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Parametric instabilities in interacting systems can lead to the appearance of new structures or
patterns. In quantum gases, two-body interactions are responsible for a variety of instabilities that
depend on the characteristics of both trapping and interactions. We report on the Floquet engi-
neering of such instabilities, on a Bose-Einstein condensate held in a time-modulated optical lattice.
The modulation triggers a destabilization of the condensate into a state exhibiting a density modu-
lation with a new spatial periodicity. This new crystal-like order directly depends on the modulation
parameters: the interplay between the Floquet spectrum and interactions generates narrow and ad-
justable instability regions, leading to the growth, from quantum or thermal fluctuations, of modes
with a density modulation non commensurate with the lattice spacing. This study demonstrates the
production of metastable exotic states of matter through Floquet engineering, and paves the way for
further studies of dissipation in the resulting phase, and of similar phenomena in other geometries.

INTRODUCTION

The introduction of interactions in wave theory leads,
through non-linearities, to a rich phenomenology. In
quantum gases it is at the root of the modification of
the equilibrium momentum distribution through the
production of momentum-correlated pairs [1–4]. It
can also lead to instabilities that are responsible for a
new structuration of the gas, and the appearance of
patterns. Such pattern formation may occur in static
systems or through parameter quenching, which has
led to the realization of spin [5] or density [6] wave
patterns, or the study of supersolid order in BECs with
spin orbit coupling [7], cavity mediated [8] or dipolar
interactions [9–13]. It can also originate from parametric
modulation, either of the trapping potential – which can
lead to the formation of waves [14, 15] or vortices [16, 17]
– or the modulation of the interaction strength [18–20].

The use of periodic parameter modulation to tailor the
behavior of a quantum system lies at the heart of the
broader and expanding field of Floquet engineering [21–
23], where this modulation leads to effective Hamiltoni-
ans for the stroboscopic evolution. With ultracold atoms
this approach has allowed to investigate a wide range of
phenomena from effective dispersion relations [24–26] to
phase transitions [27–29], and to the engineering of ar-
tificial magnetic fields and topological bands [30–32]. In
the context of Floquet engineering, parametric instabili-
ties are a subject of particular interest, both as a poten-
tial source of heating and loss of coherence[33–36], and
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as a way to direct pattern formation that may be used
to reach specific quantum states [20, 37–39].

In this work, we exploit the tunability afforded by a
Floquet system consisting of a Bose-Einstein condensate
in a shaken 1D optical lattice, to control the appearance
of a new, crystal-like order in the system through a para-
metric instability. The state produced is characterized
by preserved coherence and a modulation of the density
at a new spatial scale, spontaneously breaking the sym-
metry of the lattice, associated with the population of
narrow, opposite, peaks in the momentum distribution.
This is achieved through a lattice position modulation,
resonant with interband transitions for initially empty
modes. A Bogolubov analysis of the resulting effective
system exhibits narrow instabilities in momentum space
at opposite momenta, in the vicinity of avoided band
crossings. This leads to the exponential growth, from
fluctuations (which may be of quantum or thermal origin)
of the population in modes with a narrow symmetrical
momentum distribution. The position of these momen-
tum components (and therefore the new long-range order
in the system) is tunable through a change of the modula-
tion parameters. The resulting state is only metastable,
with further heating seemingly leading to its degrada-
tion. Our experimental observations are supported by
simulations of the many body quantum dynamics with
the truncated Wigner method, which exhibit the modu-
lated density correlations and the preserved coherence of
the resulting state. This is in contrast e.g. to the nucle-
ation of staggered states [40–42] where unstable modes
have a fixed position and a broad momentum distribu-
tion, and where coherence is not preserved.
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FIG. 1. Experimental protocol and typical results.
(a-b) Time-evolution of lattice depth (blue solid line) and
phase (red solid line), showing the adiabatic loading to the
ground state of the lattice, the phase-modulation experiment
for an integer number of periods, and the lattice release and
time-of-flight (TOF). (c) Stack of experimental absorption
images after time-of-flight showing the stroboscopic evolution
of the momentum distribution of an initial BEC with N = 105

atoms, as a function of the number m of periods of modula-
tion T , with s0 = 3.4 ± 0.10, ϕ0 = 20o, ν = 1/T = 30 kHz
and tTOF = 35 ms.

RESULTS

Experimental protocol. Our experimental study relies
on a rubidium-87 Bose-Einstein condensate (BEC) ma-
chine that produces pure condensates with 5 · 105 atoms
(unless otherwise stated) in a hybrid trap (see [43] and
Appendix 1 for more details). The BEC is adiabatically
loaded in a far-detuned one-dimensional optical lattice
of spacing d = 532 nm resulting from the interference of
two counter-propagating coherent laser beams along the
x−axis. The potential experienced by the atoms reads

V (x, y, z, t) = −s0

2
EL cos(kLx+ ϕ(t)) + Uhyb(x, y, z),

where kL = 2π/d, s0 measures the lattice depth in units
of EL = ~2k2

L/2m and Uhyb is the 3D harmonic poten-
tial of the hybrid trap characterized by the angular fre-
quencies (ωx′ , ωy′ , ωz) = 2π × (10.4, 66, 68) Hz, where
the axes x′, y′ are at an 8 o angle with x, y. The phase
ϕ(t) = ϕ0 cos(2πνt) is modulated at a frequency reso-
nant with interband transitions. The atoms also experi-
ence contact interactions characterized by the scattering
length as (as ' 5.3 nm).

In Fig.1, the frequency ν = 30 kHz for s0 ' 3.4 cou-
ples the ground state band s to the third excited band
f in the vicinity of quasi-momentum q = ±0.36kL. The
series of images shows the evolution of the matter wave
diffraction pattern measured by absorption after a long
time-of-flight (tTOF = 35 ms). It represents the strobo-
scopic evolution of the atomic momentum distribution in
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FIG. 2. Instability displacement with the modulation
frequency. (a) Stack of experimental absorption images af-
ter n = 100 periods, averaged over 3 realizations, for an
increasing modulation frequency ν, with s0 = 3.57 ± 0.10,
ϕ0 = 15o and tTOF = 35 ms. (b) Average instability position
(in terms of the reduced quasi-momentum k/kL of the un-
folded band structure) extracted from the fitted drift of the
four 1 ≤ |p|/~kL ≤ 3 orders of diffraction over all realizations
(blue dots, errorbars correspond to the standard deviation
of the 12-point sample) and calculated position of the reso-
nant coupling as a function of the modulation frequency (solid
black line). (c) Transition diagram from the lowest band s
over the first two Brillouin zones (BZ) (solid black line) and
addressed transitions for data b1, b2 and b3 (blue dots and
solid lines). In (b-c) the gap between the transitions s-d and
s-f (grey shaded area) and edge of the first BZ (black dotted
line) are represented.

the modulated lattice at integer multiples m of the mod-
ulation period. For short modulation times, we mostly
observe three diffraction peaks centered on integer mul-
tiples of h/d and associated to the initial ground state
distribution of the static lattice. A faint halo is visible
between the peaks, which originates from elastic colli-
sions occurring during the time-of-flight [44–46]. After
70 modulation periods (' 2.3 ms), we clearly observe the
emergence of symmetric diffraction peaks located in be-
tween the ordinary diffraction peaks. The initial growth
of the population in the peaks appears to settle, with the
new peaks remaining sharp over many modulation pe-
riods. Over longer timescales (see below), each narrow
peak eventually seems to slowly broaden. These sharp
peaks should be contrasted with the broader instabilities
observed in the case of staggered states [40–42] or single
band parametric instabilities [35].

Tight-binding effective model and tunability. We in-
terpret the emergent momentum peaks as originating
from a parametric instability favoring a four-wave mix-
ing process in which two atoms from the BEC with
qin = 0 scatter into quasi-momenta at q = ±q∗ with
0 < q∗ < π/d. This is associated with the emergence of
a new spatial periodicity d∗ = π/q∗ in the system. Cor-
respondingly, the momentum distribution exhibits two
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families of peaks at momenta p = ±q∗ + `kL, ` ∈ Z, re-
lated to the decomposition of the newly populated states
in the band structure of the lattice potential. This inter-
pretation, and the physics at play, are correctly captured
by an effective tight-binding model with two coupled
bands, describing the Floquet system of lattice bands
coupled by the lattice shaking (see Appendix 2). For
realistic parameters, the Bogolubov treatment of this
model reveals sharply localized unstable modes in the
vicinity of the avoided band crossings. The position of
the most unstable mode yields the central quasi-momenta
q = ±q∗. From this modeling, we infer that the position
of the instability in quasi-momentum smoothly depends
on the model’s parameters, namely the modulation fre-
quency ν and amplitude ϕ0, as well as the strength of
interactions in the initial condensate.

In Fig.2, we compare the measured position (in terms
of the reduced quasi-momentum k/kL of the unfolded
band structure) of the peaks emerging after a sufficiently
long modulation time to the position of resonant transi-
tions from the lowest band, as the frequency of modula-
tion is varied. The modulation frequency is tuned across
two bands, and is resonant with s to d transitions at low
frequencies (ν < 26.1 kHz), and with s to f transitions at
higher frequencies (ν > 28.3 kHz). As expected, the in-
stability experimentally occurs in the vicinity of the band
crossing. It seems however that the instability is system-
atically closer to the actual band crossing experimentally
than expected from the model (which predicts it to be a
few percent of kL away from the crossing). Nevertheless,
this demonstrates the tunability of the instability posi-
tion in quasi-momentum space. The interpretation of the
instability pattern for a transition frequency near the gap
between bands d and f is more involved, as there is then
a possibility of a resonant excitation of the condensate.

Truncated Wigner simulation and correlations. To
further investigate the coherence properties of the atomic
state arising from the parametric instability, we perform
numerical simulations of the modulated system, based on
the Truncated Wigner method at zero temperature [47–
50]. In these simulations the quantum state is expanded
on the Wannier functions of the first five energy bands
of the static lattice over a finite size system, taking into
account the external confinement Uhyb. This approach
gives direct access to the first and second order correla-
tion functions, revealing the features of the underlying
many-body physics. After a sufficiently long evolution
time, the spectrum of the one-body density matrix con-
tains a dominant eigenvalue corresponding to the Bose
Einstein condensate at zero quasi-momentum, plus two
other significant eigenvalues corresponding to two states
with opposite parity made of opposite quasi-momenta
components (see Appendix 4).

The macroscopic occupation of modes having opposite
quasi-momenta in the Brillouin zone raises the question
of the possible emergence of a long-range order in the
system. To answer this question, we exploit our beyond-
mean-field calculations to compute the atom density on
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FIG. 3. Correlations and coherence after nucleation
of the instability. (a) Density distribution in the s band
from TW simulations of a 1D modulated lattice with realistic
trapping (see text for details). The chosen lattice parameters
are s0 = 3.4, ν = 30 kHz and ϕ0 = 20◦, with a number of
atoms N = 105. The density is computed after a modulation
duration of 5 ms, when the instability is visible in the mo-
mentum distribution. Two individual TW trajectories (green
and orange lines) exhibit a clear periodic modulation of the
density, which is washed out in the average of 1, 000 trajecto-
ries (thick black line). (b-c) In the same conditions as (a),

average density correlation function g(2)(`) (b) and average

amplitude correlation function g(1)(`) (c) between the central
site and a site ` in the s band of the lattice potential (see text
for definitions).

each site across the system. Strikingly, in Fig.3(a), after
5 ms of evolution, we see the evidence on individual TW
trajectories of the emergence of a new periodic modula-
tion of the density within the lowest band of the lattice,
on a scale of about 3 lattice sites. This is related to the
quasi-momentum at which the instability occurs, which
is q∗ ' 0.29, leading to a spacing d∗/d ' 3.4, which is as
mentioned before is very close to the experimental finding
of q∗ = ±0.36 for the same set of parameters. In each tra-
jectory from the TW simulation, the phase reference of
the density modulation appears random, which washes
out the modulation on the average density (full line in
Fig.3(a)). We can recover evidence for the modulation
by computing the normalized density-density correlation
function in the lowest band g(2)(`) = 〈n0n`〉/(〈n0〉〈n`〉),
between the central site of the lattice and a site `, av-
eraged over 1, 000 TW trajectories. This is plotted in
Fig.3(b) as a function of the site position `. It reveals
strong, regular, density oscillations across the whole sys-
tem which signal the emergence of a new long-range or-
der. Finally in Fig.3(c) we similarly compute a normal-
ized coherence within the ground band between sites 0

and ` in the system g(1)(`) = 〈â†0â`〉/(〈n0〉〈n`〉)1/2. This
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shows modulations with a similar period, demonstrating
the coexistence across the system of the initial conden-
sate of period d, as well as fully-coherent states with the
new period d∗ (Appendix 4). This coherence is further
demonstrated by the time-of-flight diffraction pattern.

The appearance of these modulations is actually al-
ready present within the tight-binding model, in an esti-
mate of the correlation functions (see Appendix 2). This
estimate allows us to highlight the fact that the appear-
ance of this new spatial order is intimately related to
the sharpness of the instability maximum in momentum
space, which distinguishes the resulting state from stag-
gered states [40–42]. These properties of the correlation
functions are reminiscent of those of a supersolid state,
however it must be emphasized that the produced state is
metastable and cannot to our knowledge be characterized
as the ground state of an effective Hamiltonian, thereby
lacking a key property to be qualified a supersolid.

Nucleation timescale. The two-band model can pro-
vide an estimate for the value of the instability expo-
nents, and therefore the timescale, that characterize the
exponential growth of unstable modes, as well as for their
position. But it cannot provide the full dynamics of the
mode growth nor their subsequent evolution. However,
the real timescale information can be readily accessed
experimentally. In Fig.4, we measured the nucleation
time tn as a function of the modulation amplitude ϕ0

and the number of atoms N in the BEC. To precisely ex-
tract the value of tn, we used a band-mapping technique
(see Appendix 5): after modulating the lattice for an in-
teger number of modulation periods, the modulation is
stopped, and the lattice depth adiabatically lowered be-
fore performing a time-of-flight. This technique allows us
to unambiguously identify the population of modes in the
excited bands at finite quasi-momenta resulting from the
instability, and reduces the impact of remnant collision
halos on the measurement compared with a direct time-
of-flight measurement. The growth of the population in
the higher band modes is fitted with a sigmoid growth
curve to yield a nucleation time at the half-maximum
point.

Our results in Fig.4 show that the nucleation time de-
creases with the modulation amplitude and the number
of atoms N (experimentally, the number of atoms in the
BEC can be reduced by a factor of up to ten in a re-
producible manner by evaporating the BEC held in the
hybrid trap before loading the lattice). These trends are
similar to those observed for the single band Bogolubov
instability leading to staggered states [41]. They also are
expected from trends in the tight-binding model for re-
alistic parameters (see Appendix 2): by increasing the
modulation amplitude ϕ0, we increase the coupling be-
tween bands, which leads to larger instability exponents.
The variation of the nucleation time with N is qualita-
tively expected as well, as the initial interaction energy
in the condensate increases with N , and is also associ-
ated with a stronger instability. The TW simulations
provide a more accurate and complete description of the
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FIG. 4. Nucleation time of the instability. (a) Experi-
mental record for determining the nucleation timescale : using
band-mapping before imaging leads to well-isolated contribu-
tions from higher lattice bands (here for 1 < |p|/(~kL) < 2)
signaling the growth of the instability. This growth is fitted to
extract a nucleation time tn, denoted by the horizontal line,
with uncertainty represented by the shaded area (see text for
details). (b) Evolution of the measured nucleation time of
the unstable modes (see text) as a function of the modulation
amplitude ϕ0 for ν = 25.5 kHz and s0 = 3.70 ± 0.20 (blue,
coupling bands s-d) and ν = 30.5 kHz and s0 = 3.56 ± 0.20
(red, coupling bands s-f ). Error bars correspond to one stan-
dard deviation on the fit (see text). (c) Same as (b) as a
function of the number of atoms N in the BEC for ν = 25.5
kHz and s0 = 3.58 ± 0.30, for a fixed modulation amplitude
ϕ0 = 15o. Error bars correspond vertically to one standard
deviation on the fit and horizontally to one standard deviation
over 4 independent measurements of the atom number.

evolution of the system, that should be qualitatively cor-
rect (within the approximations of the model). That is
indeed the case: with the shared parameters of Fig.1 (ex-
periment) and Fig.3 (simulation), the instability occurs
at the same position in momentum space. The nucle-
ation time in simulations is longer than in experiments,
by about a factor of 2 : this may be due to a thermal
activation in the experiment (the simulations are at zero-
temperature), or a contribution of the transverse degrees
of freedom, that are not included in the 1D simulations.

We restricted our measurements to small values of ϕ0,
beyond which the validity of the two-band model and
of our interpretation becomes questionable. Indeed, for
stronger coupling values, the Floquet spectrum increas-
ingly contains significant avoided crossings and fully hy-
bridized bands, and the evolution of the system is ex-
pected to get more complex.

DISCUSSION

We have also investigated the survival of the produced
state after saturation of the instability. This is illustrated
in Figure 5. As mentioned earlier, after the population
of the newly formed peaks in the momentum distribu-
tion settles (as seen from the bandmapping data), the
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FIG. 5. Long term survival of the emerging crys-
talline order (a) Experimental stroboscopic evolution of the
momentum distribution after bandmapping over 510 periods
of modulation. Modulation parameters are s0 = 3.8 ± 0.1,
ν = 25.5 kHz and ϕ0 = 15 o. The initial growth of the insta-
bility is monitored by counting the relative atomic population
in the two stripes delimited by dashed lines. (b) Evolution
of the normalized population in momentum peaks created by
the instability (stripes in (a)). A sigmoid fit allows to deter-
mine the nucleation timescale tn ' 4 ms. The population in
the nucleated modes then settles, and remains identifiable on
a timescale of several tn, but an eventual broadening of the
momentum peaks is clearly visible in (a).

peaks at q = ±q∗ seem to slowly broaden, presumably
through some further instability that leads to heating.
Interestingly this heating effect seems more pronounced
in simulations than in experiments. In simulations, the
sharp peaks at q = ±q∗ only exist in a small time interval
around tn, while experimentally (Fig. 5) we can reliably
see the contributions at ±q∗ after nucleation over a dura-
tion of order 3tn. We hypothesize that this longer persis-
tence in experiments than in numerical simulations may
originate from the transverse degrees of freedom in the
experimental system (absent in the simulation), which
offer more possibilities for effective heat dissipation, and
can affect parametric instabilities [35].

In summary, we have investigated how a tunable crys-
talline order emerges from atom-atom interactions seeded
by fluctuations in a Floquet system generated by reso-
nant band coupling. The tunable long-range order ob-

served here is synthesized and controlled by the param-
eters of the modulation and an atomic four-wave mixing
effect stemming from contact interactions in the ultracold
regime. It is as such applicable to other atomic species
or systems with contact interactions. A key feature of
this instability is the ability, via the coupling to higher
bands, to tailor both the position and width of the in-
stability, which adjusts the periodicity and range of first
and second order correlations. Further investigations into
this effect can be envisioned, to characterize the ulterior
broadening of the momentum components and the sta-
bility of the system, to possibly observe in situ the den-
sity modulation, e.g. through the quantum gas magnifier
technique [51, 52], or to explore similar effects in higher
dimensions and/or other lattice geometries. This work
highlights the potential of the interplay between Floquet
engineering and interactions for the preparation and ma-
nipulation of exotic quantum states.
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METHODS

1. Production of BECs

In our experiment, approximately 2 · 109 atoms from
a 3D magneto-optical trap are initially loaded into a
magnetic quadrupole. The quadrupole gradient is then
ramped up to 1.8 T/m to allow for microwave evapora-
tion. After evaporation over 10 s the temperature of the
atom cloud is decreased from 300µK to 30µK. Sub-
sequently, the atoms are transferred to a crossed dipole
trap, made of two 1064 nm laser beams, with waist 45µm
and maximum power 4 W, crossing in the horizontal
plane with a 16◦ angle, with one beam aligned on the
lattice axis. After this transfer and throughout the ex-
periment, a magnetic gradient is maintained for gravity
compensation. The evaporation in this final dipole trap
yields a pure BEC of up to 5 · 105 atoms in the low-field-
seeker state |F = 1,mF = −1〉.

2. Tight-binding effective model

a. Model and instability

We model the resonant coupling between bands at q 6=
0 in the modulated lattice by an effective tight-binding
model with two coupled bands that reproduces the main
features of a typical Floquet spectrum, described by the
effective Hamiltonian :

Ĥeff =Ĥ0 + Ĥint

Ĥ0 =− J0

∑
`

â†`+1â` + â†` â`+1 − J1

∑
`

b̂†`+1b̂` + b̂†` b̂`+1

(1)

+ Eb
∑
`

b̂†` b̂` +W
∑
`

b̂†` â` + â†` b̂`

Ĥint =
U

2

∑
`

â†2` â
2
` ,

where â` (resp. b̂`) are the annihilation operators for
band 0 (resp. 1) on site ` of the one-dimensional lattice,
J0,1 are the tunneling amplitudes for the two bands (J0 >
0 and |J0| < |J1|), Eb is an energy offset for band 1, W
is a coupling amplitude, and U is an effective on-site
interaction energy (see Appendix 3).

The condensate is considered initially in the ground
mode of band 0 with 〈â`〉 =

√
n, and associated chemi-

cal potential µ = −2J0 + nU . We then study the sta-
bility of this initial condensate due to the interaction
term, through a perturbative Bogolubov treatment. The
coupled-band Hamiltonian Ĥ0 describes two hybridized
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energy bands u and v with energies Eu,v(q), as a function
of quasi-momentum q:

Eu(q) =

[
E0(q) cos2

(
θ

2

)
+ E1(q) sin2

(
θ

2

)]
+W sin(θ),

Ev(q) =

[
E0(q) sin2

(
θ

2

)
+ E1(q) cos2

(
θ

2

)]
−W sin(θ).

where E0(q) = −2J0 cos(q) and E1(q) = −2J1 cos(q)+Eb
are the energies of the uncoupled bands, and θ(q) is the
mixing angle defined by:

tan(θ(q)) =
2W

(E0(q)− E1(q))
, 0 ≤ θ < π.

We write the fields orthogonal to the condensate mode
as :

δψ̂⊥a,` =

∫ π

−π

eiq`√
2π

Λ̂0,q dq

δψ̂⊥b,` =

∫ π

−π

eiq`√
2π

Λ̂1,q dq

where we have introduced the number conserving oper-
ators Λ̂0,q (resp. Λ̂1,q) which describe the transfer of an
atom from the mode at momentum q of band 0 (resp.
band 1) to the condensate mode [53].

The quadratic part of the expansion of Ĥeff in the fields
Λ̂ yields a set of linearized evolution equations, which can
be summarized as

i~
d

dt


Λ̂0,q

Λ̂1,q

Λ̂†0,−q
Λ̂†1,−q

 = Lq


Λ̂0,q

Λ̂1,q

Λ̂†0,−q
Λ̂†1,−q

 (2)

where Lq is block matrix made of the 2-by-2 matrices Âq
and B̂q, with definitions:

Lq =

(
Âq B̂q
−B̂q −Âq

)
Âq =

(
E0(q)− µ+ 2nU W

W E1(q)− µ

)
B̂q =

(
nU 0
0 0

)

The modes at q are stable if the eigenvalues of the ma-
trix Lq are all real. In practice we may search for the
largest imaginary part among all eigenvalues to charac-
terize instability.

Illustration. We illustrate the model with conditions
similar to those of Fig.1 at a frequency ν = 30 kHz. We
have represented the Floquet spectrum of the modulated
lattice (Fig.6(a)), and the model spectrum (Fig.6(b))

of Hamiltonian Ĥ0 (see equation 1), with parameters
adjusted so that the coupled bands best reproduce the
avoided crossings between the s and d bands in the Flo-
quet system (in units of EL, J0 = 0.0021, J1 = −0.2796,
Eb = 0.2593 and W = 0.051). In Fig.6(c) we plot the
instability exponent defined as the absolute value of the
largest imaginary part among the four eigenvalues, for
a varying value of the interaction parameter nU (see
Section 3). Two narrow regions of q in the vicinity of
the avoided crossings lead to pure imaginary eigenvalues,
with maximally unstable modes.

b. Onset of correlations from the instability

Based on the previous mode decomposition, we can
write a general expression for the elements of the reduced
one-body density matrix :

〈â†l (t)âl′(t)〉 = n+

∫ π

−π

eiq(l
′−l)

2π
〈Λ̂†0,q(t)Λ̂0,q(t)〉dq (3)

Due to the symmetries of the Bogolubov matrix Lq,
and near the maximum of the instability exponent, its
eigenvalues come in pairs of opposite real and imaginary
values, which we denote {ωq,−ωq, iλq,−iλq} with the
convention ωq, λq > 0. Using the fact that none of the
modes with q 6= 0 is initially populated, the expression
of the average value in Equation (3) can be obtained and
is approximately equal to:

〈Λ̂†0,q(t)Λ̂0,q(t)〉 ' |uq|2(1 + |vq|2)e2λqt (4)

keeping the exponentially diverging terms only, where the
coefficients uq, vq are the coefficients of the eigenvector of
Lq for the eigenvalue iλq, which is generally of the form

(uq, vq, iu
∗
q , iv

∗
q )T .

Let us now consider the vicinity of a maximum of the
instability exponent λq, near some q = q∗ > 0. We have

λq ' λ∗ −
λ′′

2
(q − q∗)2 +O

(
(q − q∗)3

)
(5)

with λ∗ > 0. Due to the symmetry of the band structure,
the same behavior arises near q = −q∗,

λq ' λ∗ −
λ′′

2
(q + q∗)2 +O

(
(q + q∗)3

)
(6)

We can then evaluate Eq. (3) with the saddle-point
approximation. This yields the estimate

〈â†l (t)âl′(t)〉 ' n+2n∗(t)e−(l−l′)2/∆2(t) cos[(l− l′)q∗] (7)

with

∆(t) = 2
√
λ′′t , (8)
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FIG. 6. Tight-binding model of the instability. (a)
Floquet spectrum of the modulated system for parameters
s0 = 3.4, ν = 30 kHz and ϕ0 = 20◦. Overlap with the states of
the static lattice bands is color-coded with blue, orange, green
and red corresponding respectively to the first 4 bands (s to
f ). (b) Spectrum of the model Hamiltonian H0 (see equation
1) with two coupled, tightly-bound bands. Adjusted parame-
ters (see text) are (in units of EL) J0 = 0.0021, J1 = −0.2796,
Eb = 0.2593 and W = 0.051 (a global offset is applied to
match the Floquet spectrum in (a)). (c,d) Maximum insta-
bility exponent of the Bogolubov matrix (2), as a function of
quasi-momentum and the interaction parameter nU . The po-
sition of the band crossing and the maximum exponent over
the Brillouin zone are plotted in dotted black and dashed red
lines respectively.

with the time-dependent population

n∗(t) =
|uq∗ |2(1 + |vq∗ |2)√

π∆(t)
e2λ∗t (9)

of excitations near the modes of momentum q∗. This im-
plicitly assumes that this population stays much smaller
than the remaining condensate population n at all times.

A very similar result is obtained for the density-density
correlation function. Defining the site population opera-

tor n̂l = â†l âl and the mean site occupancy n̄ = 〈n̂l〉 =
n + 2n∗, and using n∗(t) � n, we obtain, to first order
in n∗

g(2)(l − l′)− 1 =
〈n̂l(t)n̂l′(t)〉
〈n̂l(t)〉〈n̂l′(t)〉

− 1

' 4
nn∗(t)

n̄2
e−(l−l′)2/∆2(t) cos[(l − l′)q∗]− δll′

n̄
.

(10)

We therefore have a normalized coherence g(1)(l−l′) =

|〈â†l (t)âl′(t)〉|/n̄ and normalized correlation g(2)(l − l′)
that spatially oscillate with the period d∗ = 2π/q∗ (in
dimensionless lattice units) and decay to 1 on the char-
acteristic scale ∆(t).

A key parameter for this decay scale is therefore the
sharpness of the instability peak (described by the second

derivative λ
′′
). It is the existence of the sharp features

in the coupled-band system that allow for an extended
order to appear in the system. While the decay scale
∆(t) ∝ t1/2 can, in principle, also be enhanced by increas-
ing the evolution time t, letting the system evolve for too
long a time leads to a breakdown of the Bogolubov ap-
proximation, entailing secondary atom-atom scattering
processes and a global loss of coherence.

3. Estimation of the interaction parameter

The interaction parameter nU in the effective 1D
model has to take into account the fact that the real
system is a 1D lattice of pancakes of atoms. In order to
account for weakly populated sites, where the interaction
can be described perturbatively, and strongly populated
sites, with a transverse Thomas-Fermi profile, we use a
heuristic interpolation formula [41, 54] for the interaction
energy U on site `:

U` =
2~ω⊥as/(

√
2πa0)√

1 + 4n`as/(
√

2πa0)
, (11)

where n` is the number of atoms on site `, ω⊥ is the
geometrical average transverse frequency (ω⊥/(2π) =
67 Hz), as is the scattering length of 87Rb (as ' 5.3 nm),
and a0 is the characteristic size of the ground state of
the lattice potential well in the harmonic approximation:

a0 =

√
~2/(mEL

√
s) = ds−1/4/(π

√
2) ' 86 nm.

Within this approximation, we can estimate the max-
imum value of the interaction parameter nU . Taking an
initial Thomas-Fermi profile for the BEC in the dipole
trap with frequencies (ωx′ , ωy′ , ωz) = 2π × (10.4, 66, 68)
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Hz, and a total number of atoms N = 5 × 105, we esti-
mate that the number of atoms loaded in the central site
of the lattice (` = 0) is n0 ' 4.4 × 103. We can then
compute the maximum value n0U0/EL:

n0U0

EL
' ~ω⊥

EL

√
as√
2πa0

√
n0 ' 0.086. (12)

This justifies our choice of the range of values for nU in
the tight-binding model (Section 2).

4. Numerical simulations : truncated Wigner

Numerical simulations were performed using the Trun-
cated Wigner method [47–49] which allows one to account
for the effect of quantum fluctuations. This method was
implemented on the basis of a multiband description of
the lattice problem at hand, using the Wannier orbitals
χn,`(x) = χn,0(x−`d) that are obtained from the inverse
Fourier transform of the Bloch eigenstates of the homo-
geneous one-dimensional lattice described by the Hamil-
tonian:

H0 =
p̂2

2m
− s0

2
EL cos(kLx) (13)

with p̂ = −i~∂/∂x. Here, ` ∈ Z is the lattice site in-
dex and n represents the band index ranging between 0,
corresponding to the ground band, and a maximum ex-
citation number M chosen such that all relevant driving-
induced intrawell coupling processes are accounted for in
this representation. The Wannier orbitals are mutually
orthogonal and normalized,∫ ∞

−∞
χ∗n,`(x)χn′,`′(x)dx = δnn′δ``′ , (14)

and fulfill the parity property

χn,0(−x) = (−1)nχn,0(x) (15)

owing to the symmetry of the lattice wells. On-site en-
ergies En and nearest-neighbor hoppings Jn associated
with the nth excited band are calculated from the rela-
tions ∫ ∞

−∞
χ∗n,`(x)H0χn′,`(x)dx = Enδnn′ , (16)∫ ∞

−∞
χ∗n,`(x)H0χn′,`±1(x)dx = −Jnδnn′ , (17)

respectively, while tunneling matrix elements beyond the
nearest neighbors are neglected in the description.

We also neglect interaction effects involving Wannier
orbitals on different sites, thus only accounting for on-site
interaction matrix elements obtained from the integrals

un1n2n′1n
′
2

=

∫ ∞
−∞

χ∗n1,`(x)χ∗n2,`(x)χn′1,`(x)χn′2,`(x)dx

(18)

which, owing to the property (15), vanish if n1 + n2 +
n′1+n′2 is an odd number. Lattice shaking is incorporated
through the gauge transformation

ψ 7→ ψ̃ = exp

[
− iϕ0

~kL
cos(2πνt)p̂

]
ψ (19)

of the wavefunction, which effectively yields a periodi-
cally modulated synthetic gauge field. The associated
matrix elements in the Wannier basis are given by

p
(`−`′)
nn′ =

∫ ∞
−∞

χ∗n,`(x)p̂χn′,`′(x) (20)

and vanish for ` = `′ if n+ n′ is an even number.
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FIG. 7. (a) Eigenvalues of the reduced one-body density ma-
trix, normalized with respect to the total population of the
atomic gas. Three eigenvalues are distinctly large with respect
to the others, indicating the presence of Bose-Einstein conden-
sates. (b-d) Ground-band components of the corresponding
three associated condensate wavefunctions (obtained via the
eigenvectors of the reduced one-body density matrix multi-
plied by the square roots of the associated eigenvalues) plotted
in momentum space (solid line: real part; dashed line: imag-
inary part of the ground-mode wavefunction), in matching
colors. Besides the primary condensate centered about p = 0,
two secondary condensates, corresponding to linear combi-

nations of left- and right-moving states e±iq∗x, are populated
through four-wave mixing. Parameters: s0 = 3.4, ν = 30 kHz,
ϕ0 = 20o, N = 105, t = 5 ms.

Neglecting driving-induced couplings beyond nearest
neighbors, we obtain the time evolution equations for the
calculations of trajectories in the framework of the quasi-
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classical Truncated Wigner method as

i~
∂

∂t
ψn,`(t) = (En + V`)ψn,`(t)− Jn[ψn,`+1(t) + ψn,`−1(t)]

−ϕ0
2πν

kL
sin(2πνt)

M∑
n′=0

`+1∑
`′=`−1

p
(`−`′)
nn′ ψn′,`′(t)

+g`

M∑
n′,n2,n′2=0

unn2n′n′2
ψ∗n2,`(t)ψn′2,`(t)ψn′,`(t)

−g`
M∑

n′,n2=0

unn2n′n2
ψn′,`(t) (21)

with

V` =
1

2
mω2

xd
2`2 (22)

the shift of the on-site energies due to the longitudinal
confinement of the hybrid trap and

g` = (
√

2π/a0)U` =
2~ω⊥as√

1 + 4n`as/(
√

2π/a0)
(23)

the effective on-site interaction parameter modified by
the presence of the transverse confinement, as described
in Sec. 3. The lattice site populations n` are numerically
obtained from imaginary-time propagation yielding the
initial condensate wavefunction in the un-driven lattice,
and we assume here that they vary only marginally in the
course of time evolution (which is not always the case, as
seen in Fig.3). Note that the last term in Eq. (21) arises
from the proper derivation of the classical counterpart of
the quantum interaction term via Weyl ordering.

The Truncated Wigner method allows one to com-
pute quasi-classical expressions for the mean populations
〈n̂n,`〉 of the lattice sites as well as for the population
correlations 〈n̂n,`n̂n′,`′〉, where Weyl ordering has to be
respected in order to correctly obtain the quantum ex-
pectation values from the classically calculated densities

|ψn,l(t)|2. It can also give access to the entire reduced
one-body density matrix constituted by the expectation

values of the coherence matrix elements 〈â†n,`ân′,`′〉 (see

Ref. [55] for a similar study). Diagonalization of this ma-
trix yields the proper definition of the condensate frac-
tion, via the eigenvector that is associated with its largest
eigenvalue [56]. We can thereby monitor the time evo-
lution of the shape and population of the condensate,
and the appearance and ultimate destruction of the non-
commensurate crystalline order.

Within the time window where the emerging crys-
talline order is realized, the formation of two sec-
ondary Bose-Einstein condensates can be identified in the
eigenspectrum of the reduced one-body density matrix,
namely via the presence of two further eigenvalues that
are distinctly large as compared to the rest of the spec-
trum. As displayed in Fig.7, those two secondary conden-
sate wavefunctions correspond to linear combinations of
the two traveling waves e±iq

∗x that are populated via
four-wave-mixing. The superposition of those secondary
condensates with the primary condensate centered about
p = 0 in momentum space gives rise to the coherence os-
cillations displayed in Fig.3.

5. Experimental method : band-mapping

To more accurately identify the onset of the emerg-
ing crystalline order, we use the band-mapping technique
[57] that consists in decreasing adiabatically the lattice
before the time-of-flight (see Fig.8). The band-mapping
reveals the hybrid nature of the unstable modes induced
by resonant coupling. The clear growth of the popula-
tion fraction in the higher coupled band is subsequently
plotted as a function of time to characterize the kinetics
of the crystalline state formation and its persistence over
time (see Fig.9).
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FIG. 8. Band-mapping process. (a) Depth of the lattice along time: adiabatical loading at s0, held constant during the
experiment, adiabatical unloading to band map (see text) and switch off for time-of-flight imaging. (b) Phase of the lattice
along time, sine-modulated with amplitude ϕ0 for an integer number n of periods T . (c) Stack of experimental absorption
images for increasing n, with s0 = 3.70 ± 0.10, ϕ0 = 15o, ν = 1/T = 25.5 kHz and tTOF = 35 ms. (d) Corresponding quasi-
energy spectrum (colored lines) where the overlaps between the Floquet eigenstates and the eigenstates of the static lattice
have been color-coded, with blue, orange, green and red corresponding respectively to the first 4 bands (s to f ). BEC (disk in
q = 0) and instability (disks in q 6= 0) modes. (e-f) Band structures of the lattices of depth s0 = 3.7 for (e) and s0 = 0 for
(f) (solid colored lines) and follow-up of the modes (see text) with the same color code. (f-g) BZ borders (black dotted lines).
(g) Absorption image after n = 80 periods of data (c).
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FIG. 9. Timescales measurements. (a) Example of mea-
sured data series after band-mapping, for s0 = 3.70±0.20, ν =
25.5 kHz and ϕ0 = 15◦. The population from higher bands in
the horizontal grey shaded stripes is measured over time to
extract a nucleation time. (b) Growth curves extracted as in
(a) for the points of Fig.4(b) corresponding to coupling bands
s and d, with the purple, red, blue, orange, and green data cor-
responding to ϕ0 = {10 o, 12.5 o, 15 o, 17.5 o, 20 o} respectively.
The sigmoid fitting curves are shown and the extracted nu-
cleation times are represented by vertical lines, with shaded
areas denoting the uncertainty from the fit.
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