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In most systems, thermal diffusion is intrinsically slow with respect to mechanical relaxation.
We devise here a generic approach to accelerate the relaxation of the temperature field of a 1D
object, in order to beat the mechanical time scales. This approach is applied to a micro-meter
sized silicon cantilever, locally heated by a laser beam. A tailored driving protocol for the laser
power is derived to reach arbitrarily fast the thermal stationary state. The model is implemented
experimentally yielding a significant acceleration of the thermal relaxation, up to a factor 30. An
excellent agreement with the theoretical predictions is reported. This strategy allows to reach a
thermal steady state significantly faster than the natural mechanical relaxation.

I. INTRODUCTION

In condensed matter, the temperature fields evolve
in general on much longer time scales than their me-
chanical counterparts (such as stress or strain). Indeed,
combining the highest thermal diffusivity in solids [1]
(D ∼ 10−4 m2/s) and the order of magnitude of the speed
of sound [1] (c ∼ [103 − 104] m/s), one defines a typical
length scale lth = D/c ∼ [10 − 100] nm beyond which
temperature is a slow phenomenon. Most systems imply
larger length scales, thus a slow temperature evolution.
In some devices or experiments, or for proof of concepts
demonstrations, it can however be desirable to accelerate
the heat diffusion so as to impose a temperature varia-
tions on time scales equivalent, or shorter, than those of
the mechanical response of the system.

One example is atomic force microscopy (AFM) [2],
where a sharp tip attached to a cantilever scans a sample
to map its topography and potentially more local proper-
ties of its surface. Most commonly, the measure of the in-
teraction force through the deflection of the cantilever is
performed with a laser beam [3], hence the photothermal
response and thermal stability of AFM-sensors have been
extensively studied almost since the origin of AFM [4, 5].
Photothermal excitation has been used in vacuum, air,
or fluid, aiming at driving the cantilever efficiently while
avoiding overheating of the system [6–11]. Let us com-
pare the relaxation time τ = L2/D of the temperature
field along the cantilever length L, to the period of oscil-
lation of the first resonance T0 ' 6.4L2/(cH) [12], with
H the thickness of the cantilever: T0/τ ' 6.4 lth/H =
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65 nm/H, where the numerical application has been done
for silicon [13]. With H typically in the few µm range,
thermal diffusion is thus much slower than the oscillation
period of the system, limiting the efficiency of photother-
mal excitation, or the speed of operation of scanning ther-
mal microscopy [14–16].

Another example where fast temperature variations
could be desirable is in stochastic thermodynamics ex-
periments on micro-mechanical systems [17, 18] (op-
tically trapped particles, micro-cantilevers, MEMS -
micro-electromechanical systems). When constructing a
stochastic Carnot heat engine for instance [19–28], one
needs to perform adiabatic heating or cooling, that is to
say change the system temperature much faster than the
time scale τr corresponding to the heat exchanges with
the thermostat. τr is equivalent to the mechanical re-
laxation time, which writes for a cantilever τr = QT0/π,
with Q the quality factor of the resonance [17, 29–34].
The situation is thus somewhat more favorable than
previously for underdamped systems, but requires qual-
ity factors larger than a few hundred to start matching
the natural thermal diffusion and mechanical relaxation
timescales: τr/τ ' Q × 20 nm/H. Here again, an accel-
eration of the temperature dynamics would be welcome
to perform efficient adiabatic transformations.

The motivation of this work is to speed up the natural
thermal relaxation, and we focus in this article on the
case of a cantilever, in relation to the previously men-
tioned examples. Engineered accelerated dynamics and
shortcuts are protocols of the ‘Shortcut to Adiabaticity’
type [35]. This class of ideas emerged in the quantum
realm [36, 37]. Yet, a number of techniques belonging to
this family of accelerating methods has been successfully
exported to classical and stochastic dynamics [28, 38–41].
Some of these shortcuts are of inverse engineering type,
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requiring a careful monitoring of the time dependence
of some control parameters, to impose a prescribed evo-
lution of interest [39]. Such accelerating protocols have
been also used fruitfully in systems such as cranes [42]
and capacitors [43].

In the following, we address the question of the tem-
perature field control, so far untouched. The goal is to
drive the thermal relaxation of a micro-cantilever in a
time much smaller than its natural relaxation time. First,
we model the thermal relaxation and derive theoretically
the accelerating protocols allowing to reduce the relax-
ation time of the cantilever to reach thermal steady state.
Second, the aforementioned protocols are experimentally
implemented in a silicon cantilever. The efficacy of the
driving is patent when comparing to a direct relaxation
process. Moreover, experimental results are in full agree-
ment with the predictions. Finally, we summarize the
conclusions of our study and mention future perspectives.

II. THEORY

Our objective is to accelerate the relaxation towards a
non-equilibrium steady state of a cantilever with a tun-
able punctual and well-localized heat source. To this
end, we first identify the different eigenmodes (and cor-
responding timescales) of the heat equation that governs
the dynamics of the system. We subsequently design the
rate at which the deposit of heat should be carried out
so to cancel the contribution of the low frequency eigen-
modes that slow down the relaxation. This original trick
enables one to benefit from a fast relaxation with the
cancellation of just a few modes.

A. Temperature rise of a cantilever irradiated by a
laser beam

We gather here the main ingredients useful for a quan-
titative description of the temperature field of a can-
tilever irradiated by a laser beam. As the cantilever is
placed in vacuum, no heat transfer can occur by convec-
tion with its surroundings. Neglecting thermal radiation,
the only possible heat transfer mechanism is thus thermal
conduction through the cantilever. Considering a can-
tilever having a length L much larger than its transverse
dimensions, the temperature θ may be assumed homoge-
neous across the cross section. Therefore, θ only depends
on the longitudinal coordinate x ∈ [0, L] and time t, its
dynamics being described by the one-dimensional heat
diffusion equation

ρcp
∂θ(x, t)

∂t
= λ

∂2θ(x, t)

∂x2
+ q(x, t), (1)

where ρ is the density, cp is the heat capacity, λ is the
thermal conductivity (all of them assumed constant), and
q is the heat source/sink density. In vacuum, all can-
tilever surfaces are assumed to be thermally insulated,

except at the location x0 irradiated by the focused laser.
We model the heating effect of the focused beam by the
source term

q(x, t) =
aP (t)

S
δ(x− x0), (2)

where a is the fraction of light absorbed by the cantilever,
P (t) is the incident power of the laser beam which can
be manipulated at wish, S is the cantilever cross section
area, and δ Dirac’s distribution. Furthermore, we assume
the following boundary conditions

θ(0, t) = 0, (3a)
∂θ

∂x
(L, t) = 0. (3b)

These conditions reflect respectively that the cantilever
is in contact with the macroscopic chip acting as a ther-
mostat at its clamp x = 0 (3a), and is isolated on its free
end x = L (3b). Note that, for the sake of simplicity, θ
is not the absolute temperature, as we define the origin
by the temperature of the chip.

B. Stationary profile θs

The stationary temperature profile θs(x) associated to
a given power of the laser Pf is obtained solving Eq. (1)
where ∂θ/∂t = 0, with the boundary conditions Eq. (3).
We get

θs(x)

θms
=

{
x/x0, 0 < x < x0,
1, x0 < x < L,

(4)

where θms = aPfx0/(Sλ) corresponds to the maximum
temperature elevation. Between the chip and the laser
spot (x = x0), the stationary temperature increases lin-
early with the position x, while beyond the laser spot, it
remains constant and equals θms .

From now on, we focus the analysis on the relaxation
between two stationary states when driving the power
P (t) from a constant initial value P (t < 0) = P0 to its
constant final value P (t > tf ) = Pf . Note that even
if P (t) is constant after the final time tf , the tempera-
ture profile continues to evolve towards its final asymp-
totic stationary shape. Since the heat diffusion equation
(Eq. 1) is linear, we make the simplifying assumption that
P0 = 0: without loss of generality, P (t) or Pf represent
the laser power excess with respect to P0, and θ(x, t) or
θs(x) stand for the temperature excess with respect to
the initial stationary temperature profile.

C. Transient solution through expansion

The general solution of Eq. (1) can be expressed carry-
ing out an expansion in eigenfunctions ψn(x), each sat-
isfying the associated homogeneous problem ∂2x̃ψn(x̃) =
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−k2nψn(x̃) with ψn(0) = 0 and ψ′n(L) = 0. This leads to

ψn(x̃) =
√

2 sin (knx̃) , x̃ = x/L (5)

with the eigenvalues kn = (n − 1/2)π, n ∈ N∗. The
temperature profile can be expressed as

θ(x, t) = θs(x) + θms

∞∑
n=1

Cn(t̃)ψn(x̃), (6)

where the components Cn(t̃) depend solely on t̃ = t/τ ,
with τ = ρcpL

2/λ, the characteristic diffusion time of
the problem. These components are obtained projecting
Eq. (1) on the eigenmodes basis ψn(x); they read as

Cn(t̃) =
ψn(x̃0)

x̃0

[∫ t̃

0

(
F (sτ)− 1

)
ek

2
nsds− 1

k2n

]
e−k

2
n t̃,

(7)

with x̃0 = x0/L, and F the driving function defined as

F (t) =
P (t)

Pf
. (8)

The temperature solution Eq. (6) is completely general
for arbitrary F (t), even though here F (t < 0) = 0 and
F (t > tf ) = 1 by construction. For t > tf , the bracket
term in Eq. (7) is constant, so each component in the ex-
pansion decays exponentially with its own decaying rate.
Specifically, the n-th component has a rate equal to k2n,
which increases with the mode number n as (2n − 1)2:
the second mode decays k22/k21 = 9 times faster than the
fundamental mode, the third mode decays k23/k21 = 25
times faster than the fundamental one, etc. The higher
the mode n, the less time it takes for that component of
the temperature to relax.

D. Accelerating the dynamics

We explain hereafter how the driving function can be
designed to remove the contribution of the slow relax-
ation modes, thereby speeding up the relaxation dynam-
ics in a given arbitrary small (chosen) time lapse tf . For
this purpose, we use an ansatz for F (t) that involves as
many parameters as modes to be cancelled. Let us as-
sume that we want to cancel the N first modes. We can
take the following convenient polynomial ansatz

F (t) =

N∑
m=1

γm (t/tf )
m−1

, 0 < t < tf . (9)

Cancelling the N first modes corresponds to impose
Cn(t̃f ) = 0 for n = 1 to N , where t̃f = tf/τ . This
implies for n ∈ [1, N ]

N∑
m=1

γm

∫ t̃f

0

(
s

t̃f

)m−1

ek
2
nsds =

ek
2
n t̃f

k2n
(10)

FIG. 1. Driving function F (t) to apply in order to cancel
successively the first thermal modes for an acceleration (to-
wards the stationary profile) such that tf = τ/10 (left) and
tf = τ/30 (right). The coefficients γn defining F (t) are found
solving Eq. (10); they are listed in table I of Appendix A.

which is a system of N linear equations for N un-
known variables γn, analytically solvable. When tf is
reached, we change the laser power abruptly to Pf (i.e.
F (t > tf ) = 1) and the relaxation will occur only through
the modes higher than the N -th one (since we have al-
ready forced the cancellation of the first N modes). Ex-
amining Eq. (10), the coefficients γn only depend on the
normalized protocol duration t̃f and the number of can-
celed modes N ; the protocol to apply thus does not de-
pend on the laser beam position x̃0. If one only wants to
cancel the relaxation of the fundamental mode (N = 1),
the function F (t) to apply during the protocol is con-
stant and equals 1/(1 − e−k2

1 t̃f ); for t̃f = 0.1, we have
F (t) = 4.57. In Fig. 1, we show the functions F (t) that
allow to cancel up to the third mode for a protocol dura-
tions t̃f = 1/10 and t̃f = 1/30. The needed range of F (t)
(thus the laser power) increases with both the number of
canceled modes N and the acceleration factor τ/tf . Note
that for N > 1, F (t) requires both positive and negative
values. In practice, the cantilever can only absorb the
power from the laser beam. However, P (t) corresponds
to the power excess with respect to the initial value P0,
so that the protocol will be valid as long as P0 is larger
than −min[P (t)].

III. EXPERIMENTAL RESULTS

A. Experimental setup

For the experiments presented below, a silicon can-
tilever placed in vacuum is heated with a laser and the
evolution of its temperature at various positions x along
its length L is measured.

At a thickness of a few micrometers, silicon is semi-
transparent for visible light, the light experiences mul-
tiple reflections within the thickness of the cantilever,
which acts as a lossy Fabry-Pérot [44]. As a result, the
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AOM

Probe laser 
@633nm
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FIG. 2. Sketch of the experimental setup. The heating laser
beam (at 532 nm) is fixed and focused at the extremity of a
cantilever placed in vacuum. The power of the heating beam
is modulated with an acousto-optic modulator. The probe
laser beam (at 633 nm) is used to measure the local tempera-
ture change by analyzing the cantilever reflectivity variations.
By tilting the probe laser, the probe beam spot scans the can-
tilever length allowing to measure the temperature variation
at different positions x.

fraction of light reflected R depends on the thickness and
the silicon refractive index, both varying with tempera-
ture θ. By measuring the local change in reflectivity,
one can thus infer the local temperature variation with
respect to the reference temperature field. For small vari-
ations, we have ∆R(x)/R(x) = βθ(x), where the sensi-
tivity β depends on the local properties (refractive index
and thickness). The calibration procedure for β is de-
tailed in Appendix B.

The experimental setup comprises two laser beams
(Fig. 2): (i) a heating laser beam (at 532 nm) of vari-
able power P (t) focused at a fixed position close to the
cantilever free end (x0 = 0.95L) that serves to heat the
cantilever, and (ii) a probe laser beam (at 633 nm) of con-
stant power (350µW) that allows us to measure the local
temperature rise taking benefit of the thermo-optical ef-
fect described above. The radius of the heating and probe
beam at the cantilever surface are respectively 14µm and
7µm. The power of the heating beam is modulated with
an acousto-optic modulator, with a rise time of 100 ns.
Three photodiodes P1, P2, and P3 measure the incident
heating beam power P (t) and the reflectivity R of the
probe beam respectively, as shown in Fig. 2. By tilting
the probe laser, one scans the cantilever length facilitat-
ing temperature measurements at various locations x.

During the experiment, the cantilever is placed in vac-

uum at 2× 10−2 mBar. At this pressure level, the contri-
bution of convective heat transfer is negligible compared
to thermal conduction [8]. All the measurements are
performed using a single raw silicon cantilever OCTO-
1000D from Micromotive, with the following size: length
L = 1 mm, width W = 90µm and thickness H = 5µm.

To record the spatial dependence of the temperature
profile, we choose 20 evenly spaced positions x of the
probe beam along the cantilever. At each position, we
measure the time evolution of the temperature θ(t) in-
duced by the applied incident power P (t) of the heating
beam. To increase the signal-to-noise ratio, the displayed
temperature variations are obtained averaging over 700
heating procedures at each x. The spatial resolution is
approximately the size of the laser spot, 7µm, hence
smaller that 1 % of the cantilever length.

B. Relaxation for a step function (F (t) = 1)

Before testing the performance of the accelerating pro-
tocols worked out in section II, we first present the re-
sults obtained imposing a jump in power, P (t) = Pf for
t > 0. The analysis of the temperature relaxation allows
measuring the characteristic diffusion time τ needed to
determine the function F (t), to later successfully acceler-
ate the dynamic given a protocol duration tf . Moreover,
this is the simplest reference that can be thought of and
it defines the timescale that we would like to beat.

In Fig. 3 and in the movies available as ancillary
files [45], we display the cantilever temperature rise mea-
sured imposing a sudden increase in the power of Pf =
5.6µW. The heating laser spot is focused close to the
free end of the cantilever at x0 = 0.95L. The conver-
gence of the temperature profile towards the expected
linear stationary profile given by Eq. (4) confirms that
for the temperature variations explored, the silicon con-
ductivity λ can be assumed constant. The maximum
temperature elevation is θms = 38 mK, this value is consis-
tent with the theoretical one θms = aPfx0/(WHλ) with
λ = 156 W m−1 K−1 [46] and a = 0.5, an absorption co-
efficient also consistent with the H = 5µm thickness of
the cantilever [44].

In the case of a step function (F (t) = 1), the tempera-
ture is predicted by Eq. (6) where the components Cn(t̃)
are reduced to

Cn(t̃) = −ψn(x̃0)

x̃0

1

k2n
e−k

2
n t̃. (11)

Using Eq. (11), all experimental data are properly de-
scribed by theory for a characteristic time τ=14.2 ms.
From the thermal diffusivity of bulk silicon given in
the literature [46], D = λ/ρcp = 86 mm2/s, we expect
τ = L2/D = 11.6 ms. The 18% difference could be ex-
plained by the reduced diffusivity of silicon due to the
phonon confinement effect. Indeed, for a 5µm thick film,
the silicon conductivity is expected to be approximately
15% smaller than the value for bulk silicon [47].
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(a)
(b)

(c)

FIG. 3. Transient temperature profiles (a) of a cantilever heated by a laser whose incident power P (t) is the step function
(b). The heating laser is located near the cantilever free end (x̃0 = 0.95). The 5.6µW increase in power induces a maximum
temperature elevation of θms = 38 mK. As time goes on, the temperature profile converges towards the expected linear stationary
profile given by Eq. (4). Graph (c) shows the normalized evolution of temperature at the positions x̃ = 0.3, 0.67 and 0.95,
corresponding to the vertical dashed lines in panel a). All experimental data are perfectly described by the model of Eq. (6),
using the characteristic time τ = 14.2 ms.

C. Relaxation for an acceleration factor τ/tf = 10

In Fig. 4, and in the movies available as ancillary
files [45], we display the evolution of the measured can-
tilever temperature when applying the driving function
F (t) given by Eq. (9) for a protocol duration tf = 1.4 ms,
corresponding to t̃f = 0.1. We tested our protocol vary-
ing the number of canceled modes N from 1 up to 4.
Note that the imposed functions F (t) correspond to the
ones already presented in Fig. 1 (left panel). In order
to be able to impose the negative variations in F (t)
(for N > 1), we choose a reference incident power of
P0 = 210µW. As the number of canceled modes N
increases, the temperature at the end of the protocol
(t = tf ) clearly converges towards the stationary pro-
file θs(x) (Fig. 5). Contrary to the step function (Fig. 3),
the temperature takes intermediate values higher than
the stationary target θs(x). The maximum transient
temperature is obtained for N = 4 and corresponds to
θ = 4.7 × θms at x = 0.95L. For each protocol, we com-
pare the experiment to theory computing the tempera-
ture from Eq. (6) limiting the infinite sum to 60 terms;
all experimental data remarkably coincide with theory.

To highlight the success of our tailored acceleration,
we compare in Fig. 6 the difference of convergence to-
wards the stationary profile θs between the step function
power (displayed in Fig. 3) and the accelerating protocol
for N = 4 (displayed in the last panel of Fig. 4). Us-
ing the step function, the duration needed to converge
within 2% (at the positions x̃ = 0.3, 0.67 and 0.95) is
25 ms (1.8τ), while in the accelerating protocol this mile-
stone is reached at the end of the program tf = 1.4 ms
(0.1τ), beating remarkably the natural relaxation time.

FIG. 5. Relative temperature difference from the targeted sta-
tionary profile θs(x̃) at the end of the protocol t = tf = 0.1τ .
As the number of canceled modes N increases, the temper-
ature profile converges towards the stationary profile. For
N = 4, the relative temperature difference remains below
10% along the cantilever length.

Actually, having gotten rid of the first four modes, the
fifth and higher orders do remain and are responsible for
a slight mismatch with respect to the target profile. They
decay at least 92 = 81 time faster than the power step-
forcing relaxation, with time scales smaller or equal to
τ/(4.5π)2 ' 0.07 ms, much smaller than tf itself.
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(a) (b)

(c)

(b)(a)

(c)

(b)(a)

(c)

(b)(a)

(c)

FIG. 4. Transient temperature profiles measured when applying the protocol function F (t) given by Eq. (9) with a protocol
duration tf = 0.1τ designed to cancel the N first thermal modes. For each tested protocols (N = 1 up to N = 4) we display (a)
the temperature profiles, (b) the imposed power P (t), and (c) the temperature variations with time at the positions x̃ = 0.3,
0.67 and 0.95. All experimental data coincide with the expected theoretical temperature variations.
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FIG. 6. Comparison of the temperature convergence towards
the stationary profile θs when heating the cantilever with a
step function power (black) or with the accelerating protocol
function of Eq. (9) for N = 4 (orange). The red shaded area
corresponds to the protocol duration tf = 0.1τ = 1.4 ms.

D. Relaxation for an acceleration factor τ/tf = 30

In Fig. 7(a), we compare the temperature convergence
towards the stationary state varying N for a shorter pro-
tocol duration of 0.47 ms corresponding to τ/tf = 30.
The driving functions applied, F (t), correspond to the
ones displayed in Fig. 1 (right panel). To be able to im-
pose the large variations in F (t), a reduced target power
change Pf = 0.6µW, implying a maximum tempera-
ture elevation of θms = 5 mK, is considered. To maintain
the signal-to-noise ratio, each curve displayed is now ob-
tained averaging over 3000 measurements. As observed
previously for the slower acceleration of tf = τ/10, the
temperature variations during the protocol duration (see
inset) increase with the number of canceled modes N .
Note that the transient temperature variations are now
much larger and can take negative values.

In that case, the temperature at the end of the proto-
col is notably different from the stationary value θs. The
relative difference (θ(tf )− θs)/θs (measured at x̃ = 0.95)
is respectively 100%, -150% and 170% for N increasing
from 1 to 3. It may seem counter-intuitive that the dif-
ference from the target value obtained at the end of the
protocol increases with the number of canceled modes.
We remind that our protocol allows converging towards
the stationary profile at the end of the protocol only in
the limit N → ∞. For a finite value N the use of the
protocol guarantees that starting from tf only the modes
higher than N will relax. Because the rate of relaxation
(equal to k2n) increases with the mode number n, increas-
ing N should allow a faster convergence towards the sta-
tionary profile. In Fig. 7(b), we verify that the temper-
ature starting from tf relaxes faster as N increases, as

FIG. 7. (a) Temperature relaxation towards the stationary
state (measured close to the cantilever free end x̃ = 0.95)
varying N for a protocol duration tf = τ/30 = 0.47 ms. Inset:
temperature variations during the protocol. (b) Comparison
of the temperature decay. The horizontal dashed lines corre-
spond to a relative difference (θ − θs)/θs of 4%.

predicted. For N = 3 for example, the relaxation times
are at most τ/(3.5π2) ' 0.12 ms, smaller than tf itself,
and in agreement with the observation (green curve).

IV. DISCUSSION AND CONCLUSIONS

In this work, we tailor in time the power of a localized
irradiating laser, in order to speed up the thermal relax-
ation of a micro-cantilever in a duration much smaller
than its natural relaxation time. The protocol duration
can be reduced, in principle, as much as desired. How-
ever, a smaller duration unavoidably translates into a
larger heating/cooling power, and requires a faster time
control of the imposed drive.
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The theoretical approach relies on cancelling the first
N eigenmodes of the thermal diffusion equation in a finite
time. Of course, the system is getting closer to the exact
steady states as more N are considered. Nevertheless, we
have proven that for an experimentally accessible range
of parameters, relatively small values of N may suffice,
N = 4 providing a final state already very close to the
stationary one. We emphasize that such a strategy to
speed up a given dynamics described by partial differen-
tial equations is generic, and can be applied to a wide
variety of mesoscopic systems [43]. It complements the
methods that have been recently developed in stochastic
thermodynamics to speed up a relaxation process [28].

Some driving protocols require a heat sink (negative
power), that is, a cooling laser. From the experimental
point of view, this represents a technical problem that is
bypassed by choosing a heated initial state. This trick al-
lows to redefine the driving function with an offset which
gives access to effective negative powers. Our solution
proves to work in all the considered processes.

Let us point out that our approach is quite differ-
ent from classic feedback control methods. Those would
typically rely of measuring the temperature in one posi-
tion, say x0, and adjust the heating power to reach the
setpoint, θms . A perfect feedback loop would therefore
achieve θ(x0, t > 0) = θms , acting as an effective bound-
ary condition (a temperature step at the specific point
x0) for the heat equation (1). The typical time scale to
reach the stationary state would then be x20/(π2D) (see
Appendix C), close to one fourth of the power step slow-
est decay time 4L2/(π2D): only a 4 times acceleration
of the global dynamics would consequently be achieved.
Note that reaching the stationary value in one point is
very different from reaching the final profile at every po-
sition. As a further illustration, we superimpose in the
movies available as ancillary files [45] the time evolution
of the temperature field in response to a power step, to
a temperature step (perfect feedback loop), and to our
protocols. The acceleration provided by our strategy is
clear, at the expense of noticeable local temperature os-
cillations and overshoots.

The order of magnitude of the temperature jumps that
we experimentally perform is modest: 38 mK for a 10
times acceleration, and 5 mK for a 30 times acceleration.
This choice hinges upon a practical consideration: linear-
ity and dynamic range. The thermal conductivity of sili-
con depends on temperature in a noticeable way (roughly
as λ ∝ 1/T [46]), so that we would like to avoid large
temperature excursions to match the linearity hypothe-
ses of the model. Moreover, we need an initial power
P0 to allow negative values for P (t), hence the initial
temperature profile is actually not flat. For the set of
data presented in Figs. 3 to 6, the maximum temper-
ature due to P0 = 210µW and the 350µW of the red
laser probe beam is 4 K, corresponding to a variation of
λ below 1.3%. Larger P0, allowing larger Pf , would im-
ply non uniform values for λ, again deviating from the
model. Our goal in this article was to demonstrate the

FIG. 8. Transient temperature profiles measured when apply-
ing a step function and the accelerating protocol (N = 1 up
to N = 3) for a maximum temperature elevation θms = 1 K.
The small deviation from theory is attributed to the thermal
conductivity dependence of silicon with temperature: as the
initial profile corresponds to a maximum temperature rise of
50 K, λ is up to 16 % smaller near the cantilever’s free end.

excellent agreement between theory and experiment, so
we restricted ourselves to small temperature jumps. We
also tested larger steps corresponding to θms = 1 K, and
as illustrated in Fig. 8, the protocols worked fine with
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only tiny adjustments to the parameter τ to compensate
for emerging non-linearities. In this case, the maximum
temperature due to P0 = 400µW and the 600µW of the
red laser probe beam was 50 K, corresponding to a non-
uniformity of λ of 16 %.

Larger jumps would require to reconsider the simple
form of the dynamic evolution that facilitates the the-
oretical derivation of the driving protocol. The intro-
duction of linear corrections or even non-linearities in λ
constitutes a challenging future perspective. One way to
partially avoid the need for an extended power range is
the freedom gained when the laser position x0(t) is no
longer fixed but controlled in time: it would allow to de-
posit the required amount of heat at each location of the
cantilever, bypassing the slow diffusion process to reach
the stationary state of the temperature field.

As a final consideration, let us rewind to our initial
motivation: get closer or beat the time scales of the
mechanical system. With an acceleration of a factor
30, the ratio of the mechanical and thermal time writes
T0/tf = 2µm/H. For our H = 5µm thick cantilever, we
are thus able to stabilize the temperature field in only
2.5 oscillations, and we would reach half an oscillation
with H = 1µm. As for the mechanical relaxation time
τr which is Q/π times longer than the period T0, with
a quality factor of the order of Q = 3000 in our ex-
periment in vacuum, we actually reach thermal steady
state in τr/400. Such an acceleration even allows stabi-
lizing temperature faster than the “equilibration” of the
first 12 mechanical resonant modes of the cantilever. Our
strategy to accelerate the heat diffusion thus achieves its
goal, and could be useful in numerous applications once
we reach a meaningful temperature step amplitude.
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APPENDIX

Appendix A: Coefficients γn of the polynomial
function F (t)

N = 1 N = 2 N = 3 N = 4

τ/tf = 10

γ1 4.57 16.5 42 88.1
γ2 - -22.9 -155 -585
γ3 - - 122 1040
γ4 - - - -548

τ/tf = 30

γ1 12.7 113 641 2749
γ2 - -198 -3204 -26156
γ3 - - 2926 57017
γ4 - - - -34647

TABLE I. Coefficients γn of the polynomial function F (t)
found solving Eq. (10) that allow to cancel successively the
four first thermal modes for a protocol duration tf such that
τ/tf = 10 and τ/tf = 30.

Appendix B: Calibration of the sensitivity coefficient
β

Since the cantilever thickness slightly varies along its
length, the sensitivity coefficient β depends on the posi-
tion x. To calibrate the function β(x), we impose a uni-
form temperature profile (positioning the heating beam
onto the chip) and we measure the induced change in re-
flectivity ∆R(x) at each location x. At the same time, we
measure the shift of the mechanical resonance frequencies
by analyzing the thermal noise driven fluctuations of po-
sition of the reflected probe beam. This frequency shift
leads to a calibrated measurement of the imposed tem-
perature change [16, 48]. The measured coefficients β
to convert the reflectivity into temperature at all probed
positions x are displayed in Fig. 9.

FIG. 9. Calibration of the sensitivity coefficient β. This
quantity makes possible to convert the variation of reflec-
tivity into temperature change, θ(x) = β−1(x)∆R(x)/R(x).
The relatively large range of dispersion for the sensitivity β is
mainly due to variations of the thickness along the cantilever
length.
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Appendix C: Response to a temperature step
(perfect feedback loop)

We provide here the solution for the heat equation (1)
without a source term:

∂tθ = D∂2xθ, (C1)

withD = λ/(ρcp) and the following boundary conditions:

θ(0, t) = 0, θ(x0, t) = θms , ∂xθ(x, t)|x=L = 0, (C2)

with 0 < x0 < L and initial condition

θ(x, 0) = 0. (C3)

Note that, since there is an extra “boundary” condition
at x = x0, i.e. within the interval 0 ≤ x ≤ L, the
equation should be solved separately for the two intervals
0 ≤ x < x0 and x0 < x ≤ L.

The stationary solution is

θs(x, t)

θms
=

{
x
x0

0 ≤ x ≤ x0,
1 x0 ≤ x ≤ L

(C4)

After expanding ∆θ(x, t) = θ(x, t) − θs(x) in the corre-
sponding eigenbasis, one gets

θ(x, t)

θms
=


x

x0
+

2

π

∞∑
n=1

(−1)n

n
sin

(
nπ

x

x0

)
exp

(
−n

2π2D

x20
t

)
0 ≤ x ≤ x0,

1− 4

π

∞∑
n=1

1

2n− 1
sin

[(
n− 1

2

)
π
x− x0
L− x0

]
exp

[
− (2n− 1)2πD

4(L− x0)2
t

]
x0 ≤ x ≤ L

(C5)

Characteristic relaxation times to the left and to the right
of the point x0 are proportional to τleft = x20/D and
τright = (L − x0)2/D respectively. With respect to the
power step solution, assuming x0 ∼ L, the slowest time
constant in the exponentially decaying functions is four
time smaller. This acceleration stems from the change
of modes from kn = (n − 1/2)π to kn = nπ, due to
the change of the relevant boundary condition from Neu-
mann to Dirichlet.

Rather than considering Eq. (C1) separately in the in-
tervals 0 ≤ x < x0 and x0 < x ≤ L, we could have
instead considered Eq. (1) complemented with Eq. (2),
i.e. with a localized δ(x − x0) forcing term of ampli-
tude proportional to P (t). Thus, the perfect feedback
loop introduced in this appendix can be experimentally
implemented with a feedforward protocol with the laser
power

P (t) =
λSθms
a

ϑ3(e
−Dπ2t

x20 )

x0
+
ϑ2(e

− Dπ2t
(L−x0)2 )

L− x0

 . (C6)

This latter relation is obtained from direct integration
of the heat equation (1) over an infinitesimal interval
around x0, substituting for θ(x, t) the solution (C5).
Above, ϑa(q), with a ∈ {2, 3} stands for the elliptic theta
function Θa(u, q) evaluated in u = 0: ϑa(q) = Θa(0, q),
with

Θ2(u, q) = 2q1/4
∞∑

n=0

qn(n+1) cos[(2n+ 1)u], (C7)

Θ3(u, q) = 1 + 2

∞∑
n=1

qn
2

cos(2nu). (C8)
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