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Control of stochastic systems is a challenging open problem in statistical physics, with potential
applications in a wealth of systems from biology to granulates. Unlike most cases investigated so
far, we aim here at controlling a genuinely out-of-equilibrium system, the two dimensional Active
Brownian Particles model in a harmonic potential, a paradigm for the study of self-propelled bac-
teria. We search for protocols for the driving parameters (stiffness of the potential and activity of
the particles) bringing the system from an initial passive-like stationary state to a final active-like
one, within a chosen time interval. The exact analytical results found for this prototypical system
of self-propelled particles brings control techniques to a wider class of out-of-equilibrium systems.

Introduction — Active matter is one of the most
studied and promising topics of out-of-equilibrium sta-
tistical physics [1–4]. Inspired by the behaviour of bio-
logical systems such as bacteria and cells, this class of
problems is characterized by internal mechanisms (e.g.,
self-propulsion) inducing nonzero entropy production,
through energy dissipation. They are intrinsically out
of equilibrium. Motility-induced phase separation [5, 6],
pattern formation [7, 8], velocity self-alignment [9] are
typical hallmarks of active models. More generally, self-
propulsion and activity rule a wealth of systems, result-
ing in nano-swimming [10], complex colloidal or bacteria
dynamics [11, 12], and active transport in biology [13].
While the engineering of such systems becomes possible
[4], it remains a challenge to control activity in general;
the present work is a step in this direction. This demands
a proper understanding of the dynamics under confine-
ment, an important endeavour for active objects [14, 15].

Several experiments have shown the possibility to tune
the degree of activity of active matter [16–20]. In
Ref. [16], for instance, silica spheres of a few µm radius,
partly covered by chromium and gold (Janus particles)
are diluted in a binary mixture of water and 2,6-lutidine,
that reacts with the surface of the particles and induces
self-propulsion. The reaction is tuned by the intensity of
light, so that the persistent velocity can be controlled.
This light-dependent tuning is a promising mechanism
for the control of active fluids and may have useful appli-
cations, e.g., for the clogging/unclogging of microchan-
nels [21, 22]. The main idea behind these applications
is to bring the system from a passive-like to an active-
like phase, and vice-versa, and to take advantage of the
different distribution of the particles in the two states.

The time needed to switch the system from one phase
to the other will depend, in general, on the protocol that
is employed to change the values of the controlling pa-
rameters. A sudden change of the external light, for in-
stance, may then require a long time for the relaxation of
the system to the desired final distribution. It is thus im-
portant to search for protocols that allow to execute the
transition in a controlled way, in a short time. This type

of problems, that can be subsumed under the terminol-
ogy of “swift state-to state transformations” (SST) [23],
has witnessed a surge of interest in the last 15 years. The
first studies are in the realm of quantum mechanics [24],
where they are referred to as “shortcuts to adiabaticity”;
applications to statistical physics and stochastic thermo-
dynamics are more recent [23, 25].

In this letter, we study such SST problems for a sys-
tem of Active Brownian Particles (ABP) in two dimen-
sions [14, 26–31]. This is one of the simplest and most
used models mimicking the behaviour of self-propelled
particles like bacteria [26], whose fluctuating hydrody-
namics has been shown to be equivalent to the Run-and-
Tumble model describing the above mentioned Janus par-
ticles [27, 32]. We will assume that the system is confined
in an external harmonic potential with tunable stiffness,
as done for instance in Ref. [33] by using acoustic waves.
The stationary distribution of this model was found in
Ref. [34]. With these assumptions, we will describe a
class of analytical protocols leading the system from a
passive-like to an active-like state with the same stiffness
in a finite time, and vice-versa. Among this class of con-
trol protocols, we will identify the one minimizing the
total time required for the transition.

Model — The state of 2 dimensional ABP is defined
by a spatial position ρ = (ρ cosϕ, ρ sinϕ) for the center
of mass, and an angle θ associated to the orientation of
the particle. The particle’s velocity is given by the sum
of a self-propulsion contribution along the direction of θ,
e(θ), with constant modulus u0, plus a thermal Gaus-
sian noise. The orientation θ is also subject to Gaussian
fluctuations. In addition, the effect of an external poten-
tial will be taken into account. We consider the case of
isotropic harmonic confinement, resulting in a force −kρ
pointing toward the origin (k being the stiffness). In the
overdamped limit, the time evolution is then given by the
coupled Langevin equations

{
dρ
dτ

= u0ê(θ)− µkρ+
√
2Dt ξr(τ),

dθ
dτ

=
√
2Dθ ξθ(τ) ,

(1)
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where τ is the time, µ stands for the mobility, ξr(τ) and
ξθ(τ) are Gaussian white noises, while Dt and Dθ are
the translational and the rotational diffusivities. We also
switch to the dimensionless variables r =

√
Dθ/Dtρ and

t = Dθτ . As a matter of fact, it is convenient to recast
the problem in terms of a Fokker-Planck equation for the
evolution of the probability density function (pdf):

∂tP (r, θ) = −∇ {[λê(θ) − βr−∇]P (r, θ)} + ∂2
θP (r, θ) ,

(2)
where λ = u0/

√
DθDt is a Péclet number which accounts

for the degree of activity of the system, and β = µk/Dθ

can be regarded as a dimensionless stiffness. Let us call
ϕ the angle between the x axis of the plane where the
particle moves and the vector r. Assuming isotropy, the
pdf is expected to depend only on the difference χ = θ−ϕ.
Eq. (2) can be thus recast as

∂tP = LrP − λ cosχ∂rP + λ sinχ
1

r
∂χP +

1

r2
∂2
χP + ∂2

χP

(3)
where

Lrf(r) =
1

r
∂r [r (∂r + βr) f(r)] . (4)

An analytical stationary solution can be worked out as
a series expansion in powers of λ [34]:

Ps(r, χ|β, λ) =
∞∑

m=0

λm
∑

2n+|l|=m

C
(m)
n,l (β)φn,l(r, χ|β) .

(5)

Here, the C
(m)
n,|l|(β) are coefficients that can be determined

by suitable recursive rules, see Supplemental Material
(SM) [35]. They are by construction independent of the
activity parameter λ. The functions φn,l(r, χ) are defined
by

φn,l(r, χ|β) =



n!
(

β
2

)|l|+1

π(n+ |l|)!




1
2

r|l|e−
βr2

2 L|l|
n

(
βr2

2

)
eilχ

(6)
where Lα

n(x) are the generalized Laguerre polynomials.
The second sum in Eq. (5) is constrained to the (integers)
values of l and n ≥ 0 such that 2n+ |l| = m.
There are three relevant time scales for this model:

τr = D−1
θ is the typical time for the rotation of a particle,

τk = (µk)−1 = τr/β0 is the relaxation time of the over-

damped harmonic oscillator, and τu = 1
u0

√
Dt

Dθ
= τr/λ is

a typical time-scale of the activity [36], namely the time
needed by a particle ballistically moving with velocity u0

to cover the same distance as a passive particle would
reach by diffusion during a “rotation” (i.e. in a time
τr). In typical experimental situations, where λ > 1 and
β > 1 (see discussion below), τr is the largest. Sponta-
neous thermalization is expected to occur for τ ≫ τr [29]
or, in our rescaled variables, t ≫ 1.

Swift state-to-state transformations — We now face
the problem of bringing the system from an initial sta-
tionary state, characterized by λ = λi, to a final state
λ = λf with the same β = β0, in a given time interval tf .
We assume that the controlling parameters λ and β can
be varied during the evolution. We impose, searching for
an exact solution, that the form of the pdf during the
process is described by the functional form:

P (r, χ, t) ≡ α(t)Ps

(√
α(t)r, χ|β0,

√
α(t)λ(t)

)
. (7)

Here α(t) is an arbitrary continuous function of time such
that α(t) > 0 and

α(0) = α(tf ) = 1 . (8)

When α = 1, the pdf corresponds to the stationary state
induced by the external parameters λ(t) and β0. The
normalization condition is verified in the SM [35]. We
plug Eq. (7) into the Fokker-Planck equation (3). The
calculations, carried out in the SM [35], are quite lengthy:
they yield the conditions that the dimensionless activity
λ and stiffness β should fulfill so that Eq. (7) be a valid
solution. We find

β(t) = α̇(t)
2α(t) + β0α(t) (9a)

λ̇(t) =− [β(t)− β0]λ(t) , (9b)

Once supplemented with the boundary conditions (8) and

λ(0) = λi λ(tf ) = λf , (10)

Eqs. (9) provide a class of eligible SST for the process.
They constitute the main result of this letter. We remark
that the substantial freedom for the choice of α(t) leads
to a wide family of exact protocols for the controlled
dynamics.
From a physical point of view, taking into account the

definition of λ and r, ansatz (7) is equivalent to a sta-
tionary state where β = β0 and the thermal diffusivity
Dt (or, the bath temperature) is divided by a factor α(t).
In other words, we assume that during the dynamics, the
instantaneous pdf has the same shape of a fictitious sta-
tionary state with fixed stiffness and varying Dt and u0:
at the end of the process, Dt is brought back to its origi-
nal value so to match the actual bath temperature, while
u0 assumes a different value with respect to the initial
one, allowing for a passive-to-active transition, or vice-
versa.
Controlled protocols — As recalled in the Introduc-

tion, the degree of activity and the stiffness of the ex-
ternal potential can be controlled in actual experiments.
With the setup studied by Buttinoni et al. [16], spherical
Janus particles with radius R = 1µm can have a per-
sistent velocity varying in the interval 0µm/s ≤ u0 ≤
1µm/s, depending on the intensity of the surrounding
light. The rotational diffusivity has been measured to
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FIG. 1. Parameter space of the model. The color code repre-
sents the value of ∂2

rPs(r)|r=0, which is zero at the interface
between the passive-like and the active-like phase (green dash-
dotted curve). The black dotted line represents the path of
a quasi-static protocol in which λ is slowly varied between
λi = 2.5 and λf = 5, while β = β0 = 4 is kept constant. The
red solid curve describes the solution to Eqs. (9) associated
to the polynomial protocol (14); in this case the final time tf
is chosen in such a way that β(t) does not exceed the bounds
1 < β < 7, inspired by the experimental constraints discussed
in the text. The blue lines show the minimal-time protocol,
the dashed branches representing instantaneous change in the
control parameter β. Plots of the position pdf for the initial
and the final states are also shown.

be Dθ ≃ 0.08 s−1. Calling η the dynamic viscosity of the
fluid, T the temperature and kB the Boltzmann constant,
it is also possible to estimate the translational diffusivity
of the particles (not measured in the paper):

Dt =
kBT

6πηR
=

4

3
R2Dθ ≃ 0.10µm2/s , (11)

in agreement with the estimation provided in Ref. [33]
for a similar situation. The dimensionless parameter λ =
u0/

√
DθDt can be thus tuned in the interval

0 ≤ λ ≤ 11 . (12)

The particles may be confined in a quasi-harmonic, con-
trollable potential as done in Ref. [33], where acoustic
waves are employed to trap a system of Janus particles
with different chemical properties but similar radius. In
that paper, two experimental situations are studied, in
which particles with τr between 2s and 5s attain states
with β = 0.29 and β = 1.76. Taking into account the
different characteristic time for rotations, the dimension-
less stiffness for the system described in Ref. [16] can
be expected to be tunable, at least, within the interval
1.2 ≤ β ≤ 7. A lower bound to the stiffness is expected
to hold in experimental setups to prevent particles from
moving away from the trap.
In Fig. 1 the parameter space of the model is sketched.

As in Ref. [34], we distinguish between a passive-like
phase characterized by ∂2

rPs(0, χ) < 0 and an active-like

one where the particles tend to escape from the center
of the potential and ∂2

rPs(0, χ) > 0. The range of the
control parameters that is expected to be reached in ex-
periments includes both passive-like and active-like sta-
tionary distributions, and it is interesting to search for
SST between these two states.
Possibly, the simplest way to find an explicit smooth

protocol satisfying Eqs. (9) is to enforce a polynomial
form for α(t). We have to impose the boundary condi-
tions Eq. (8) and the final condition for λ. If we also
require that

β(0) = β(tf ) = β0 , (13)

i.e. that the stiffness is varied continuously without
abrupt changes at the beginning and at the end of
the protocol, five degrees of freedom are needed. The
polynomial needs therefore to be at least fourth order,
α(t) =

∑4
n=0 αnt

n, and one has

α0 = 1, α1 = 0, α2 = −30 ln[λ(tf )/λ(0)]

β0t3f
,

α3 = −2α2

tf
, α4 =

α2

t2f
.

(14)

In Fig. 1, the red solid curve shows a protocol of this
sort for a realistic situation, bringing the state of the
system from the passive- to the active-like phase in a
time tf ≃ 0.66, where an abrupt change of the parameters
would have led to a thermalization on time-scales t ≫ 1,
as discussed before.
Minimal time — Our interest now goes to finding the

optimum protocol, i.e. with the shortest connecting time
tmin
f , among all those encoded in the form (7). This
amounts to identifying the optimal function α(t), from
which the driving parameters (stiffness β(t) and activity
λ(t)) follow. Integrating Eq. (9b), one has

ln
λf

λ0
= β0

∫ tf

0

dt′[1− α(t′)] , (15)

i.e. the area between α(t) and the line α = 1 is de-
termined once λ0, λf and β0 are fixed, and it does
not depend on tf . Assuming that β is bounded by
β− ≤ β ≤ β+, this condition allows to find the minimal
time for the protocol. We will consider the case in which
the activity of the particles is increased during the pro-
cess (the inverse process can be derived similarly). The
constraints on β, recalling Eq. (9a), lead to

β− ≤ α̇(t)

2α(t)
+ β0α(t) ≤ β+ . (16)

The two limiting curves α−(t) and α+(t) (obtained by
setting β(t) = β− and β(t) = β+ respectively) are:

α−(t) =
β
−

β0−(β0−β
−
)e−2β

−
t (17)

α+(t) =
β+

β0−(β0−β+)e
2β+(tmin

f
−t)

, (18)
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where the boundary conditions Eq. (8) have been en-
forced. In this case we assume that the stiffness of the
confining potential can be varied on time scales much
shorter than the typical times of the dynamics, so that
we do not have to take into account the boundary con-
ditions (13) .

Since α− (α+) is monotonically decreasing (increas-
ing), the best strategy to cover the area prescribed by
Eq. (15) in the minimum time is to alternate a maximal
decompression (α(t) = α−(t)) and a maximal compres-
sion (α(t) = α+(t)). This approach is usually referred
to as “bang-bang protocol” [37]. Let us denote by t⋆ the
time at which the two regimes are switched. The conti-
nuity condition on α(t) yields

α−(t
⋆) = α+(t

⋆) ≡ α⋆ , (19)

while from Eq. (15) one obtains, by integration,

ln

(
λf

α⋆λi

)
= β0t

min
f − β−t

⋆ − β+(t
min
f − t⋆) . (20)

The above equations can be solved numerically for t⋆

and tmin
f (see SM [35] for a plot of tmin

f as a function
of the boundary conditions). In figure 1 the blue curve
represents the optimal protocol in the parameter space
under some realistic constraints. The time dependence
of the parameters is presented in Fig. 2, where also the
smooth polynomial protocol discussed before is shown
for comparison. In panel 2(c) the equivalence of the areas
discussed above can be appreciated for the two considered
processes.

Conclusions — In the present letter, we have discussed
a class of exact analytical protocols to bring an ABP sys-
tem from an initial non-equilibrium stationary state to
another final stationary state having a different degree of
activity, in a given time. Among this family of protocols,
we have also identified the one leading to the minimal
time. The proposed protocols are expected to be appli-
cable in actual experiments with tunable active particles,
with possible applications in the context of clogging [22]:
externally tuning the shape of the particle distribution
induces control of the flux of fluid or the quantity of
light passing through the system. We emphasize that our
method, based on suitable deformations of the stationary
distribution, may be used to search for SST (“swift state-
to state transformations”) in different contexts, provided
that the stationary state is known. Finding the general
conditions to be fulfilled for this approach to provide a
suitable solution is an interesting research perspectives.

Our computation is the starting point for the solu-
tion of other optimal problems for ABPs: for instance,
the average work done during a realization can be com-
puted [35] and minimized with analytical methods, a task
that has been so far accomplished, for active models, only
with numerical techniques [38]. Since our search for the

 2
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FIG. 2. Evolution of the parameters for the minimum-time
protocol and the the solution to Eqs. (9) associated to the
polynomial with coefficients (14). Panel (a) shows the time
dependence of β(t), panel (b) that of λ(t) and panel (c) the
evolution of α(t). The dashed vertical line identifies the min-
imum time over all possible protocols of the type given by
Eq. (7), with 1 < β < 7. The switching time t⋆ is also high-
lighted on the top axis. In both cases tf < 1, while the
relaxation following an abrupt change of the controlling pa-
rameters would take a time tf ≫ 1. The shaded areas in
panel (c) do not depend on the protocol, once β0 and λf/λi

are fixed, as prescribed by Eq. (15).

optimal protocol is restricted to the class of processes ful-
filling condition (7), a further step would consist in prov-
ing (or excluding) that the “global” optimum belongs
to this family, making use of Pontryagin’s principle [39].
Protocols connecting states with different stiffness may
be also searched for, following similar approaches. Fu-
ture developments pertain to the search for SSTs in three
dimensions [40] (e.g., in the presence of homogeneous ex-
ternal force [41]), and for interacting particles [14, 28];
the latter has been studied in the context of passive sys-
tems [42], but with few degrees of freedom only.

To summarize, we have extended the quest for control-
ling stochastic motion to the realm of active particles. To
the best of our knowledge, this is the first case in which
SST can be found for this class of systems, and one of
the few involving out-of-equilibrium models [37, 43, 44].
Similar strategies may be attempted for active particles
models whose stationary state is analytically known, as
the 1D Run-and-Tumble [45, 46] or the Active Ornstein-
Uhlenbeck particles with Unified Color Noise approxima-
tion [47, 48]. As the results contained in the present work
show, analytical techniques from the domain of control
theory can be successfully applied to simple, but non-
trivial, models of active matter, opening the way to a
number of research directions in this field.

The authors thankfully acknowledge useful discussions
with P. Bayati, L. Caprini and A. Puglisi.
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In Sections I and II we recall, for the sake of completeness, the definition of the coefficients C
(m)
n,l (β)

introduced in Ref. [1] and the properties of the Generalized Laguerre Polynomial, which will turn
out to be useful for the following calculations. In Section III, we show that the ansatz made in the
main text is properly normalized. In Section IV Eq. (9), the main result of the paper, is derived.
Section V shows a plot of the minimal time as a function of the problem’s parameters. Finally,
Section VI is devoted to the derivation of the average work.

I. DEFINITION OF THE COEFFICIENTS C
(m)
n,l (β)

As discussed in Ref. [1], the coefficients C
(m)
n,l (β) can be determined recursively, according to the following iterative

rules (the β dependence is dropped to avoid clutter):

C
(0)
0,0 =

√
β

2π
(1a)

C
(l)
0,l =

C
(l−1)
0,l−1

√
l β2

βl + l2
l > 0 (1b)

C
(2n)
n,0 = −

C
(2n−1)
n−1,1√
2βn

n > 0 (1c)

C
(m)
n,l =

C
(m−1)
n,l−1

√
(n+ |l|)β2 − C

(m−1)
n−1,|l|+1

√
nβ

2

β(2n+ |l|) + l2
l > 0, n > 0 . (1d)

The coefficients with negative values of l are defined by the symmetry relation

C
(m)
n,−l = C

(m)
n,l l > 0 . (2)

With the above prescriptions, one can first compute C
(l)
0,l iteratively for every value of l > 0, then all terms Cl+1

1,l ,

Cl+2
2,l , and so on, and finally use the symmetry relation (2) to determine the remaining coefficients.

II. SOME PROPERTIES OF THE GENERALIZED LAGUERRE POLYNOMIALS

The Generalized Laguerre polynomials are defined as

L(y)
n (x) =

n∑

i=0

(−1)i
(
n+ y

n− i

)
xi

i!
, (3)

or, alternatively, through the Rodrigues formula

L(y)
n (x) =

x−yex

n!

dn

dxn

(
e−xxn+y

)
. (4)

These functions are a generalization of the Laguerre polynomials (which can be recovered by setting y = 0), hence
the name.

∗ marco.baldovin@universite-paris-saclay.fr
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It can be shown that, with the above definition, the derivative of a generalized Laguerre polynomial assumes the
form

dk

dxk
L(y)
n (x) =

{
(−1)kL

(y+k)
n−k (x) if k ≤ n

0 otherwise .
(5)

Several recurrence formulas can be defined for this set of functions. Two particularly useful ones are the following:

L(y)
n (x) = L(y+1)

n (x)− L
(y+1)
n−1 (x) (6)

L(y)
n (x) =

y + 1− x

n
L
(y+1)
n−1 (x) − x

n
L
(y+2)
n−2 (x) . (7)

III. NORMALIZATION OF THE ANSATZ

Here we verify that the proposed ansatz is properly normalized for any choice of α and λ, i.e., we check that the
quantity

∫ 2π

0

dχ

∫ ∞

0

dr rP (r, χ|α, λ, β0) =

∫ 2π

0

dχ

∫ ∞

0

dr r

∞∑

m=0

λmα
m
2 +1

2n+|l|=m∑

n,l

C
(m)
n,l (β0)φn,l(

√
αr, χ|β0) (8)

with

φn,l(r, χ|β) =



n!
(

β
2

)|l|+1

π(n+ |l|)!




1
2

r|l|e−
αβr2

2 L|l|
n

(
βr2

2

)
eilχ , (9)

is equal to 1, where the coefficients C
(m)
n,l are defined in Sec. I of the present Supplemental Material (SM).

First of all, let us notice that all terms with l 6= 0 are null, due to the factor eilχ which turns into a Kronecker delta
2πδl,0 once it is integrated over χ. The second sum is constrained to 2n + |l| = m, which implies therefore m = 2n
for all nonvanishing terms. We can thus write

∫ 2π

0

dχ

∫ ∞

0

dr rP (r, χ|α, λ, β0) =
√
2πβ0

∫ ∞

0

dr r

∞∑

n=0

λ2nαn+1C
(2n)
n,0 (β0)e

−αβr2

2 L0
n

(
αβ0r

2

2

)

=

√
2π

β0

∞∑

n=0

λ2nαnC
(2n)
n,0 (β0)

∫ ∞

0

du e−uL0
n (u)

=

√
2π

β0

∞∑

n=0

λ2nαnC
(2n)
n,0 (β0)

1

n!

∫ ∞

0

du
dn

dun

(
e−uun

)
,

(10)

where we first implemented the variable change u = αβ0r
2/2 and then, in the last step, we exploited the Rodrigues

formula for Laguerre polynomials (see Eq. (4) of Appendix II). The integral is only different from zero (and equal to
1) when n = 0, so one finally has:

∫ 2π

0

dχ

∫ ∞

0

dr rP (r, χ|α, λ, β0) =

√
2π

β0
C

(0)
0,0(β0) = 1 . (11)

IV. DERIVATION OF EQ. (9)

To derive Eq. (9) of the main text, one has to plug the ansatz

P (r, χ|α, λ, β0) =

∞∑

m=0

λmα
m
2 +1

2n+|l|=m∑

n,l

C
(m)
n,l (β0)φn,l(

√
αr, χ|β0) , (12)
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with φn,l defined by Eq. (9), into the Fokker-Planck equation

∂tP = LrP − λ cosχ∂rP + λ sinχ
1

r
∂χP +

1

r2
∂2
χP + ∂2

χP . (13)

To avoid clutter, in the following we will drop explicit dependence on the parameters, i.e in this SM we will always
consider

P ≡ P (r, χ|α(t), λ(t), β0) C
(m)
n,l ≡ C

(m)
n,l (β0) φn,l ≡ φn,l(

√
α(t)r, χ|β0) Ll

n ≡ Ll
n

(
α(t)β0r

2

2

)
.

We start with the time derivative ∂tP . Our ansatz only depends on time through λ(t) and α(t). One obtains

∂tP =

∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

{
m
λ̇

λ
+

α̇

2α

[
|l|+m+ 2− αβr2 − αβr2

L
|l|+1
n−1

L
|l|
n

]}
φn,l , (14)

where the rule for the derivative of generalized Laguerre polynomials, Eq. (5), has been exploited.

The term LrP is more involved, and its evaluation requires the use of the recursion formulas for the generalized
Laguerre Polynomials. It is important to note that inside the operator Lr one has the time-dependent parameter β
(which determines the stiffness of the external potential).

LrP =
∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

1

r

∂

∂r

[
r

(
∂φn,l

∂r
+ βrφn,l

)]

=

∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

1

r

∂

∂r

[(
|l| − αβ0r

2L
|l|+1
n−1

L
|l|
n

+ (β − αβ0)r

)
φn,l

]

=

∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

(
l2

r2
− αβ0|l|+

[
−2(|l|+ 2)αβ0 + α2β2

0r
2
] L|l|+1

n−1

L
|l|
n

+ α2β2
0r

2L
|l|+1
n−2

L
|l|
n

)
φn,l+

+

∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l (β − αβ0)

(
|l|+ 2− αβ0r

2 − αβ0r
2L

|l|+1
n−1

L
|l|
n

)
φn,l

=
∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

[
l2

r2
− αβ0|l| − 2nαβ0 + (β − αβ0)

(
|l|+ 2− αβ0r

2 − αβ0r
2L

|l|+1
n−1

L
|l|
n

)]
φn,l

(15)

where, in the last step, we made use of Eq. (7).

Since the pdf P only depends on χ through the factor eilχ appearing in the definition of φ, the terms of the
Fokker-Planck equation which only involve the second derivative with respect to χ read

1

r2
∂2P

∂χ2
+

∂2P

∂χ2
=

∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

[
− l2

r2
− l2

]
φn,l . (16)

Finally, we have to evaluate the λ-dependent terms. First, we have that

− λ cosχ∂rP = − cosχ
∞∑

m=0

λm+1
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

(
|l|r−1 − αβ0r − αβ0r

L
|l|+1
n−1

L
|l|
n

)
φn,l . (17)
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Here we have to apply in sequence Eqs. (6) and (7), leading to

− λ cosχ∂rP

=− cosχ

∞∑

m=0

λm+1
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

(
(n+ 1)r−1L

|l|−1
n+1

L
|l|
n

− αβ0r

2

L
|l|+1
n

L
|l|
n

)
φn,l

=−
∞∑

n=0

∑

|l|>0

δm,2n+|l|λ
m+1

√
αm+2C

(m)
n,l cosχ

(
(n+ 1)r−1L

|l|−1
n+1

L
|l|
n

− αβ0r

2

L
|l|+1
n

L
|l|
n

)
φn,l

−
∞∑

n=0

λ2n+1αn+1C
(2n)
n,l cosχ

√
β0

2π

(
(n+ 1)r−1L−1

n+1 −
αβ0r

2
L1
n

)
e−

αβ0r2

2

=−
∞∑

n=0

∑

|l|>0

δm,2n+|l|λ
m+1

√
αm+2C

(m)
n,l cosχ

(
(n+ 1)r−1L

|l|−1
n+1

L
|l|
n

− αβ0r

2

L
|l|+1
n

L
|l|
n

)
φn,l

+ 2

∞∑

n=0

λ2n+1αn+1C
(2n)
n,l

(
eiχ

2
+

e−iχ

2

)√
β0

2π

αβ0r

2
L1
ne

−
αβ0r2

2 .

(18)

In the last step, we made use of the relation

(n+ 1)r−1L−1
n+1 = −αβ0r

2
L0
n − αβ0r

2
L1
n−1 = −αβ0r

2
L1
n (19)

following from Eqs. (6) and (7).
Next, we have to evaluate

λ
sinχ

r
∂χP =

∞∑

m=0

λm+1
√
αm+2

∑

2n+|l|=m

C
(m)
n,l sinχilφn,l

=
∞∑

n=0

∑

|l|>0

δm,2n+|l|λ
m+1

√
αm+2C

(m)
n,l

il

|l| sinχ
(
(n+ 1)r−1L

|l|−1
n+1

L
|l|
n

+
αβ0r

2
+

αβ0r

2

L
|l|+1
n−1

L
|l|
n

)
φn,l

=

∞∑

n=0

∑

|l|>0

δm,2n+|l|λ
m+1

√
αm+2C

(m)
n,l

il

|l| sinχ
(
(n+ 1)r−1L

|l|−1
n+1

L
|l|
n

− αβ0r

2

L
|l|+1
n

L
|l|
n

)
φn,l ,

(20)

where we first applied the recurrence formula (7) and then Eq. (6). Putting together Eq. (18) and (20) and noticing
that

cosχ± il

|l| sinχ = e±i l
|l|

χ (21)

one gets

− λ cosχ∂r + λ
sinχ

r
∂χP =

=−
∞∑

n=0

∑

|l|>0

δm,2n+|l|λ
m+1

√
αm+2C

(m)
n,l eilχ−i l

|l|
χ



n!
(

β0

2

)|l|+1

π(n+ |l|)!




1
2

√
α|l|(n+ 1)r|l|−1L

|l|−1
n+1 e

−
αβ0r2

2

+

∞∑

n=0

∑

|l|>0

δm,2n+|l|λ
m+1

√
αm+2C

(m)
n,l eilχ+i l

|l|
χ



n!
(

β0

2

)|l|+1

π(n+ |l|)!




1
2

√
α|l|

αβ0r
|l|+1

2
L|l|+1
n e−

αβ0r2

2

+ 2

∞∑

n=0

λ2n+1αn+1C
(2n)
n,l

(
eiχ

2
+

e−iχ

2

)√
β0

2π

αβ0r

2
L1
ne

−
αβ0r2

2 .

(22)

Now we make a change on the dummy indices of the sums. In particular, for the first term we define

l′ = l − l

|l| , n′ = n+ 1
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so that |l′| = |l| − 1 and the condition 2n+ |l| = m becomes

2n′ + |l′| = m+ 1 .

For the second term, we introduce instead

l′′ = l +
l

|l| , n′′ = n

so that |l′′| = |l|+ 1 and the condition 2n+ |l| = m becomes

2n′′ + |l′′| = m+ 1 .

We find

− λ cosχ∂r + λ
sinχ

r
∂χP =

=−
∞∑

n′=1

∑

|l′|>0

δm+1,2n′+|l′|λ
m+1

√
αm+|l′|+3C

(m)
n′−1,|l′|+1e

il′χ



n′!
(

β0

2

)|l′|+1

π(n+ |l′|)!




1
2 √

n′β0

2
r|l

′|L
|l′|
n′ e

−
αβ0r2

2

−
∞∑

n=0

λ2n+2αn+2C
(2n+1)
n,1

β2
0

√
n+ 1

2
√
π

L0
n+1e

−
αβ0r2

2

+

∞∑

n′′=0

∑

|l′′|>0

δm+1,2n′′+|l′′|λ
m+1

√
αm+|l′′|+3C

(m)
n′′,|l′′|−1e

il′′χ



n′′!
(

β0

2

)|l′′|+1

π(n′′ + |l′′|)!




1
2 √

(n′′ + |l′′|)β0

2
r|l

′′|L
|l′′|
n′′ e

−
αβ0r2

2 .

(23)
The second term on the r.h.s. of the above equation comes from the l = ±1 contributions to the first term on the
r.h.s. of Eq. (22). Both the second and the third term on the r.h.s. of that equation contribute to the third term on
the r.h.s. of Eq. (23). We can drop all the prime symbols of the dummy indices and get, recalling Eqs. (1c) and (1d),

− λ cosχ∂r + λ
sinχ

r
∂χP =

=

∞∑

n=0

λ2n+2αn+2C
(2n+2)
n+1,0

√
2β0(n+ 1)

β2
0

√
n+ 1

2
√
π

L0
n+1e

−
αβ0r2

2

+
∞∑

n=0

∑

|l|>0

δm+1,2n+|l|λ
m+1

√
αm+3

(
C

(m)
n,|l|−1

√
(n+ |l|)β0

2
− C

(m)
n−1,|l|+1

√
nβ0

2

)
φn,l

=

∞∑

n′′′=0

λ2n′′′

αn′′′+1C
(2n′′′)
n′′′,0

√
2β0n′′′

β2
0

√
n′′′

2
√
π

L0
n′′′e−

αβ0r2

2

+
∞∑

n=0

∑

|l|>0

δm′′′,2n+|l|λ
m′′′√

αm′′′+2C
(m′′′)
n,l [β0m

′′′ + l2]φn,l

(24)

where two last changes of indices, n + 1 → n′′′ for the first term in the r.h.s. and m + 1 → m′′′ for the second one,
were made. By dropping the prime symbols and merging the two expressions we finally get

− λ cosχ∂r + λ
sinχ

r
∂χP =

∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l

[
β0m+ l2

]
φ . (25)

Putting together Eqs. (14), (15), (16) and (25), one finally obtains

∞∑

m=0

λm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l (β0)φn,l(

√
αr, χ|β0)

[
α̇

2α
− β + αβ0

](
l+ 2− αβ0r

2 − αβ0r
2L

|l|+1
n−1

L
|l|
n

)
+

+

[
α̇

2α
+

λ̇

λ
+ αβ0 − β0

]
∞∑

m=0

mλm
√
αm+2

∑

2n+|l|=m

C
(m)
n,l (β0)φn,l(

√
αr, χ|β0) = 0 .

(26)

For the above equation to hold for every choice of r and χ, Eq. (9) of the main text has to be satisfied.
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FIG. 1. Minimal time tmin
f for the protocol studied in the main text as a function of the ratio λf/λi. Both increasing and

decreasing activities are taken into account. Different colors correspond to different values of β0. The constraint 1 ≤ β(t) ≤ 7
is assumed.

V. MINIMAL TIME

As discussed in the main text, the minimal time for the class of protocols studied can be computed by solving
numerically Eqs. (19) and (20). In Fig. 1, we report the dependence of the solution on the boundary conditions for
the control paramteres.

VI. AVERAGE WORK

In this section, we compute the average work done by the external forces during the protocols described in the main
text. The average work is defined as

〈W 〉 =
∫ tf

0

dt

∫ 2π

0

dχ

∫ ∞

0

dr r ∂tU(r|β)P (r, χ|α, λ, β0) =
Dt

µ

∫ tf

0

dt

∫ 2π

0

dχ

∫ ∞

0

dr β̇r3 P (r, χ|α, λ, β0) , (27)

where we have expressed the external potential in terms of the rescaled variables:

U = kρ2 =
Dtβr

3

µ
. (28)

By substituting the ansatz (12) in the above expression and recalling that

∫ 2π

0

dχeilχ = 2πδl,0 (29)

we get

〈W 〉 = Dt

µ

∫ tf

0

dt 2πβ̇

∞∑

n=0

λ2nαn+1C
(2n)
n,0

√
β0

2π

∫ ∞

0

dr r3e−
αβ0r2

2 L0
n

(
αβ0r

2

2

)
. (30)
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By making use of Rodrigues formula Eq. (4), we can rewrite the last integral as

∫ ∞

0

dr r3e−
αβ0r2

2 L0
n

(
αβ0r

2

2

)
=

2

α2β2
0

∫ ∞

0

dxxe−xxL0
n(x)

2

α2β2
0

∫ ∞

0

dx
x

n!

dn

dxn

(
e−xxn

)

=
2

α2β2
0

(δn,0 − δn,1) ,

(31)

leading to

〈W 〉 = Dt

µ

∫ tf

0

dt 2πβ̇
2
√
2π

αβ0

√
β0

(
C

(0)
0,0 − λ2α√

2
C

(2)
1,0

)

=
Dt

µβ0

∫ tf

0

dt β̇

(
2

α
+

λ2

√
2(β0 + 1)

)
.

(32)
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