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Synchronization is a major concept in nonlinear physics. In a large number of systems, it is ob-
served at long times for a sinusoidal excitation. In this paper, we design a transiently non-sinusoidal
driving to reach the synchronization regime more quickly. We exemplify an inverse engineering
method to solve this issue on the classical Van der Pol oscillator. This approach cannot be directly
transposed to the quantum case as the system is no longer point-like in phase space. We explain how
to adapt our method by an iterative procedure to account for the finite-size quantum distribution
in phase space. We show that the resulting driving yields a density matrix close to the synchronized
one according to the trace distance. Our method provides an example of fast control of a nonlinear
quantum system, and raises the question of the quantum speed limit concept in the presence of
nonlinearities.

The synchronisation of dynamical systems is a broad,
multidisciplinar field with important applications in ba-
sic science and technology, including among other areas
biology, physics, chemistry, and engineering [1]. Since the
pioneering work by Van der Pol on self-sustained oscil-
lators [2], the synchronization between coupled systems
has been discussed extensively, in particular in the con-
text of the Kuramoto model [3]. In the last decades,
synchronization has been transposed to the quantum
realm [4–31]. Quantum synchronization in ion traps [11]
has been implemented experimentally [30] thanks to con-
trollable gain and losses. However, fundamental features
of quantum mechanics, such as the quantum noise arising
from Heisenberg’s uncertainty principle, can induce sig-
nificant qualitative differences with respect to their clas-
sical counterpart.

The synchronization of a system driven by an external
force is usually formulated as follows: a sinusoidal driving
is suddenly applied and one investigates the asymptotic
behavior of the driven system in the long-time limit. The
driving frequency is detuned with respect to the natu-
ral frequency of the system. Synchronization is achieved
when the driven system locks on the driving frequency.
For a given detuning, the synchronization process re-
quires a sufficient large driving amplitude, a feature of-
ten pictured as Arnold’s tongues [1]. Synchronization
is therefore considered essentially an asymptotic phe-
nomenon, and most studies have focused on determining
the domain of parameters associated with the onset of
synchronization without explicitly discussing the pace at
which it takes place.

The issue of the synchronization time is relevant for
several practical purposes. Indeed, an acceleration of
quantum protocols increases their quantum fidelity by
reducing the detrimental influence of decoherence. The
acceleration of quantum state transformations is at the
heart of the fields of optimal quantum control [32] and
shortcut to adiabaticity (STA) [33]. However, most STA
techniques exploits the linearity of the Schrödinger equa-
tion, as illustrated by numerous applications to simple
quantum systems [34, 35]. The extension to nonlinear
quantum systems is at the incipient stage [36–41] and

raises the question of the influence of non linearities on
quantum speed limit [42]. In this paper, we propose to ac-
celerate classical and quantum synchronization, an inher-
ently non-linear and non-perturbative phenomenon [1].
Speeding-up quantum synchronization translates into the
control of an extended quantum object under a nonlinear
dynamics.
This paper is organized as follows. We first discuss

the acceleration of synchronization in a classical Van der
Pol oscillator. We then consider the analogous quantum
system, whose density matrix follows a Master equation
with a pump and a gain reproducing the Van der Pol os-
cillator in the classical limit [11]. We point out a key dif-
ference between classical and quantum synchronization.
While classical synchronization is obtained by driving the
system position to a single point of the limit cycle, quan-
tum synchronization requires that the full system den-
sity matrix matches the stationary solution of the Mas-
ter equation. Furthermore, quantum synchronization is
a nonlinear process that typically produces highly non-
classical states. Thus, building a shortcut to a perfect
quantum synchronization, i.e. designing time-dependent
control parameters that bring the system’s density ma-
trix to its target in a finite time is a very challenging (and
possibly intractable) task. To circumvent this issue, we
outline a simpler strategy for approaching the target den-
sity matrix based on the mean position and lowest-order
moments. We show that shortcuts based on this method
provide a strong acceleration towards quantum synchro-
nisation.
Accelerated synchronization of a classical Van der Pol

oscillator - First consider a Van der Pol oscillator [2]
driven by an external sinusoidal force. In the weakly
nonlinear regime, the system dynamics boils down to a
nonlinear first-order differential equation for a complex-
valued function α(t)) [1]:

α̇ = −iω0α+ α(κ1 − 2κ2|α|
2)− i

ǫ(t)

2
(1)

The system follows a 2D trajectory (x(t) = Re[α(t)],
y(t) = Im[α(t)]) in the complex plane. The driving only
acts on the y coordinate, and in the usual formulation of
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the synchronization problem, one considers a sinusoidal
driving ǫ0(t) = ǫ0 cos(ωt). With such a driving, the Van
der Pol oscillator converges to a limit cycle asymptoti-
cally. It therefore takes an arbritrarily long time to ap-
proach the limit cycle within an arbitrary close neigh-
borhood. We propose to go beyond this approach and
to study the behavior of the system for a more general
class ǫ(t) of driving functions involving transiently a non-
sinusoidal profile. We present below a procedure to speed
up the synchronization for a given coupling strength ǫ0
and frequency ω (compatible with the onset of synchro-
nisation) and for a given initial system position (x0, y0).

In the following, we build up a piece-wise driving with
a sinusoidal form of given amplitude and frequency ǫ(t) =
ǫ0 cos(ωt+ ϕ) for t > τ , and explain how to design the
driving ǫshort(t), referred to as the shortcut driving, in the
time interval 0 ≤ t ≤ τ , to reach the limit cycle. With our
method, the convergence of the system trajectory to the
limit cycle is no longer asymptotic - it occurs over a short
and finite time scale, which can be significantly shorter
than an oscillation cycle. With the properly designed
ǫshort(t) and a suitable phase ϕ, the system evolves on
the limit cycle for t > τ .

First, we consider the system trajectory (x0(t), y0(t))
under the sinusoidal drive ǫ0(t) = ǫ0Θ(t) cos(ωt) and
identify a point of the limit cycle, where Θ is the step
Heaviside function. In practice, one can solve numer-
ically Eq. (1) and choose a late time t∞ ≫ 2π/ω for
which the system position (x0(t∞), y0(t∞)) = (x∞, y∞)
is already extremely close to the limit cycle. This posi-
tion defines a branching point for the shortcut trajectory.
This choice is by no means unique - one could consider,
in principle, any point of the limit cycle, and we shall
see below that the ideal branching point depends indeed
on the initial coordinates (x0 = x0(0), y0 = y0(0)). The
driving ǫ(t) provides a precise control of the y coordi-
nate of the system. One can thus design an arbitrary
trajectory yshort(t) between y0 and y∞ in the interval
[0, τ ], i.e. a trajectory that fulfills the boundary con-
ditions yshort(0) = y0 and yshort(τ) = y∞. From Eq.(1),
we deduce that a self-consistent solution requires to solve
for x(t) a nonlinear differential equation where the chosen
path yshort(t) plays the role of a source term. By plug-
ging in Eq. (1) the corresponding solution, αshort(t) =
xshort(t) + iyshort(t), we determine self-consistently the
required driving ǫshort(t) [43]. Finally, we set the phase
ϕ = ω(t∞ − τ), so that ǫ(τ) = ǫ0(t∞). Then, the
shortcut-driven system reaches at t = τ the position
occupied by the sinusoidally driven system at t = t∞,
and is subject to an identical driving at later times. By
uniqueness of the solution, the system driven by the de-
sign driving ǫshort(t) subsequently evolves (for t ≥ τ) in
a neighborhood extremely close to the limit cycle.

There is, however, a significant difference between
the coordinates paths xshort(t) (“slave” coordinate) and
yshort(t) (“pilot” coordinate). While the path yshort(t)
ends up by construction at the target y∞ at time t = τ ,
nothing guarantees that xshort(t) reaches the target x∞

at the same time. The position xshort(τ) depends in a
non-trivial way on the trajectory yshort(t) during the time
interval [0, τ ]. A possible way to circumvent this problem
is to consider a family of possible trajectories yshort,γ(t)
depending on a continuous parameter γ, and to select a
specific parameter value γ0 that gives xshort,γ0

(τ) = x∞.
For a given duration τ , each initial conditions (x0, y0)
admits a set of possible branching points (x∞, y∞) on
the limit cycle that can be connected by the above pro-
cedure. This set of admissible branching points covers
a narrower part of the limit cycle as the shortcut du-
ration τ is reduced. In this regard, we note that the
“pilot” coordinate yshort,γ(t) can move arbitrarily fast as
long as we use a driving, ǫshort(t), of sufficient magnitude.
Moreover, the x coordinate is bounded by the duration
τ : |xshort,γ(τ)− x0| ≤ |α|max(ω0 + κ1 +2κ2|α|

2
max)τ with

|α|max = max{|α(t)||t ∈ [0, τ ]}. If the y coordinate oc-
curs on a finite scale, that is if |α|max ≃ 1, then the max-
imum displacement along x is on the order O(τ). Thus,
as the shortcut time τ is reduced, the admissible branch-
ing points (x∞, y∞) are nearly at the “vertical” of the
starting point (x0, y0).

A possible choice is to use a set of polynomial trajec-
tories yshort,γ(t) = P (t/τ). Beyond the boundary condi-
tions yshort,γ(0) = y0 and yshort,γ(τ) = y∞, we addition-
ally impose y′short,γ(τ) = y′0(t∞) to enforce the continu-

ity of the driving ǫ(t) at time τ . The following family of
polynomials Pγ(u) = y∞ + y′0(t∞)τ(u − 1) + (y0 − y∞ +
y′0(t∞)τ)(u−1)2+γu(u−1)2 obeys those boundary con-
ditions independently of the γ parameter value. This
latter parameter is fixed to the value γ0 which fulfills the
condition xshort,γ0

(τ) = x∞.

Figures 1 illustrate our method on a concrete exam-
ple (See Appendix A for details). We use the time-scale
T0 = 2π/ω0 associated to the free-oscillator frequency
ω0 to recast the equations in a dimensionless form. We
consider κ1 = 1/T0, κ2 = 0.5/T0, a driving amplitude
ǫ0 = 1.5/T0 and a driving frequency ω = 1.05×ω0. In our
numerical example, we have taken an arbitrary value for
the distant time t∞ = 50.125×T0, which defines a possi-
ble branching point close to the (Oy) axis. A fine-tuning
of the constant phase ϕ associated to the sinusoidal driv-
ing at times t ≥ τ then guarantees that the trajectory
follows on the cycle. Figure 1(a) sketches the trajectory
under a sinusoidal driving, showing that the limit cycle is
approached gradually after a large number of cycles, and
Fig. 1(b) plots the trajectory under the shortcut driving.
By construction, the selected branching point (x∞, y∞) is
reached at time τ = T0/4, and the subsequent evolution
occurs on the limit cycle. Figure 1(c) shows the associ-
ated driving profile ǫ(t) - the shortcut part has a signifi-
cantly larger amplitude. Finally, Fig. 1(d) represents the
phase difference ∆φ = φ(t) − (ωt+ ϕ) between the van-

der-Pol oscillator phase defined as φ(t) = Arctan
(

y(t)
x(t)

)

,

and the driving phase ωt+ϕ. It reveals that phase locking
is achieved with the engineered driving as fast as t ≃ τ
up to small residual oscillations of frequency 2ω. These
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FIG. 1: Speed-up of classical synchronization. (a): System
trajectory in the (x, y) plane under a sudden sinusoidal driv-
ing. (b) System trajectory under a shortcut+sinusoidal driv-
ing ǫ(t). (c) Profile of the driving amplitude ǫ(t). (d) Phase
difference between the shortcut-driven system and the sinu-
soidal drive phase ∆φ = φ(t)−ωt−ϕ. ([π]). Parameters used:
ω = 1.05× ω0, ǫ̃0 = 1.5, κ̃1 = 1, κ̃2 = 0.5 and times τ = T0/4
and t∞ = 50.125T0 , where T0 is the free oscillator period.

residual oscillations also persist asymptotically when the
usual sudden sinusoidal driving is applied, as synchro-
nization occurs in the regime of slow phase dynamics [1].

Accelerated synchronization of a quantum Van der Pol

oscillator. The quantum Van der Pol oscillator was in-
troduced by Lee et al. [11], and has become the paradig-
matic model for studying synchronization in the quan-
tum context [12, 13, 15, 19, 20, 24, 25, 44]. The quan-
tum Van der Pol oscillator, in its original formulation,
has not yet been implemented experimentally, but an im-
portant step has been taken in this direction in trapped
ion physics [29]. Mathematically, the quantum Van der
Pol oscillator is obtained by quantizing the classical Van
der Pol equations. Physically, this model describes a
single-mode harmonic oscillator subject to 1- and 2-
photon dampings. The balance between these two dis-
sipative processes and the external driving determines
the steady state. The corresponding Hamiltonian reads
H̃(t) = ω0a

†a + 1
2 [(ǫ1(t) + iǫ2(t))e

iωta + h.c.]. The nat-
ural frequency is detuned by ∆ = ω0 − ω from the driv-
ing. In the frame rotating at the driving frequency ω,

the Hamiltonian takes the form H(t) = ∆a†a+ ǫ1(t)
2 (a+

a†) + iǫ2(t)
2 (a − a†). The dynamics in the presence of

both dampings is accounted for by the Markovian Mas-
ter equation [11, 13]:

ρ̇ = −i[H, ρ] + κ1D[a†]ρ+ κ2D[a2]ρ (2)

with the Lindblad operator D[O]ρ = 2OρO† − [OO†, ρ]+
where [, ]+ refers to the anticommutator. Equivalently,
we can recast the evolution in phase space with the
Wigner distribution W (α, α∗, t) equation in the coherent

state representation [11, 45]

∂tW = {LH + (∂αα+ ∂α∗α∗)[−κ1 + 2κ2(|α|
2 − 1)]

+ ∂α∂α∗ [κ1 + 2κ2(|α|
2 − 1)]

+
κ2

2

(

∂2
α∂α∗α+ ∂α∂

2
α∗α∗

)

}W (3)

where LH = i∆(∂αα− ∂α∗α∗) + iǫ1
2 (∂α − ∂α∗) + ǫ2

2 (∂α +
∂α∗) is the Liouvillian operator. Solving Eq. (3) directly
allows an independent verification of our results, and pro-
vides an interesting illustration of the wave-packet mo-
tion when the shortcut is applied (see below).

From Eqs. (2,3), the mean value 〈α〉t = Tr[ρ(t)a] fol-
lows an equation analogous to Eq. (1) written in the ro-
tating frame

d〈α〉

dt
= −i∆〈α〉+ (κ1 + 2κ2)〈α〉 − 2κ2〈|α|

2α〉

−
1

2
(ǫ2 + iǫ1). (4)

The mean values 〈αmα∗n〉t =
∫

dαdα∗αmα∗nW (α, α∗, t)
are taken with the Wigner distribution W (α, α∗, t)
in the coherent state representation, or equivalently
〈αmα∗ n〉t = Tr[ρ(t)S[ama† n]] where S holds for the
symmetric ordering of the creation/annihilation oper-
ators [45]. In the absence of driving and dissipative
couplings, the system simply rotates at the frequency
∆ under the influence of the detuning. Here, synchro-
nization means that the driving ǫ is strong enough to
prevent the system from being driven by the detuning
∆. By solving Eq. (2), the density matrix then con-
verges to the steady solution centered on the position
〈α〉∞ = x∞ + iy∞. The ratio between the dissipative
couplings κ1,2 dictates the average phonon number in
the steady state, 〈a†a〉∞ = κ1/2κ2 + 1. This enables
a clear distinction between the weakly (κ2 ≪ κ1) and
strongly (κ1 ≪ κ2) nonlinear semi-classical regime. As in
Ref. [11], we take the coupling values (κ1, κ2) = (1, 0.05)
and (κ1, κ2) = (0.05, 1) when considering respectively the
weakly and strongly nonlinear regimes.
The difference between classical/quantum synchro-

nization is also evident in the structure of their respective
equations: while for classical dynamics Eq. (1) is a closed
differential equation, in the quantum case, Eq. (4) cou-
ples the mean position 〈α〉 to a hierarchy of moments
〈αmα∗n〉 by the presence of the term 〈|α|2α〉. Thus, in
order to achieve perfect quantum synchronization, one
must in principle match all these moments simultane-
ously to their steady -synchronized- values, which is gen-
erally intractable. Fortunately, as shown below, a strong
acceleration can be obtained with shortcuts approach-
ing simultaneously the target central position 〈x〉∞, 〈y〉∞
and the third-order moment 〈|α|2x〉∞, 〈|α|2y〉∞, that
emerge at the lowest order in Eq. (4). Interestingly, the
third-order moment may set a lower bound for the short-
cut duration, and therefore constrain the quantum speed
limit.
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The initial density matrix corresponds to a coherent
state, i.e. ρ0 = |α0〉〈α0|. As before, we design the driv-
ings ǫi(t) on the time interval 0 ≤ t ≤ τ (“shortcut”
part), and then we will fix their values ǫ1(t) = 1 and
ǫ2(t) = 0. In the following, we choose the detuning
∆ = 2π × 0.05, compatible with the onset of quantum
synchronization. From Eq. (2), we infer the stationary
density matrix associated with the mean position 〈α〉∞ =
x∞ + iy∞, and third order moments 〈|α|2x〉∞, 〈|α|2y〉∞.
Acceptable shortcuts should drive the quantum system to
the mean position in the shortest possible time τ , while
providing third-order moments close to their stationary
values. Inspired by the previous approach, we first build
a shortcut using an inverse-engineering of the mean tra-
jectory. To this end, we use an iterative procedure com-
bined with a semi-classical approximation (truncation of
the moments chain) 〈|α|2α〉 → |〈α〉|2〈α〉 for the dynam-
ical equation (4). Under this assumption, the mean po-
sition 〈α〉 follows Eq. (1) with the substitutions:ω0 → ∆
and κ1 → κ1 + 2κ2. Repeating the classical treatment,
we set up a speeding up of the dynamics from the initial
position α0 = Tr[ρ0a] to the final position 〈α〉∞ in the
required time interval 0 ≤ t ≤ τ .

The following step consists in using a straight trajec-

tory for the mean position 〈α〉
(1)
t = (〈α〉∞ − α0)t/τ .

Such a solution introduced in Eq. (4) under the semi-
classical approximation, provides the driving functions

ǫ
(1)
1,2(t). These functions are then used in the full quantum

equation (2). As a result, we find a final mean position
slightly shifted from the target, i.e. 〈α〉τ = α∞ +∆α(1).
This offset can be corrected by iterating the procedure

with a slightly modified target α
(2)
τ = 〈α〉∞ − ∆α(1)

and a reference trajectory α
(2)
t = (α

(2)
τ − α0)t/τ . Af-

ter a few iterations, this approach leads to an improved
shortcut trajectory for the full quantum problem with
a driving of the mean position to a very close neigh-
borhood of the target 〈α〉∞ at the final time τ . To
bring also the third moments close to their target values
{〈|α|2x〉∞, 〈|α|2y〉∞}, we use the freedom in the choice
of the trajectories connecting the initial/final points. In
practice, we adjust both the shape and duration of the
considered trajectory to get closer to these targets. Fig-
ures 2a,b show the influence of the trajectory shape on
the final third-order moments for a few chosen shortcut
durations in the weak and strongly nonlinear regimes.
Specifically, we use as reference trajectory two straight
lines connecting the initial point (x0, y0) to the target
(x∞, y∞) through an intermediate point (xm, ym +∆y),
with (xm, ym) = (12 (x0+x∞), 1

2 (y0+y∞)) are the middle-
point coordinates and ∆y is an offset. Each segment is
followed at a constant speed for half the total shortcut
time. To evaluate the effectiveness of our protocol, we
introduce the distance

∆3(∆y, τ) =





∑

j=x,y

(

〈|α|2j〉τ − 〈|α|2j〉∞
)2





1/2

(5)

that depends on the chosen shortcut path and duration.
The driving amplitudes ǫ1,2(t) are obtained from the pre-
vious procedure based on Eq. (4) and a semi-classical ap-
proximation (See Appendix B for details). In Figs. 2c,d,
we plot the third-order moments 〈|α|2x〉τ , 〈|α|

2y〉τ and
their stationary values as a function of the total duration
τ for a given trajectory.

In the weak linear regime, the final third-order mo-
ments are much more sensitive to the shortcut duration
than to the trajectory shape. Indeed, the system behaves
in this case as a driven harmonic oscillator, for which the
shape of the trajectory has no direct influence on the fi-
nal wave-packet width. A minimum expansion time is
required to approach the correct third-order moments,
which sets a lower bound on acceptable shortcut dura-
tions, and thus constrain the quantum speed limit in this
regime.

In contrast, in the strongly nonlinear regime, the path
shape has a more drastic influence than the shortcut du-
ration. Moreover, the final third-order moments can be
approached in a time τ = 0.25 that is an order of magni-
tude faster than the time scale τ ≃ 2 of the weakly non-
linear regime. This faster convergence originates from the
fact that the distribution of the stationary density ma-
trix has a width closer to that of the initial coherent state
(∆α = 0.5), as the wave function experiences a sharper
confinement to the circle of radius |α∞|. In general, for a
given trajectory, there is no τ duration that gives a per-
fect simultaneous match of the two third-order moments
〈|α|2x〉τ , 〈|α|

2y〉τ with their respective targets. However,
this can occur in specific trajectories, such as the one as-
sociated to ∆y = −0.1 with the duration τ ≃ 0.5. These
specific trajectories are excellent candidates to build an
efficient shortcut to quantum synchronization. Neverthe-
less, even when such trajectories are unavailable, a small
mismatch in the third-order moments is actually not crit-
ical for the success of the protocol. The system dynamics
turns out to be mainly driven by the fifth (and higher)-
order moments once the mean position and third-order
moments are below a certain distance from their targets.

Ideally, the density matrix after the shortcut to quan-
tum synchronization should coincide with the stationary
solution. To estimate quantitatively the shortcut perfor-
mance, we use the trace distance [46] between the instan-
taneous density matrix of the system and the stationary
solution for a sudden and constant driving. This met-

ric is defined as T (ρ1, ρ2) =
1
2

∑N
i=1 |λi| with {λ1, ..., λN}

the eigenvalues of the matrix ρ1 − ρ2. A faster decay of
the trace distance is indicative of an accelerated quantum
synchronization. Figures 3a,b compare the evolution of
the trace distance for a shortcut protocol and for a sud-
den and constant driving. These figures show that for a
constant driving, synchronization occurs at a faster rate
in the strongly nonlinear regime where quantum noise
has a greater influence. This observation corroborates
the role played by quantum noise in the building up
and acceleration of quantum synchronization discussed
in Ref. [28]. Figures 3 reveal that in both weakly and
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FIG. 2: Distance of the 3rd-order moments to their target
in a shortcut to quantum synchronization. (a,b): Mismatch
∆3(∆y, τ ) [Eq.(5)] of the final 3rd-order moments with re-
spect to their targets as a function of the offset ∆y of the
intermediate point (xm, ym +∆y) for (a) the weakly and (b)
the strongly nonlinear regime. We have taken the shortcut
durations τ = 2 (solid blue line, (a)), τ = 1 (red dash-dotted
line, (a,b)), τ = 0.5 (purple dotted line (a,b)) and τ = 0.25
(green dash-double-dotted line, (b)). (c,d): Third-order mo-
ments 〈|α|2x〉τ (red dash-dotted) and 〈|α|2y〉τ (blue dotted)
as a function of the shortcut duration τ for the (c) weakly
and (d) strongly nonlinear regimes. In (c,d) we have taken
shortcuts corresponding to ∆y = 0. Horizontal lines repre-
sent their respective stationary values 〈|α|2x〉∞ (red dashed)
〈|α|2y〉∞ (blue dashed) under a constant drive ǫ1 = 1, ǫ2 = 0.
Details on the shortcut design can be found in Appendix B.

strongly nonlinear regimes, the shortcut accelerates the
decay of the trace distance. However, significant dif-
ferences are observed between both regimes regarding
the overall shortcut performance. First, a more dras-
tic speed-up is obtained from the shortcut in the weakly
nonlinear regime. Moreover, the resulting acceleration is
then noticeably larger for the shortcut of duration τ = 2
- while the shortcut performance is significantly reduced
when smaller durations (τ = 0.5, τ = 1) are used. In-
deed, the trace distance falls below the 1% threshold
at time t ≃ 11.9 for the shortcut of duration τ = 2,
against t = 24.6, t = 31.0, t = 40.4 respectively for the
shorcuts of durations (τ = 1, τ = 0.5) and for the con-
stant drive. In comparison, for the strongly non-linear
regime, the shortcut duration has almost no influence on
the decay of the trace distance - showing that all short-
cuts have similar performance regardless of the chosen
duration. This finding is consistent with the third-order
moments sketched in Fig. 2(a,b): in the weakly non-linear
regime the shortcut τ = 2 is the only one that yields final
third-order moments in a neighborhood of their target,
while in the strongly non-linear regime the final third-
order moments is barely affected by the shortcut dura-
tion. This strongly suggests that a proper matching of
the third-order moments is necessary to accelerate quan-
tum synchronization. In the quasi-linear regime, this
sets a lower bound on quantum synchronization time.
In contrast, in the strongly non-linear regime, the short-

cut durations can be chosen arbitrarily small. Naturally,
the resources employed (amplitude of the time-dependent
drives ǫ1(t), ǫ2(t)) increase as the duration τ is reduced,
and the maximum accessible driving amplitude will even-
tually impose a minimum duration τ . These considera-
tions can be connected to a more general discussion on
quantum speed limits in both linear and nonlinear quan-
tum systems: they suggest that the presence of nonlin-
earities can provide acceleration of quantum protocols
by acting on the shape of propagating quantum wave-
packets.

Finally, we illustrate our results by sketching the
Wigner distribution at different stages of the short-
cut protocol as insets of Figures 3a,b. These pictures
provide qualitative insights on the convergence towards
the quantum-synchronized Wigner distribution. In both
the weakly/nonlinear regimes, the initial distribution is
Gaussian-shaped centered on α0 = −1 + i. The in-
sets show that the Wigner distributions delivered by the
shortcut share several features with the target density
matrix (insets of Figs. 3a,b, t = 10) - such as a squeezing
in the amplitude |α|, and a phase locking corresponding
to a preferred phase φ (α = |α|eiφ) associated to the cen-
ter of the Wigner distribution. In the weakly non-linear
regime, the Wigner distribution profile evolves rapidly
towards a ring shape. The strong similarity between the
Wigner distribution immediately after the shortcut (inset
of Fig.3a, t = 2) and the target explains the rapid con-
vergence witnessed by the trace distance. In the strongly
non-linear regime, similar features between the instanta-
neous distribution and the target – such as the presence
of a “hole” associated to a low-probability zone – also ap-
pear progressivly after termination of the shortcut. The
Wigner distributions were obtained from a numerical res-
olution of Eq. (3) based on a Crank-Nicholson scheme on
a 28 × 28 grid with a time step δt = 5.10−4 [47]. Both
numerical methods, the partial differential equation (3)
and the Master equation (2), agrees for the mean posi-
tions 〈x〉t, 〈y〉t across the whole considered time interval
with an accuracy better than 0.1 %. The Wigner phase-
space simulation thus provides an additional independent
confirmation of the effectiveness of the proposed shortcut
drivings.

To summarize, we have detailed a systematic proce-
dure, inspired by shortcut-to-adiabaticity techniques, al-
lowing synchronization acceleration in both classical and
quantum systems. Classical synchronization has been
discussed in the context of the Van der Pol oscillator. By
using an appropriate time-dependent driving amplitude
instead of the usual constant profile, one can accelerate
the oscillator motion from a given initial point to the
limit cycle. In a driven quantum Van der Pol oscillator,
reaching an exact quantum synchronization requires to
make coincide the system density matrix and the station-
ary solution associated to quantum synchronization. We
have developed a shortcut strategy to ensure a “quasi”-
synchronized state based on the simultaneous control of
the mean position and of the third-order moments of the
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quantum oscillator. Our results show a different behav-
ior in the weakly and strongly nonlinear regimes: in the
latter, the third-order moments depend on the trajectory
shape, and shortcuts of faster durations can be employed
to reach the approximately synchronized state when com-
pared to the quasi-linear regime. The method presented
here could be adapted to other non-linear quantum sys-
tems for which the control of the wave-function shape is
critical.
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FIG. 3: Performance of the shortcut to quantum synchroniza-
tion: (a,b): Trace distance T (ρ(t), ρ∞) of the density matrix
ρ(t) to the stationary solution ρ∞ as a function of time for
the weak (a) and strong (b) nonlinear regimes with the respec-
tive shortcuts of Fig.2a and Fig.2b with ∆y = 0. We have
taken the durations τ = 2 (solid blue line, (a)), τ = 1 (red
dash-dotted line, (a,b)), τ = 0.5 (dotted purple line, (a,b))
τ = 0.25 (green dash-double dotted line, (b)) and τ = 0.125
(brown dotted line, (b)). The black-dashed line stands for a
constant drive of amplitude ǫ1 = 1 and ǫ2 = 0. The insets
represent the Wigner distribution |W (x, y, τ )| (x = Re[α] and
y = Im[α]) for (a) the shortcut designed with τ = 2 in the
weakly nonlinear regime and for (b) the shortcut designed
with τ = 0.5 in the strongly nonlinear regime for the consid-
ered times t = 0, 0.5, 1, 2, 5, 10.
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APPENDIX A:

SHORTCUT-TO-SYNCHRONIZATION IN A

CLASSICAL VAN-DER-POL OSCILLATOR

We detail here the procedure to design of a shortcut-
to-synchronization from the initial point (x0, y0) = (0, 0).
We first solve the trajectory of a sinusoidally driven
van-der-Pol oscillator with ǫ0 = 1.5/T0 and obtain the
branching point (x∞, y∞) ≃ (0.29, 1.05) corresponding
to t∞ = 50.125 × T0. The proximity of this branching
point to the “vertical” of the initial position (x0, y0) en-
ables a fast shortcut with the amplitude ǫ(t).
We first define a system trajectory of the form

yshort,γ(t) = Pγ(t/τ) with the polynomial Pγ(u) = y∞ +
y′0(t∞)τ(u−1)+(y0−y∞+y′0(t∞)τ)(u−1)2+γu(u−1)2.
The chosen trajectory fulfills, for any value of the param-
eter γ, the required boundary conditions yshort,γ(0) = y0
and yshort,γ(τ) = y∞ associated respectively to the ini-
tial and final shortcut times. The additional condition
y′short,γ(τ) = y′0(t∞) provides a continuity of the driving
amplitude between the transient and sinusoidal part.
To determine the correct shortcut trajectory and fix

the γ parameter, we use a self-consistency argument: by
virtue of Eq.(1), when the system goes along the tra-
jectory yshort,γ(t), the coordinate motion x(t) follows a
differential equation where yshort,γ(t) acts as a driving
term:

ẋ = ω0yshort,γ + κ1x− 2κ2(x
2 + y2short,γ)x. (6)

With the considered initial condition x(0) = x0 = 0,
each value of γ yields a corresponding solution xshort,γ(t)
and final coordinate xshort,γ(τ) at the time τ . For
the “magic”value γ0, the final coordinate reaches the
target, i.e. xshort,γ0

(τ) = x∞. Then, the trajec-
tory (xshort,γ0

(t), yshort,γ0
(t)) reaches the branching point

(x∞, y∞) at t = τ , and can thus be choses as shortcut
trajectory. For the parameters above, one finds numer-
ically γ0 ≃ −9.3532. The corresponding driving ampli-
tude ǫshort(t) is derived from Eq. (1) as

ǫshort(t) = −2[ẏshort,γ0
(t) + ω0xshort,γ0

(t)− κ1yshort,γ0
(t)

+ 2κ2(x
2
short,γ0

(t) + y2short,γ0
(t))yshort,γ0

(t)

+ yshort,γ0
(t)] (7)

for t ≤ τ . For t > τ , the sinusoidal driving is resumed
ǫ(t) = ǫ0 cos(ωt+ ϕ). The phase ϕ is fixed as follows.
At time τ , the system is at a position that would be
reached under a plain sinusoidal driving ǫ0(t) at time
t∞. For our strategy to be sucessful, the system must be
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subject to a driving ǫ(t) such that ǫ(t− τ) = ǫ0(t − t∞)
for t > τ . A suitable choice is thus ϕ = ω(t∞ − τ).

APPENDIX B:

SHORTCUT-TO-SYNCHRONIZATION IN A

QUANTUM VAN-DER-POL OSCILLATOR

We detail the procedure for the shortcuts considered in
Figs. 2 and 3 in the weakly/strongly non-linear regimes.
We solve Eq. (2) in a quantum subspace corresponding to
the N lowest-energy level of the harmonic oscillator. It is
sufficient to consider N = 40, as higher-energy quantum
states are irrelevant for the considered initial states and
Hamiltonians.
In the weakly nonlinear regime, for a sinusoidal driv-

ing with ǫ1 = 1, ǫ2 = 0, one finds the stationary mean
position α∞ = x∞ + iy∞ ≃ −0.86− 0.38i and the corre-
sponding middle-point αm = 1

2 (α0 + α∞). For a generic
intermediate point αI = αm + i∆y, we use a piece-wise

defined path 〈α〉
(1)
t = α0+2(αI −α0)t/τ for 0 ≤ t ≤ τ/2

and 〈α〉
(1)
t = αI + 2(α∞ − αI)t/τ for τ/2 ≤ t ≤ τ . The

driving amplitudes ǫ
(1)
1,2(t) can be expressed from Eq. (4)

with the semiclassical approximation:

1

2

(

ǫ
(1)
2 (t) + iǫ

(1)
1 (t)

)

= −
d〈α〉

(1)
t

dt
− i∆〈α〉

(1)
t

+(κ1 + 2κ2)〈α〉
(1)
t − 2κ2|〈α〉

(1)
t |2〈α〉

(1)
t (8)

As an example, we consider the weakly nonlinear regime
with a shortcut duration τ = 2 and ∆y = 0. The quan-
tum trajectory on the time interval 0 ≤ t ≤ τ/2 starts
at the initial point α0 = −1 + i and ends at the inter-
mediate point αm ≃ −0.93 + 0.34i. A numerical resolu-

tion of Eq.(2) with the amplitudes ǫ
(1)
1,2(t) yields a first

offset ∆α(1) = 〈x〉τ/2 − xm + i(〈y〉τ/2 − ym). As indi-
cated in the main text, we iterate the procedure with

corrected trajectories 〈α〉
(n)
t = 〈α〉

(n−1)
t −∆α(n−1). From

successive iterations, one obtains ∆α(1) ≃ 0.34 − 0.27i,
∆α(2) ≃ 0.038− 0.041i and ∆α(3) ≃ (2.2− 5.2i)× 10−3.
For the strongly non-linear regime with a shortcut of
duration τ = 0.5 and ∆y = 0, considering the inter-
mediate point αm ≃ −0.63 + 0.31i and time interval
0 ≤ t ≤ τ/2, our procedure delivers the successive off-
sets ∆α(1) ≃ 0.23− 0.18i, ∆α(2) ≃ (−8.6 + 8.0i)× 10−3,
∆α(3) ≃ (6.1− 3.4i)× 10−4. The convergence is fast and
a few iterations are sufficient for the purpose of driving
the mean position close to its target. In our example,
after three iterations the error on the mean position be-
comes irrelevant: the speed of quantum synchronization
is then mostly limited by a mismatch in the third (and
higher-order) moments with respect to their stationary
values. The convergence of the iterative process increases
when shorter time intervals are considered between the
initial and intermediate points. For a given duration,
the convergence is faster in the weakly nonlinear regime
- the semi-classical approximation is more accurate in
this case.
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