, the damping rate � is directly

proportional to the gas pressure pgas [1]:

� = 0.619
9p

2⇡⇢SiO2

r
M

NAkBT

pgas
r

, (S1)

where ⇢SiO2 ⇡ 2200 Kg/m3 is the silica density, M the molar mass of air, T the environment

temperature.

Considering the silica particle used in the main text, of expected radius r = 73 nm as

given by the provider (microParticles GmbH), we find a damping rate �theo = 2⇡ ⇥ 3.8 kHz

at a pressure pgas = 5 hPa.

Experimentally, this damping can be measured for pressures above a few hPa directly

from the linewidth of the particle dynamics power spectral density [1], or alternatively, as

discussed in the main text, from the relaxation time in a STEP protocol.

Using the second approach, we find �exp = 2⇡⇥3.1 kHz. This result is in good agreement

with the expected value �theo.

⇤ loic.rondin@universite-paris-saclay.fr
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III. OVERDAMPED ESE PROTOCOLS

tf

Supplementary Figure S1. Overdamped STEP (blue) and ESE (orange) compression protocols

for the z-axis of an optically trapped particle in air. The purple dashed line correspond to an

exponential fit, giving a relaxation time tz = 11.5 µs.

As mentioned in the main text, and detailed in the Supplementary Note S1, our experi-

mental apparatus allows to easily change the damping condition by tuning the gas pressure

inside the vacuum chamber. This allows to address ESE protocols for a broad range of damp-

ing conditions. Specifically, it is possible to study overdamped protocols [2]. As a proof of

principle, figure S1 shows the case of an overdamped compression with � = 1.4 for the z-

axis, realized at ambient pressure pgas = 105 hPa (� = 2⇡ ⇥ 570 kHz � !f
z = 2⇡ ⇥ 92 kHz).

The reference STEP protocol (in blue) shows the expected position relaxation time toward

equilibrium tz = �

(!f
z )

2
. The ESE protocols (orange) allows us to shortcut the equilibration

time by a factor 4, to tf = 8 µs.

S3



IV. ESE PROTOCOLS FOR COMPRESSION

(a)

(b)

(c)

(d)

Supplementary Figure S2. (a) Evolution of the trap sti↵ness for a harmonic compression in the

case of a STEP protocol (blue line) and an ESE protocol corresponding to � = 1.4 and tf = 26 µs

(5-fold speed-up)(orange). (b) and (c) Evolution of the standard deviation in position �x (b) and

velocity �vx (c) for the STEP (blue) and the ESE protocol (orange) presented in (a). The black

dotted vertical line corresponds to the final time tf = 26 µs of the ESE protocol. (d) Evolution of

↵, � and � (as defined in text) during the out-of-equilibrium regime of the ESE protocol pictured

in (a). The experimental values (blue) are compared with those calculated for the ESE protocol

(dashed red line).
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V. EVOLUTION OF VARIANCE FOR STEP PROTOCOLS

Let’s consider a 1D harmonic potential, along the x axis, defined by its angular frequency

!(t). A particle of mass m is trapped in the harmonic potential at a temperature T0, and

the system damping is �. We introduce

8
>>><

>>>:

�xx = hx2i � hxi2

�xv = hxvi � hxihvi

�vv = hv2i � hvi2

These quantities are coupled through the linear system [3]:

d

dt

0

BBB@

�xx

�xv

�vv

1

CCCA
=

0

BBB@

0 2 0

�!2 �� 1

0 �2!2 �2�

1

CCCA

0

BBB@

�xx

�xv

�vv

1

CCCA
+

0

BBB@

0

0
2kBT0�

m

1

CCCA
(S2)

We address a STEP protocol, where the trap frequency is suddenly changed from !i to

!f =
p
�!i at t = 0. Following the main text notation, � is the expansion factor. Solving

this set of equations for the initial conditions �xx(0) = �i and �vv(0) = �i!2

i leads to

�xx(t) = �i
�� 1

�


2!2

f

⌦̃2
+

2!2

f � �2

⌦̃2
cos ⌦̃(t� t0) +

�

⌦̃
sin ⌦̃(t� t0)

�
e��(t�t0) +

�i

�
, (S3)

with ⌦̃ =
q
4!2

f � �2. We note, that for the deep underdamped regime !f � �, as verified

in the main text, then

�xx(t) = �i
�� 1

2�
[1 + cos (2!f t)] e

��t +
�i

�
. (S4)

The oscillation frequency observed during the STEP protocols is then twice the natural final

frequency of the trap !f .

Experimentally, we fit the experimental data computed for the position variance �xx = �2

x

using equation (S3), with � and !f as free parameters. The results are presented in figure S3.

In the main text (Figure 2(b)), we plot the square-root counterpart, to depict the position

standard deviation �x.
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Supplementary Figure S3. Position variance �xx (black line) during a STEP protocol and associated

fit. The fit allows us to determine the values of !relax = 2!f and �. The timebase has been corrected

to enforce t0 = 0 µs.

VI. LINK BETWEEN THE ESE VARIABLES AND THE VELOCITY AND PO-

SITION VARIANCE

The shortcut protocols used in the main text enforce a probability density for the system

of the form

⇢(x, v, t) = N0 exp(�(↵(t)x2 + �(t)v2 + �(t)xv)) (S5)

For such a distribution, one can compute the quantities �xx, �vv and �vx. We can thus

determine the value of ↵, � and � :

↵ =
�vv

2(�vv�xx � �xv)
, � =

�xx

2(�vv�xx � �xv)

� =
��xv

(�vv�xx � �xv)

In the main text (Figure 2(d)), we thus reconstruct the PDF of the system during the

ESE process, by computing the values of ↵, � and � from the position variance �xx, the

velocity variance �vv and the cross-correlated term �xv.

Conversely, if ↵, � and � are known, one can compute the values of �x and �vx as shown

in figures 2b and c of the main text.
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VII. DEFINITION OF THE ESE PROTOCOLS

A. The “protocol A” solution

The ESE protocols used in the main text are the type defined as ”protocol A” in refer-

ence [4]. The idea behind this work is to engineer the evolution of the distribution

⇢(x, vx, t) = N(t) exp(�(↵(t)x2 + �(t)v2x + �(t)xvx)) , (S6)

via the control parameter ktrap. Injecting this Ansatz into the Fokker-Planck equation:

@⇢

@t
+ vx

@⇢

@x
� ktrap

m
x
@⇢

@vx
=

�

m

@vx⇢

@vx
+

�kBT

m2

@2⇢

@v2x
, (S7)

provides a set of non-linear equations linking the rescaled functions
8
>>>>>>>>><

>>>>>>>>>:

̃ =
ktrap
ki

↵̃ =
2kBT

ki
↵

�̃ =
2kBT

ki
�

�̃ =
2kBT

ki
�

expressed in rescaled time s = t/tf .

Introducing the auxiliary quantity

�̃ = (↵̃� �̃2

�̃
)�̃ , (S8)

allows rewriting the aforementioned functions in terms of �̃. Thus, to define a protocol,

all that is needed is to find a �̃ which satisfies the boundary conditions on ↵̃, �̃ and �̃, in

particular ↵̃(1) = �̃(1) = �. In reference [4], to ensure continuity of the control parameter

ktrap, the two first derivative of �̃ are taken to be 0 in s = 0 and s = 1.

Finally, the control parameter ktrap = ki · ̃ is then fully defined as:

̃ =
˙̃↵

2!i�̃
+

�

!i
�̃ , (S9)

Following Chupeau et al. [4], we look for a polynomial solution for �̃. The lower order

admissible polynomial is then:

�̃(s) = 1 + (�� 1)(35s4 � 84s5 + 70s6 � 20s7) . (S10)

All the ESE protocols shown in the main text are based on this approach.
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B. Alternative ESE protocols

Nevertheless, we note that the choice of �̃(s) is arbitrary, and one could imagine using a

di↵erent function, a higher order polynomial, or a di↵erent basis for the decomposition. For

instance, one can use a sinusoidal basis. The lower admissible order then leads to

�̃sin(s) =
1 + �

2
+ 9

1� �

16
cos(⇡s)� 1� �

16
cos(3⇡s) . (S11)

Experimentally, using this protocol provides similar results to those obtained with the poly-

nomial Protocol A described previously.
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VIII. HEAT AND WORK FOR THE USED PROTOCOLS

From the particle time traces, we can compute the cumulative heat

hQ(t)i = �
Z t

0

k(t0)hxvxidt0 �

1

2
mhv2xi

�t

0

= hQx(t)i+ hQv(t)i , (S12)

and the cumulative work

hW (t)i =
Z t

0

1

2
k̇(t0)hx2idt0 , (S13)

exchanged between the system and the environment for the STEP and the shortcut protocol

presented in figure 2 of the main text. The results are shown in figure S4.

In the case of a STEP protocol, the cumulative work is estimated from its theoretical

value

hW (t)i = �� 1

2
kBT (S14)

for any positive time.

Supplementary Figure S4. Heat and work for a STEP protocol (a) and the equivalent shortcut

ESE protocol presented in the main text (b). The work for the STEP protocol is obtained from

Eq. (S14).
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IX. RELAXATION ALONG THE y-AXIS

Supplementary Figure S5. Relaxation along the y-axis for the STEP (blue) and ESE (orange)

protocols, the latter targeting acceleration equilibration along the x-axis to tf = 26 µs, as shown

in figure 3a in the main text. As for the z-axis, relaxation to equilibrium is observed in the target

time for moderate speed-up (here 5-fold).
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