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Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of heat,
work and entropy production for individual stochastic trajectories of mesoscopic systems. Remark-
ably, this approach, relying on stochastic equations of motion, introduces time into the description
of thermodynamic processes—which opens the way to fine control them. As a result, the field of
finite-time thermodynamics of mesoscopic systems has blossomed. In this article, after introduc-
ing a few concepts of control for isolated mechanical systems evolving according to deterministic
equations of motion, we review the different strategies that have been developed to realize finite-
time state-to-state transformations in both over and underdamped regimes, by the proper design
of time-dependent control parameters/driving. The systems under study are stochastic, epitomized
by a Brownian object immersed in a fluid; they thus strongly coupled to their environment playing
the role of a reservoir. Interestingly, a few of those methods (inverse engineering, counterdiabatic
driving, fast-forward) are directly inspired by their counterpart in quantum control. The review
also analyzes the control through reservoir engineering. Besides the reachability of a given target
state from a known initial state, the question of the optimal path is discussed. Optimality is here
defined with respect to a cost function, a subject intimately related to the field of information
thermodynamics and the question of speed limit. Another natural extension discussed deals with
the connection between arbitrary states or non-equilibrium steady states. This field of control in
stochastic thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat
engines to population control in biological systems.
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I. INTRODUCTION

Thermodynamics originated in efforts to tame the mo-
tive power of fire [1]. Originally concerned with notions of
heat and temperature, the field was formalized during the
19th century into a set of universal principles that govern
the properties of macroscopic systems in thermal equi-
librium, as well as transformations between equilibrium
states [2]. Beginning in the 1860s, statistical physics re-
vealed the microscopic roots of thermodynamics, greatly
enhancing its power to predict and explain systems’ ma-
terial properties. Reversible transformations have tradi-
tionally played a central role in the foundations of ther-
modynamics. Such transformations occur in an idealized
adiabatic (infinitely slow [3]) limit, in which a system’s
dynamical behavior is essentially irrelevant. More recent
developments, however, have focused on nonequilibrium,
finite-time processes, where dynamics become important.
In particular the growing field of stochastic thermody-
namics [4–6] extends the concepts of heat, work and en-
tropy production to individual trajectories of microscopic
systems, evolving under stochastic equations of motion.

By introducing time into the description of thermody-
namic processes, it becomes possible to formulate new
questions, and in particular to investigate the control
and optimization of finite-time thermodynamic transfor-
mations, see Fig. 1. Recent years have seen a surge of
activity in this area. In this review, we survey finite-
time control methods that have been developed within
the framework of stochastic thermodynamics. Many of
these methods (though not all!) have been inspired by
developments in the control of quantum systems, partic-
ularly in the field of shortcuts to adiabaticity [7]. For
this reason, we begin with a brief overview of quantum
frameworks and features that are especially relevant for
control ideas in stochastic thermodynamics.

The goal of quantum shortcuts to adiabaticity is to
steer a system to evolve from an eigenstate |n(0)〉 of an

initial Hamiltonian Ĥ(0) to the corresponding eigenstate

|n(tf)〉 of a final Hamiltonian Ĥ(tf). For infinitely slow
driving, this is achieved automatically by virtue of the
quantum adiabatic theorem [8], which guarantees that
the system remains in the instantaneous eigenstate |n(t)〉
of Ĥ(t) at all times. For rapid driving, three broad ap-
proaches for achieving the above-mentioned goal have
emerged: inverse engineering [9, 10], transitionless or
counterdiabatic driving [11–13], and fast-forward meth-
ods [14, 15].

In inverse engineering methods, instead of deducing a
system’s evolution under a given driving protocol (as is
the customary approach in physics), one seeks to engi-
neer a driving protocol that produces the desired evolu-
tion. This is accomplished by exploiting the equations

of motion that govern the system’s dynamics. In quan-
tum mechanics, inverse engineering methods have been
applied to a variety of dynamical frameworks, including
the Schrödinger equation, the evolution operator, the dy-
namical invariants, and the density matrix formalism [7].

In the counterdiabatic approach, for a given time-

dependent reference Hamiltonian Ĥ(t), one seeks a

Hamiltonian ĤCD(t) with the following property: if the

system evolves unitarily under Ĥ + ĤCD from an initial
eigenstate |n(0)〉, then throughout the process the system

remains in the n’th eigenstate of Ĥ(t). In other words the
system follows the adiabatic trajectory |n(t)〉, even when

the driving is rapid. Explicit expressions for ĤCD are
given by Eqs. (10) and Eq. (56) below [11–13, 16]. Both
results steer the system exactly along the adiabatic tra-
jectory |n(t)〉, hence the solution to the counterdiabatic
problem is not always unique.

In the fast-forward approach [14, 15], a potential

ÛFF (t) = UFF (x̂, t) is designed such that, if the sys-

tem evolves under Ĥ + ÛFF from an initial eigenstate
|n(0)〉, then at t = tf the system arrives at the desired
final state |n(tf)〉. At intermediate times the state of
the system takes the form ψ(x, t) = eiS(x,t)/~〈x|n(t)〉,
where S(x, t) is real. Note that while ψ(x, t) itself is

not an eigenstate of Ĥ(t), its coordinate-space probabil-
ity distribution coincides with the eigenstate probability
distribution: |ψ(x, t)|2 = |〈x|n(t)〉|2.

In the shortcuts described above, the goal is to make
the system arrive rapidly at a destination it would have
reached naturally had the process been carried out qua-
sistatically. In the quantum case, the desired destination
is an energy eigenstate, but as we shall see the same goal
can be reformulated for classical systems governed by
Hamilton’s equations (Sec. II), and for stochastic systems
evolving under overdamped and underdamped Brownian
dynamics (Secs. III A - III C). In fact, not only is the goal
the same—rapid evolution to a quasistatic outcome—but
there are close similarities between the various quantum,
classical and stochastic shortcuts designed to achieve this
goal. A number of strategies for constructing shortcuts
can be unified within a framework organized around the
continuity equation [16]. In each case the strategy in-
volves identifying a velocity field v(x, t), or else the cor-
responding acceleration field a(x, t), then using this field
to construct the counterdiabatic or fast-forward Hamil-
tonian or potential—see Eqs. (20), (26), (56) and (70).

Although the term shortcuts to adiabaticity is widely
used in the context of quantum and Hamiltonian clas-
sical dynamics, for stochastic systems other expressions
such as engineered swift equilibration [17] and shortcuts
to isothermality [18] have been introduced. While these
terms are descriptive within particular contexts, they
do not fully capture the broad scope of methods that
have been developed. In this review we will use the
general terminology, swift state-to-state transformations,
and the acronym SST, to embrace the entire catalogue
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FIG. 1: The White Rabbit is doing his best to overcome his unpunctuality, which is not an easy task in Wonderland. In this
review, we study a related type of question, and first address the possibility of finding a path from A to B (A and B are fixed).
When several such paths may exist, a second level of question deals with searching for the optimal one; for the White Rabbit,
this amounts to finding the fastest, and arrive on time.

of shortcutting methods, see Appendix A for a summary
of acronyms used throughout.

This review focuses primarily on systems evolving un-
der stochastic dynamics, but we begin in Sec. II by de-
scribing shortcuts developed for classical mechanical sys-
tems governed by Hamiltonian dynamics. Mainly, we
describe the generalisation to classical mechanics of the
counterdiabatic—both global and local—driving and the
fast-forward driving. These methods, both in their quan-
tum and classical versions, are based on the time manip-
ulation of the system Hamiltonian. Also, we briefly de-
scribe other shortcuts—for instance in the framework of
the Boltzmann equation. Section III is devoted to short-
cuts for systems in contact with a thermal bath and thus
described by stochastic dynamics, codified for instance by
the Fokker-Planck equation—focusing on the connection
between equilibrium states. Therein, we further gener-
alise three main STA quantum approaches (inverse en-
gineering, counterdiabatic method, and fast-forward) to
the stochastic framework, by time manipulating the po-
tential energy, i.e. by applying a suitably chosen external
force. In addition, we consider a new possibility of tuning
the evolution of these systems: engineering the thermal
environment.

Loosely speaking, it may argued that the finite-time
driving associated with SST, which involves the explo-
ration of non-equilibrium states, requires more resources
than an infinitely slow adiabatic connection—for which
the system is at equilibrium for all times. To be concrete,
let us think of an isothermal process. For adiabatic con-
nection, the work done along the process is minimum and
equals the free energy difference between the final and ini-
tial states. For SST, there emerges an irreversible con-
tribution to the work that depends on the path swept by

the system. It is therefore natural to explore how to de-
sign protocols that optimally use the resources available
by minimising some “cost” function, e.g. the irreversible
work for the isothermal connection. Also, the system pa-
rameters that become time-dependent in SST must often
verify certain constraints. The question of minimising
a certain cost function that is a functional of the trajec-
tory, with constrained parameters, is the central problem
of optimal control theory [19, 20]—a collection of tools
that has been employed in the applied mathematics and
engineering literature for a long time, but only recently in
physics. In Sec. IV, we analyze how these tools translate
to the setting of stochastic thermodynamics, including a
brief discussion of information geometry ideas and the
emergence of the so-called classical speed limits. Then,
in Sec. V, we extend previously discussed techniques to
transitions between non-equilibrium states. Section VI
deals with applications of stochastic shortcuts, including
heat engines. Finally, perspectives and conclusions are
drawn in Sec. VII.

II. SHORTCUTS FOR ISOLATED CLASSICAL
SYSTEMS

A. Background and Setup

The study of classical adiabatic invariants traces back
more than a century [21, 22] to the problem of a simple
pendulum whose length ` varies with time. If ` changes
slowly, then so too do both the pendulum frequency ν
and its energy E. However, in the harmonic regime of
small oscillations the ratio E/ν remains fixed in the limit
of infinitely slow variation of the pendulum length [204].
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More generally, consider a classical particle of mass m
in one degree of freedom, described by a Hamiltonian

H(z, t) =
p2

2m
+ U(x, t), (1)

where z = (x, p) denotes a point in phase space. For
any fixed value of t, we take U(x, t) to be a confining
potential, with closed (periodic) orbits in phase space.
We assume that U(x, t) has a single minimum whose lo-
cation may depend on t [205]; that U(x, t) varies with
time only during the interval ti = 0 ≤ t ≤ tf; and that
the time-dependence of the potential is turned on and off
smoothly at t = 0 and t = tf, respectively—more pre-
cisely, U(x, t) is twice differentiable with respect to time.
Under these conditions, if we treat t as fixed parame-
ter then every trajectory evolving under H(z, t) is closed
(i.e. periodic). If we instead let t denote the running time
then the action

I(E, t) =

∮
E

dx p (2)

is an adiabatic invariant [23]. The right side indicates a
clockwise line integral around the energy shell E, that is
the level set H(z, t) = E, which forms a closed loop in
phase space (see Fig. 2). We will use the notation E(t, I)
to denote the energy shell of H(z, t) whose action is I.

Imagine a classical trajectory z(t) that evolves under
Hamilton’s equations of motion as H(z, t) is varied ex-
tremely slowly over a long time interval 0 ≤ t ≤ tf. Let
E(t) ≡ H(z(t), t) denote the slowly evolving energy of
this trajectory. In stating that the action I is an adi-
abatic invariant, we mean that in the limit of infinitely
slow driving its value remains constant along this trajec-
tory:

I(E(t), t) = I(E(0), 0) ≡ Ii , 0 ≤ t ≤ tf (3)

even though, in general, E(t) 6= E(0). For a harmonic
oscillator with time-dependent frequency ν(t), the action
defined by Eq. (2) is equal to I(E, t) = E/ν, in agreement
with the discussion of the simple pendulum, above.

The integral in Eq. (2) gives the phase space vol-
ume [206] enclosed by the energy shell, hence we can
equally well write

I(E, t) =

∫
dz θ [E −H(z, t)] (4)

where θ(·) is the unit step function, and
∫
dz =

∫
dx
∫
dp

denotes integration over phase space. Thus the adiabatic
invariance of the action can be described as follows: if a
trajectory is initially located on an energy shell E(0, Ii)
that encloses phase space volume Ii, then for any t ∈
[0, tf] the trajectory will be located on the energy shell
E(t, Ii), which encloses the same amount of phase space.

Classical shortcuts to adiabaticity (SST) are concerned
with the situation in which the variation of the poten-
tial H(z, t) is not slow. Consider again the Hamiltonian

given by Eq. (1), only now imagine that the interval [0, tf]
over which H varies with time is not particularly long—
indeed, it can be arbitrarily short, though finite. In this
situation, the action I is generally not invariant:

I(E(t), t) 6= I(E(0), 0) . (5)

We will view the non-invariance of the action as a defi-
ciency, to be corrected using tools similar to those devised
for quantum SST/ STA.

In what follows, the term slow driving refers to the
adiabatic limit, while fast driving denotes non-adiabatic
time-dependence of H(z, t).

While the discussion above has focused on the evolu-
tion of a single trajectory z(t), the invariance of the ac-
tion for slow driving and the breaking of that invariance
for rapid driving are conveniently visualized in terms of
closed loops evolving in phase space; see Fig. 2. Imagine,
at t = 0, a collection of infinitely many initial conditions
distributed over a single energy shell of the initial Hamil-
tonian, with action Ii. These initial conditions define a
loop Li that coincides with the energy shell, Li = E(0, Ii),
as depicted schematically in Fig. 2(a). From each of
these initial conditions a trajectory z(t) evolves under
H(z, t). At any later time, t > 0, a snapshot of these
trajectories defines a new closed loop L(t). Under slow
driving, Eq. (3) implies that the loop L(t) “clings” at
all time to the instantaneous shell whose action is Ii,
that is, L(t) = E(t, Ii) for all t ∈ [0, tf]. In particular,
the initial loop Li = L(0) is mapped onto a final loop
Lf ≡ L(tf) = E(tf, Ii) that coincides with an energy shell
of the final Hamiltonian (see the gray loop in Fig. 2(b)).
In terms of the initial and final energies of the trajectory,
we have

I(Ei, 0) = I(Ef, tf) = Ii , (6)

where Ei = E(0) and Ef = E(tf). Under fast driving, by
contrast, the loop L(t) strays away from the energy shell
E(t, Ii) as illustrated for t = tf in Fig. 2(b).

The goal of classical SST can be stated as follows: for a
rapidly driven Hamiltonian H(z, t) and an action Ii, de-
vise a strategy that evolves the loop Li = E(0, Ii) to the
loop Lf = E(tf, Ii), under Hamiltonian evolution. This is
analogous to the situation in quantum SST, where the
goal is to use unitary evolution to evolve a wavefunction
from an eigenstate of an initial Hamiltonian to the cor-
responding eigenstate of the final Hamiltonian.

In the classical case, we attempt to meet this goal by
designing an auxiliary term Haux(z, t) such that the de-
sired evolution is generated by the Hamiltonian

HSST(z, t) = H(z, t) +Haux(z, t) . (7)

The auxiliary term effectively steers the evolving loop
L(t) to the desired target, namely the final energy
shell E(tf, Ii). While the dynamics are generated by
HSST(z, t), we emphasize that the energy shells E(t, I)
are always defined with respect to the original Hamilto-
nian H(z, t).
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FIG. 2: In (a), the gray loop depicts an energy shell E(0, Ii)
of H(z, 0), and the red loop Li = L(0) depicts initial condi-
tions for a set of trajectories that subsequently evolve under
H(z, t), where z = (x, p). The two loops are identical at
t = 0, as shown. In (b), the gray loop depicts the energy shell
E(tf, Ii) of H(z, tf), while the red loop Lf = L(tf) depicts the
final conditions for the set of trajectories. In the adiabatic
limit the two would coincide, Lf = E(tf, Ii), as the action I
becomes invariant. For any choice of tf, the phase space vol-
ume enclosed by both loops in (b) is equal to that enclosed
by the loops in (a), by Liouville’s theorem, even though the
loop Lf is not itself an energy shell.

We now identify three different flavors of this problem,
which differ from one another in how ambitiously the
above-mentioned goal is addressed.

• In one version of the problem, Haux is indepen-
dent of the choice of action Ii, and the action re-
mains invariant throughout the entire process, i.e.
Eq. (3) is satisfied at all times and for any choice
of Ei = E(0). This represents the strongest ver-
sion of the problem, and we will refer to it as global
counterdiabatic (GCD) driving.

• In a somewhat more relaxed version, we continue to
insist that the action be invariant throughout the
process (Eq. (3)), but now we allow Haux to de-
pend on the choice of Ii, equivalently on the choice
of Ei; we will call this local counterdiabatic (LCD)
driving.

• In the most relaxed version of the problem, we al-
low Haux to depend on the choice of Ii (as with
LCD driving), and we further allow the invariance
of the action to be broken at intermediate times
0 < t < tf, insisting only that I(Ef, tf) = I(Ei, 0)
(Eq. (6)). We refer to this version as fast-forward
(FF) driving.

The designations global and local reflect the distinction
that in one case (GCD) a single Haux must succeed for
all energy shells, i.e. globally, while in the other (LCD)
we are free to design Haux based on the energy shell un-
der consideration, i.e. locally. The terms counterdiabatic
and fast-forward are taken from the literature on quan-
tum shortcuts—the former signifies the suppression of
non-adiabatic excitations [11], while the latter evokes a

mechanism for rapidly arriving at a desired final desti-
nation, regardless of the intermediate path taken to get
there [14].

All three versions of the classical SST problem—as de-
fined above, for one degree of freedom—have been solved,
in the sense that in each version an explicit recipe has
been devised for constructing an auxiliary Hamiltonian
that achieves the desired steering of trajectories. As de-
scribed in greater detail below, for GCD driving the aux-
iliary Hamiltonian is generally a complicated, non-linear
function of both position (x) and momentum (p). For
LCD driving, the auxiliary Hamiltonian is simpler, tak-
ing the form Haux(z, t) = pv(x, t), with v(x, t) given by
Eq. (19) below. Finally, for FF driving, the auxiliary
Hamiltonian does not depend on momentum at all, in
other words the desired goal can be satisfied by adding
a time dependent potential energy function UFF(x, t) to
the original Hamiltonian. Perhaps not surprisingly, as we
relax our demands on the performance of the auxiliary
Hamiltonian, from global to local to fast-forward, the
form of Haux becomes simpler, at least in its dependence
on momentum: Haux(x, p, t)→ pv(x, t)→ UFF(x, t).

LCD and FF driving are closely related: the function
v(x, t) that appears in the LCD auxiliary Hamiltonian
(Eq. (20)) is also used to construct the fast-forward po-
tential UFF, as elaborated in Sec. II B. In general, GCD
driving is not closely related to the other two. However,
for a particular class of driving protocols that go by the
name of scale-invariant driving [24], GCD and LCD driv-
ing are identical, giving the same Haux(z, t) (see Eq. (16)
below). Scale-invariant protocols are those for which the
potential U(x, t) in Eq. (1) has the form [24, 25]

U(x, t) =
1

σ2
U0

(
x− µ
σ

)
(8)

where σ = σ(t) and µ = µ(t) are functions of time.
By varying µ we translate the potential, while varying
σ stretches or squeezes the potential along the x axis,
and rescales its magnitude, without otherwise altering
its profile. Potentials of this form give rise to conve-
nient scaling properties of both the classical dynamics
and the quantum energy eigenstates [24]. Power-law po-
tentials U(x, t) = α [x/L(t)]c, with c = 2, 4, · · · , offer
an illustrative example of scale-invariant driving [26].
The harmonic oscillator with time-dependent stiffness
(c = 2) and the particle-in-a-box, with time-dependent
box length (c→∞) belong to this class.

We note in passing that if U(x, t) is scale-invariant (8)
for some σ(t) and µ(t), then so is U(x, t) + b/(x−µ)2 for
any real constant b.[207] Potentials of this form will arise
in Sec. II D.

B. Recipes for classical shortcuts to adiabaticity

We now describe how to construct Haux(z, t) for the
three situations just outlined. For the derivations of these
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methods and further details, we refer to the original pa-
pers, cited below.

In Secs. II B 1-II B 3, we will assume that U(x, t) is
twice differentiable with respect to time (see comments
after Eq. (1)), hence both U and ∂tU are continuous func-
tions of time. Since ∂tU = 0 outside the interval [0, tf],
this assumption implies the boundary conditions

∂U

∂t
(x, 0+) =

∂U

∂t
(x, t−f ) = 0. (9)

In other words the time-dependence of U is turned on
and off smoothly rather than abruptly. In Sec. II B 4
we will briefly consider the implications of relaxing this
assumption.

1. Global counterdiabatic driving

Classical GCD mirrors the quantum approach devel-
oped by Demirplak and Rice [11] and Berry [13]. In the
quantum case, the auxiliary or counterdiabatic Hamilto-
nian is given as a sum over energy eigenstates of the

original Hamiltonian Ĥ(t):

ĤGCD(t) = i~
∑
m

(|ṁ〉〈m| − 〈m|ṁ〉|m〉〈m|) . (10)

Here |m〉 = |m(t)〉 denotes the m’th eigenstate of Ĥ(t),
and |ṁ〉 = ∂t|m(t)〉 is its time derivative.

We are interested in constructing the classical coun-

terpart of ĤGCD(t). While Eq. (10) may not seem
well-suited to this end, the quantum operator defined
(uniquely) by that equation can equivalently be defined
by [26]: [

ĤGCD, Ĥ
]

= i~
(
∂tĤ − diag ∂tĤ

)
(11a)

〈n|ĤGCD|n〉 = 0 ∀n (11b)

where diag Â ≡
∑
m |m〉〈m|Â|m〉〈m|. Defining ĤGCD in

this manner is convenient, as the correspondence between

the quantum commutator [Â, B̂] and the classical Pois-
son bracket {A,B}, together with the correspondence be-
tween quantum energy eigenstates and classical energy
shells, suggest a natural classical analogue:

{HGCD, H} = ∂tH − 〈∂tH〉H (12a)

〈HGCD〉E = 0 ∀E (12b)

The notation

〈A〉E =

∫
dz δ (E −H)A(z)∫
dz δ (E −H)

(13)

denotes a microcanonical average of an observable A(z)
over the energy shell E of H(z, t). The left side of
Eq. (12a) is evaluated at a phase point z, and the no-
tation 〈∂tH〉H on the right indicates that the average is

taken over the energy shell containing z; see Ref. [26] for
further details, as well as Ref. [27] where the same result
is derived by means of classical generating functions, and

Ref. [28], where ĤGCD and HGCD are framed as adia-
batic gauge potentials. Yet another interesting approach
is taken in Ref. [29], where HGCD is constructed from
the dispersionless Korteweg-de Vries hierarchy, building
on earlier work in the quantum context [30].

We have introduced Eq. (12) as the classical analogue
of Eq. (11). It can be verified directly from classical anal-
ysis [26] that the function HGCD(z, t) defined by Eq. (12)
has the counterdiabatic property we seek: along a tra-
jectory zG(t) evolving under H + HGCD, the action is
preserved exactly:

d

dt
I [H(zG(t), t), t] = 0 (14)

Hence the solution to a quantum problem, Eq. (11), com-
bined with semiclassical reasoning, has yielded the exact
solution to the analogous classical problem, Eq. (12).

To translate Eq. (12) into an explicit function
HGCD(z, t), note that Eq. (12a) implies the following re-
lation, for any points za and zb on an energy shell E of
H(z, t):

HGCD(zb, t)−HGCD(za, t)

=

∫ b

a

ds [∂tH(z(s), t)− 〈∂tH〉E ] ,
(15)

where t is treated here as a parameter, and z(s) is a
trajectory of energy E that evolves with time s under
fixed H(z, t), from z(a) = za to z(b) = zb. This relation
determines HGCD(z, t) for all points on the energy shell
E, up to an additive constant whose value is in turn
determined by Eq. (12b). This additive constant can
depend on time, but it has no dynamical relevance.

Equation (12) thus provides an explicit recipe for con-
structing HGCD. For scale-invariant driving (see Eq. (8))
this recipe leads to the particularly simple expression [24]

HGCD(z, t) =
σ̇

σ
(x− µ)p + µ̇ p (16)

where the dots denote derivatives with respect to time.
In the special cases of the harmonic oscillator and the
particle-in-a-box, Eq. (16) reproduces results derived pre-
viously by other means [26, 31, 32].

For non-scale-invariant driving, it is difficult to obtain
closed-form expressions for HGCD, and one must resort
to solving Eq. (12) or (15) numerically. An exception is
the case of the “tilted piston”, which involves a particle
inside a one-dimensional box with hard walls separated
by a distance L, with a potential inside the box that is
linear in x, with slope α. Either L or α, or both, can be
made time-dependent. Even for this relatively modest
extension of the particle-in-a-box, the exact expression
for HGCD is complicated and non-linear in p [33].

Finally, although Eq. (12) uniquely defines HGCD,
Eq. (14) remains satisfied for a trajectory zG(t) evolving
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under H +HGCD + f(H), for any differentiable function
f(·). As a result, to construct a globally counterdiabatic
auxiliary Hamiltonian we need only satisfy Eq. (12a) and
not necessarily Eq. (12b) – imposing the latter (i.e. set-
ting f = 0) amounts to a kind of gauge choice. Analogous
comments apply in the quantum case to Eq. (11).

2. Local counterdiabatic driving

In the case of local counterdiabatic driving, we select
a value of action, Ii. For any t ∈ [0, tf], E(t, Ii) is the
energy shell of H(z, t) with the same action Ii; we refer
to this shell as the adiabatic energy shell for our choice
of Ii. This energy shell represents the desired evolution
we wish to generate: if a trajectory begins on the energy
shell E(0, Ii) at t = 0, we want to guarantee that it will
be found on the shell E(t, Ii) at all t ∈ [0, tf]. Unlike with
GCD, this goal can be accomplished with an auxiliary
Hamiltonian that is linear in momentum, p.

The LCD auxiliary Hamiltonian involves a function
v(x, t) that is constructed as follows. At time t, the shell
E(t, Ii) forms a loop in phase space, with left and right
turning points, xL(t) and xR(t). Let

p̄±(x, t) = ± [2m(E(t, Ii)− U(x, t))]
1/2

(17)

denote the upper and lower branches of this loop, and let

S(x, t) = 2

∫ x

xL(t)

dx′ p̄+(x′, t) (18)

denote the volume of phase space enclosed by E(t, Ii) be-
tween the left turning point and a vertical line located
at position x ∈ [xL, xR]. (To avoid confusion, we stress
that S is not Hamilton’s principal function, which ap-
pears in the Hamilton-Jacobi equation [23].) Since S
increases monotonically with x we can invert it, writing
x = x(S, t), with S ∈ [0, Ii]. We then define a velocity
field

v(x, t) =
∂

∂t
x(S, t) = − ∂S/∂t

∂S/∂x
(19)

using the cyclic identity of partial derivatives. From
Eq. (9) it follows that v(x, 0) = v(x, tf) = 0. The LCD
auxiliary Hamiltonian is then given by

HLCD(x, p, t) = pv(x, t). (20)

Adding HLCD to the original Hamiltonian H (as per
Eq. (7)) gives us

HSST(z, t) =
p2

2m
+ U(x, t) + pv(x, t) (21)

which generates the equations of motion

ẋ =
p

m
+ v(x, t) , ṗ = −∂U

∂x
− p∂v

∂x
(x, t). (22)

Under these equations, the action is conserved exactly for
any trajectory zL(t) (where L is short for LCD) launched
from the initial adiabatic energy shell [34]. That is,

zL(t) ∈ E(t, Ii) (23)

for all t ∈ [0, tf]. For such a trajectory, the first terms
appearing on the right in Eq. (22) generate motion along
the instantaneous energy shell, while the second terms
(involving v) force the trajectory to remain attached to
the evolving energy shell.

For scale-invariant driving, Eq. (19) gives

v(x, t) =
σ̇

σ
(x− µ) + µ̇ (24)

As mentioned shortly before Eq. (8), in this special case
the GCD (Eq. (12)) and LCD (Eq. (20)) prescriptions
yield the same auxiliary Hamiltonian, Eq. (16).

3. Fast-forward driving

Having defined v(x, t) above, it is straightforward to
construct the FF auxiliary potential UFF(x, t). We first
introduce an acceleration field

a(x, t) =
∂v

∂x
v +

∂v

∂t
=

∂2

∂t2
x(S, t). (25)

UFF is then defined, up to an arbitrary function of time,
by

− ∂UFF

∂x
= ma(x, t). (26)

Adding UFF to H gives

HSST(z, t) =
p2

2m
+ U(x, t) + UFF(x, t) (27)

which generates the equations of motion

ẋ =
p

m
, ṗ = −∂U

∂x
+ma(x, t). (28)

If two trajectories are launched from identical initial con-
ditions on the energy shell E(0, Ii), and one of them,
zL(t), evolves under Eq. (22), while the other, zF (t),
evolves under Eq. (28) (where F is short for FF ), then
the two are related by [34]

xF (t) = xL(t) , pF (t) = pL(t) +mv(xL(t), t) . (29)

The two trajectories reunite at t = tf, as v(x, tf) = 0.
Thus the fast-forward trajectory zF (t) starts on the en-
ergy shell E(0, Ii) at t = 0, then strays from E(t, Ii) at
intermediate times, but ultimately arrives at the final
adiabatic energy shell:

zF (tf) = zL(tf) ∈ E(tf, Ii) (30)
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In Sec. 2.5 of Ref. [28], the close relationship between
LCD and FF driving is described in terms of canoni-
cal gauge transformations that map Hamiltonians of the
form given by Eq. (21) into those given by Eq. (27). A
similar approach was used in Ref. [24], and analogous
unitary transformations were earlier introduced in the
quantum context in Ref. [35].

For scale-invariant driving, Eqs. (24) - (26) lead to the
following fast-forward potential [24]:

UFF(x, t) = −m
2

σ̈

σ
(x− µ)2 −mµ̈x. (31)

For the special cases of the harmonic oscillator and
particle-in-a-box, equivalent results were obtained using
an inverse engineering approach, in Refs. [36, 37].

Let us focus briefly on the harmonic oscillator, for
which the original Hamiltonian is given by

H(z, t) =
p2

2m
+
m

2
ω2(t)x2, (32)

with ω̇(0) = ω̈(0) = ω̇(tf) = ω̈(tf) = 0. The potential
U(x, t) in Eq. (32) can be cast into scale-invariant form
(see Eq. (8)) by setting U0(x) = mx2/2, σ = ω−1/2 and
µ = 0. Using Eq. (31), we can then combine U and UFF

into a single quadratic potential (see Eq. (27)):

HSST(z, t) =
p2

2m
+
m

2
Ω2(t)x2 (33)

with

Ω2 = ω2 − 3

4

ω̇2

ω2
+

1

2

ω̈

ω
. (34)

Rewriting the right side of Eq. (34) in terms of σ rather
than ω, and re-ordering terms, we get

σ̈ + Ω2σ = σ−3 . (35)

This is the Ermakov equation, which was used in Ref. [36]
as the starting point for designing a SST protocol for the
harmonic oscillator. When Ω is constant, this equation
admits a simple solution, since σ2 follows a harmonic
oscillator equation, see Eq. (52) below.

4. Boundary conditions in time

To this point, we have assumed that the time-
dependence of U is turned on and off smoothly; see
Eq. (9). For GCD and LCD driving this assumption is
unnecessary: as long as U is once-differentiable with re-
spect to time, the results described in Secs. II B 1 and
II B 2 remain valid. A discontinuity in ∂tU at t = 0
or t = tf merely implies that Haux is turned on or off
abruptly.

With FF driving the situation is subtler. If ∂tU is dis-
continuous at t = 0, then so is the velocity field v(x, t),

hence the acceleration field a(x, t) (Eq. (25)) is unde-
fined. In this situation, the classical fast-forward method
of Sec. II B 3 can be salvaged if we apply the following
impulsive potential at t = 0:

Uimp(x, t) = −mδ(t)

∫ x

dx′ v(x′, 0+). (36)

(The choice of the lower limit of integration is arbitrary.)
This potential causes a trajectory with initial phase space
conditions (x, p) at t = 0− to jump suddenly to (x, p +
mv(x, 0+)) at t = 0+. If ∂tU is discontinuous at t = tf,
then another impulse is required:

Uimp(x, t) = +mδ(t− tf)
∫ x

dx′ v(x′, t−f ). (37)

Once these impulses are included, the FF driving works
as described in Sec. II B 3. In particular all points located
on the initial energy shell E(0, Ii) at t = 0− evolve to
points on the final energy shell E(tf, Ii) at t = t+f . [208]

For an illustration of the effects of such impulses in
the context of the particle-in-a-box under fast-forward
driving, see Sec. III.A of Ref. [24].

5. Beyond one degree of freedom

It is natural to ask whether the classical GCD, LCD
and FF recipes discussed above can be generalized to
systems with n > 1 degrees of freedom. This question
has largely remained unexamined in the literature.

When n > 1, the definition of the adiabatic invariant
itself depends on the dynamics generated by the system
Hamiltonian H(x,p, t). If the dynamics are integrable at
all values of t, then the phase space coordinates can be
written in terms of action-angle variables (I,w), and the
action variables (I1, · · · In) are adiabatic invariants [23].
It is plausible that the methods described above could
be applied to construct a separate auxiliary Hamiltonian
Hk

aux for each action-angle pair (Ik, wk), such that evo-
lution under H +

∑
kH

k
aux would preserve the value of

each invariant.
If the dynamics are ergodic over the energy shell at all

values of t, then the phase space volume

Ω(E, t) =

∫
dnx

∫
dnp θ [E −H(x,p, t)] (38)

is the sole adiabatic invariant [38–45]. In the special case
when the ergodic Hamiltonians H(x,p, t), with t ∈ [0, tf],
constitute a canonical family [209], the n-dimensional
analogue of Eq. (12) is known to have a solution [46],
suggesting that HGCD can be constructed for canonical
families of ergodic Hamiltonians. However, it is not clear
how to extend this approach to the typical situation in
which H(x,p, t) is not a canonical family.

Finally, integrable and ergodic Hamiltonians are them-
selves somewhat special: a generic classical Hamiltonian
in n > 1 degrees of freedom has a mixed phase space,
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with some trajectories evolving regularly and others ir-
regularly (chaotically) [47]. Adiabatic invariants for such
systems are not as unambiguously defined as for inte-
grable or ergodic Hamiltonians, hence the very notion
of what constitutes a shortcut to adiabaticity becomes
murky.

C. Classical shortcuts and microcanonical
ensembles

The discussion in Sec. II B focused on the evolution of
individual trajectories (Eqs. (14), (23), (30)). It is also
useful to analyze this problem at the statistical level.

In this section, we consider a microcanonical ensemble
of initial conditions on the energy shell E(0, Ii). This en-
semble can be understood as a probability density that is
distributed over the loop Li shown in Fig. 2(a). Specif-
ically, if we use the angle w ∈ [0, 2π) of action-angle
variables (I, w) [23] to label points around the loop, then
the microcanonical distribution is uniform in w. We em-
phasize that the microcanonical distribution represents a
particular choice of initial conditions for the ensemble; it
does not arise from coupling with a thermal bath. We
now describe what happens to this ensemble, as trajec-
tories evolve from these initial conditions under global
counterdiabatic, local counterdiabatic, and fast-forward
dynamics.

In the GCD case, the ensemble of trajectories clings to
the adiabatic energy shell E(t, Ii) during the process, as
the action is preserved (Eq. (14)). Moreover the ensemble
remains microcanonical at all times: for any t ∈ [0, tf],
a snapshot of the ensemble of trajectories would show
them to be distributed uniformly, with respect to the
angle variable w, on the adiabatic energy shell.

For LCD driving, the ensemble of trajectories also
clings to the adiabatic energy shell (Eq. (23)) only now
the distribution does not necessarily remain microcanon-
ical. In particular, a snapshot at t = tf would reveal
a collection of final conditions that are distributed non-
uniformly with respect to w – see Fig. 3c of Ref. [34] for
an illustration.

The result that GCD driving preserves the micro-
canonical distribution while LCD driving (in general)
does not, can be traced back to the fact that in the for-
mer case the auxiliary Hamiltonian is the same for all Ii,
whereas in the latter case Haux generally depends on Ii,
as discussed in Ref. [34], Appendix D.

For FF driving, the trajectories depart from the adi-
abatic energy shell at intermediate times but return to
that shell at the final time. From Eq. (30) it follows
that the final conditions are generally distributed non-
uniformly (i.e. non-microcanonically), as they coincide
with the final conditions achieved under LCD driving.

At intermediate times the LCD and FF phase space
distributions differ. However, the projections of these
distributions onto the x-axis are identical, by Eq. (29).
An analogous situation holds in the quantum case: the

LCD and FF wavefunctions differ for t ∈ (0, tf), but their
x-space probability distributions coincide, |ψFF (x, t)|2 =
|ψLCD(x, t)|2 = |〈x|n(t)〉|2.[210]

Under scale-invariant driving, GCD and LCD trajec-
tories are identical, as mentioned earlier. In this special
situation, all three flavors of shortcuts (GCD, LCD, FF)
map an initial microcanonical distribution to a final mi-
crocanonical distribution.

D. Shortcuts in classical kinetic theory

We now discuss a situation in which classical shortcuts
arise in the context of kinetic theory.

The discussion so far has focused on a single particle
in a one-dimensional potential, Eq. (1). The situation
becomes more complicated when dealing with N > 1
mutually interacting particles. Under appropriate condi-
tions, however, SST-inspired tools have found interesting
applications to many-body, interacting systems.

Ref. [48] considers a dilute gas of identical particles of
mass m, governed by the Boltzmann equation

∂f

∂t
+ v · ∇rf +

1

m
F (r, t) · ∇vf = Icoll[v|f, f ] (39)

where f(r,v, t) is the single-particle density, r and v
denote three-dimensional position and velocity, F =
−∇rU(r, t) is a conservative force, and Icoll is a term that
models the effect of two-body collisions. When Icoll = 0
we get the collisionless equation

∂tf + v · ∇rf +
F

m
· ∇vf = 0 , (40)

describing a gas of non-interacting particles. If the poten-
tial U is time-independent, then under Eq. (39) the gas
generically evolves to a canonical distribution, by Bolt-
mann’s H theorem [49, 50]. However, Boltzmann realized
already in the 1870’s that when U ∝ r2 (with r = |r|),
oscillatory “breathing mode” solutions of Eq. (39) also
exist.

It is known that Icoll = 0 when f has the form

f(r,v, t) = exp
(
−α− ηv2 − γ · v

)
(41)

where α, η and γ are arbitrary functions of position
and time [48]. In other words the distribution f given
by Eq. (41) belongs to the kernel of I. Thus any solu-
tion of the collisionless equation (Eq. (40)) that has the
form given by Eq. (41), is also a solution of the Boltz-
mann equation (Eq. (39)). Building on this insight, the
authors of Ref. [48] discovered novel exact solutions of
the Boltzmann equation. In particular, they constructed
time-dependent potentials of the form

U(r, t) =
m

2
ω2(t)r2 +

b

r2
, (42)

with appropriately engineered ω(t), that rapidly steer the
dilute gas from an initial canonical distribution at tem-
perature Ti, to a final canonical distribution at temper-
ature Tf, under the assumption that the evolution of the
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gas is accurately described by the Boltzmann equation.
Here, b ≥ 0 should be time independent.

We now extend these results to include scale-invariant
potentials as well as time-periodic driving. Consider the
time-dependent, spherically symmetric potential

U(r, t) =
1

σ2
U0

( r
σ

)
+

b

r2
, (43)

where σ(t) > 0 is a twice-differentiable function of time,
and b ≥ 0 is a constant. Next, let β(0) > 0 denote an
inverse temperature, and define

β(t) =
σ2(t)

σ2(0)
β(0) , v̄(r,v, t) = v − σ̇(t)

σ(t)
r (44)

and

U(r, t) = U(r, t)− m

2

σ̈(t)

σ(t)
r2 (45)

(compare with Eqs. (24), (31)). We claim that the time-
dependent distribution

f(r,v, t) =
1

Z0
e−β(t)[mv̄2/2+U(r,t)] (46)

is an exact solution of the Boltzmann equation (Eq. (39)),
when the force F (r, t) is obtained from the potential
given by Eq. (45) [211].

To establish this claim, note that Eq. (46) has the form
given by Eq. (41), therefore Icoll = 0. Also, it follows
from direct substitution that Eq. (46) satisfies the colli-
sionless equation, Eq. (40). Thus Eq. (46) solves Eq. (39)
exactly.

We can extend these results further by replacing
Eq. (43) with

U(r, t) =
1

σ2

3∑
j=1

U0j

(xj
σ

)
+ Uh(x1, x2, x3) (47)

where the xj ’s are the Cartesian components of r, the
U0j ’s are three (generally unrelated) potential functions,
and Uh is a homogeneous function of degree -2:

Uh(x1, x2, x3) =
1

(x1x2x3)2/3
ψ

(
x1

x2
,
x1

x3

)
, (48)

where ψ is an arbitrary function. This form for Uh in-
cludes a wide range of potentials, including as special
cases b/r2 (see Eq. (43)) and a1/x

2
1 +a2/x

2
2 +a3/x

2
3. The

potential Uh should bear no explicit time dependence,
unlike U , which depends explicitly on time through σ. If
we again define U(r, t) = U − mσ̈r2/2σ (see Eq. (45)),
then f(r,v, t) given by Eq. (46) remains an exact solu-
tion of the Boltzmann equation (39). This result can be
established as in the previous paragraph.

If we set U0(x) = U0j(x) = κx2/2, for some fixed
κ > 0 and for j = 1, 2, 3, and Uh = b/r2 for some
b ≥ 0, then Eqs. (43) and (47) describe the same po-
tential, and U(r, t) has the form given by Eq. (42). If

U0j(x) = κjx
2/2 for different fixed values κ1, κ2, κ3 > 0,

and Uh = 0, then U(r, t) is an anisotropic harmonic po-
tential of the form considered in Ref. [51], where ex-
act solutions of the Boltzmann equation were derived
for such potentials. Note that, in general, even if the
three U0j ’s are identical functions, the resulting poten-

tial U(r, t) (Eq. (47)) is not spherically symmetric.
We can use these results to design a protocol for driv-

ing the gas from a canonical distribution at initial in-
verse temperature β(0)−1 to a canonical distribution at
final inverse temperature β(tf)

−1, in an arbitrary, finite
time tf. To do this, we simply choose σ(t) to satisfy the
boundary conditions σ̇ = σ̈ = 0 at t = 0 and t = tf, and

σ(tf)/σ(0) =
√
β(tf)/β(0) . (49)

This protocol can be used with either of the poten-
tial forms given by Eqs. (45) or (47). In the isotropic
and anisotropic harmonic cases discussed in the previous
paragraph, these protocols reduce to the ones obtained
in Refs. [48] and [51], respectively.

Alternatively, we can design a driven breathing mode
of the Boltzmann equation by choosing the protocol

σ(t) = σ̄ + ∆σ cos2(ωt) , 0 < ∆σ < σ̄ (50)

again using either Eq. (45) or Eq. (47). The exact solu-
tion given by Eq. (46) then oscillates periodically in time,
with frequency 2ω.

Finally, let us consider how the above results relate to
the undriven breathing modes discovered by Boltzmann
[48]. In Eq. (43), take U0(x) = mx2/2 and b = 0 so that
U(r, t) becomes a spherically symmetric harmonic oscil-
lator with a time-dependent stiffness σ−4(t). By Eq. (45)
this choice leads to the total potential

U(r, t) =
m

2

(
1

σ4
− σ̈

σ

)
r2 ≡ m

2
Ω2(t)r2 . (51)

Note that the relationship between σ and Ω here is de-
scribed by the Ermakov equation (35). If we now take
Ω(t) to be constant rather than time-dependent, and we
solve for σ(t) (see Eq. (52) below), then Eq. (46) becomes
a time-periodic solution of the Boltzmann equation for
a dilute gas in a fixed harmonic potential U(r, t) =
mΩ2r2/2. This class of solutions coincides with Boltz-
mann’s breathing modes. A related question pertains to
the type of static confining potential for which a breath-
ing solution can exist. It is addressed in Appendix C.

When Ω is constant, the general solution of the Er-
makov equation (35) is given by

σ(t) =

[
τ −

√
τ2 − 1

Ω2
cos(2Ωt+ φ)

]1/2

(52)

where φ and τ ≥ 1/Ω are constants. Substituting this re-
sult into Eq. (44) for β(t) reveals that the effective inverse
temperature β(t) oscillates harmonically with frequency



11

2Ω. Moreover, taking the first three derivatives of β(t)
with respect to time, we straightforwardly obtain

...
β (t) + 4Ω2β̇(t) = 0 (53)

which is equivalent (for static Ω) to Eq. (9b) of Ref. [48].

E. Relations to quantum shortcuts to adiabaticity

The classical shortcuts described above have quantum
counterparts as we now briefly discuss.

We have already seen this correspondence in the
global counterdiabatic case: just as the classical term
HGCD(z, t) defined by Eq. (12) generates the desired
shortcut for any choice of initial energy shell (Eq. (14)),

so too its quantum counterpart ĤGCD(t) given by
Eq. (11) generates the desired shortcut for any energy
eigenstate [11, 13].

For local counterdiabatic driving, the auxiliary term
HLCD = pv(x, t) is designed for a specific choice of initial
energy shell, as discussed in Sec. II B 2. In the quantum
case, let us instead choose an initial energy eigenstate
|n(0)〉 and construct the cumulative distribution

F(x, t) =

∫ x

−∞
dx′ |φn(x′, t)|2 , φn(x, t) ≡ 〈x|n(t)〉.

(54)
Now define a velocity field v(x, t) in a manner analogous
to Eq. (19), but with F(x, t) playing the role of S(x, t):

v(x, t) = − ∂tF
∂xF

. (55)

Using this field we construct a quantum auxiliary term

ĤLCD(t) =
p̂v̂ + v̂p̂

2
, v̂ ≡ v(x̂, t) (56)

(compare with Eq. (20)). If the system begins in the

state |n(0)〉 and then evolves under Ĥ(t) + ĤLCD(t), it
will remain in the instantaneous eigenstate |n(t)〉 (up to
an overall time-dependent phase) for all t ∈ [0, tf] [16].

Using the velocity field v(x, t) given by Eq. (55), we
next construct an acceleration field a(x, t) = v∂xv + ∂tv
and a corresponding fast-forward potential UFF(x, t) via
−∂xUFF = ma (see Eqs. (25) and (26)). If the sys-

tem evolves under Ĥ(t) + ÛFF(x, t), from an initial state
|n(0)〉, then at the final time t = tf it will arrive at the
eigenstate |n(tf)〉 (up to a phase), though at intermedi-
ate times it generally will not be in the state |n(t)〉 [16].
The potential UFF(x, t) obtained in this manner – using
F rather than S to construct v – is equivalent to the
fast-forward potential originally derived by Masuda and
Nakamura [14] and further studied in Refs. [15, 52, 53].

It is interesting to note that both quantum and classi-
cal auxiliary terms are constructed using a velocity field
determined from a cumulative function, either F(x, t) or
S(x, t). As we shall see later, this pattern applies as well

to stochastic shortcuts to adiabaticity, where the cumu-
lative function F(x, t) is given in terms of a canonical
probability distribution.

The discussion in the previous three paragraphs re-
quires a rather strong caveat. For excited states n > 0,
the field v(x, t) given by Eq. (55) generically diverges
at the nodes of the eigenstate, i.e. where φn(x, t) = 0,

leading to ill-behaved auxiliary terms ĤLCD and ÛFF.
Thus in general the quantum LCD and FF approaches
described above are limited to ground states n = 0, which
have no nodes; scale-invariant systems are an exception
to this statement [24].

Ref. [54] develops a semiclassical fast-forward approach
that avoids the problem posed by the nodes of φn(x). In
this approach, the fields v and a are constructed using
S (Eq. (19)) rather than F (Eq. (55)). The resulting

auxiliary term ÛFF is well-behaved, but no longer guides
the wavefunction exactly to the desired final state |n(tf)〉.
Instead it provides an approximate shortcut that is ex-
pected to work well in the semiclassical regime of large
n. Numerical simulations support this expectation [54].

III. SHORTCUTS FOR CLASSICAL SYSTEMS
IN CONTACT WITH A THERMAL BATH

In the previous section, we have obtained finite-time
protocols for driving an isolated system, with the same
final state as with an infinitely long driving. In the re-
mainder, our interest goes to systems that are (strongly)
coupled to an environment; the systems we have in mind
are epitomized by a Brownian object such as a colloid
in a fluid. The latter plays the role of a thermal bath
[55], and necessitates a stochastic/probabilistic descrip-
tion, a new feature compared to the treatment in section
II. This goes with a point-of-view-change, from single
trajectories to probability distributions. From an exper-
imental perspective, two routes can be proposed, where
the question, formulated in a probabilistic fashion, be-
comes meaningful. a) One may be interested in repeti-
tions of an experiment involving a Brownian object, such
as a macromolecule, or a nano device; statistics is then
gathered by automatizing the protocol, as e.g. in [56]
or [57]; b) A single experiment can allow for measuring
a distribution function, provided it involves a collection
of Brownian objects, manipulated simultaneously. When
they do not interact, or when interactions are weak such
as in a low density colloidal system, routes a) and b) are
equivalent.

In a nutshell, what we now aim at suitably driving
with an external force is a probability density, which shall
be denoted ρ(x, t): What should the drive be to evolve
the system from an initial density ρ(x, ti) at time ti to
a target distribution ρ(x, tf) at time tf? Such a question
of fast driving a system from a given equilibrium state
to another appeared under different names in the litera-
ture: Engineered Swift Equilibration [17] [212], or Short-
cuts to Isothermality [18, 58]. It has been investigated
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experimentally for small systems (e.g. colloids [17] and
AFM tips [59]) in contact with a thermostat. There, one
searches for the proper variation of the control parame-
ters to ensure a transfer from the initial state at time ti
to the desired final state at time tf.

A. Inverse Engineering

A method that often proves efficient in practice is the
commonly-called inverse engineering technique. This ap-
proach has been successfully applied to ordinary differ-
ential equations in classical and quantum physics [7]. If
we denote by X the dynamical variables (state vector of
size n × 1), the control problem is encapsulated in a set
of coupled differential equations

Ẋ = f(X,λ(t)). (57)

There is no general statement for the reachability of the
desired state under the driving provided by the control
vector λ(t) of size r×1 except when f is a linear function
with time-invariant coefficients, for which the Kalman
rank condition applies [19, 60] [213]. When the desired
state belongs to the reachable set of solutions, there exists
a wide variety of possible protocols to reach the final
state.

The inverse engineering method provides a convenient
way to find out a proper driving. It amounts to impose
the evolution of the dynamical variable X and to infer
from Eq. (57), the expression for λ(t). However, this
inverse use of the differential equation that governs the
dynamics is not always easy to handle. The mathemati-
cal property which allows for such an inverse use of the
dynamical (including nonlinear) equations is known as
the flatness property, and can be considered as an exten-
sion of the Kalman’s controllability criterion [61]. This
strategy has been successfully used to transport a par-
ticle in a moving harmonic potential, both in classical
and quantum physics [62–64], or to shuttle the particle,
i.e. to set a given velocity to the particle—see [65] and
references therein.

For a system in contact with a thermal bath, the dy-
namical variables obey stochastic differential equations
(Langevin-like) that cannot be directly written as a set
of continuous equations such as that of Eqs. (57). For
Brownian motion, this difficulty has been circumvented
in two steps. First, as emphasized above, the discussion
is made not on the individual trajectories but on the den-
sity distribution that obeys the Smoluchowski, or Fokker-
Planck (FP), equation (see Appendix B for a crash re-
capitulation of the essential aspects of the Langevin and
frameworks for stochastic processes). Second, an ansatz
depending on a set of a few effective dynamical variables,
such as the moments of the PDF, is usually proposed to
get a finite set of equations in the form of Eqs. (57). The
coupled equations on the moments can be alternatively
derived from the Langevin equation.

Consider the overdamped motion of a bead of micron
size immersed in a fluid and trapped by a general con-
fining potential U(x, t). The density ρ(x, t) obeys the
overdamped —or Smoluchowski—equation

γ∂tρ(x, t) = ∂x [∂xU(x, t)ρ(x, t)] + β−1∂2
xρ(x, t), (58)

where γ is the friction coefficient and β = (kBT )−1 refers
to the inverse of the temperature, kB being Boltzmann’s
constant—see Appendix B for a detailed discussion of
the stochastic dynamics framework. Particular attention
has been paid to the harmonic potential, which models
paradigmatic systems such as optical tweezers. Equation
(58) then becomes

γ∂tρ(x, t) = ∂x [κxρ(x, t)] + β−1∂2
xρ(x, t). (59)

In the harmonic problem, the control (time-dependent)
parameters are a priori the temperature T (see section
III D) and the stiffness κ of the potential. Here, the
statistics of the bead’s position remains Gaussian if it
is initially, with a standard deviation σ(t) that plays the
role of an effective dynamical variable and obeys

σ̇ = −κ(t)

γ
σ +

kBT

γ

1

σ
. (60)

For both time-independent temperature and stiffness, the
system approaches the canonical equilibrium distribu-
tion, for which the variance of the position is

σ2
eq =

kBT

κ
, (61)

i.e. the equilibrium equation of state.
Let us assume for instance that the temperature is

constant and we vary the stiffness of the trap. The
initial state corresponds to thermal equilibrium state
with the initial stiffness κi = κ(ti). The objective is to
reach the equilibrium state with the desired final value of
κf = κ(tf) in a chosen amount of time tf. Those bound-
aries conditions define the values σi = (kBT/κi)

1/2 and
σf = (kBT/κf)

1/2 at initial and final time. The inverse
engineering technique involves the choice of an interpola-
tion function σ(t) between those two values, and to sub-
sequently infer the time-dependent stiffness κ(t) to be
applied, directly from Eq. (60), since both σ and σ̇ are
then known. For the very same problem in the under-
damped regime, one shall solve the Kramers equation for
the phase space distribution. In this latter case, the ef-
fective dynamical system boils down to a set of 3 coupled
linear equations for the time evolution of the 3 moments
〈x2〉, 〈v2〉, and 〈xv〉. As a result, the strategy to extract
κ(t) is slightly more involved [66].

The inverse engineering method applied here is spe-
cific to the manipulation of Gaussian states. As already
commented, a remarkable property is that such an initial
condition, under time-dependent harmonic forcing, re-
mains Gaussian at all times, and thus preserves its shape
[214]. Yet, while it is difficult to compute analytically the
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potential required to connect two arbitrary non-Gaussian
states, it turns out that if both have the same shape, a
simple solution can be found, therefore generalizing the
aforementioned Gaussian result. We here impose the fol-
lowing shape for the PDF ρ(x, t):

ρ(x, t) =
1

σ(t)Zi
exp

[
−βUi

(
x− µ(t)

σ(t)

)]
, (62)

with µ(t) and σ(t) continuous real functions, such that
µ(ti) = 0 and σ(ti) = 1, which accounts for shifting and
re-scaling the space dependence. Note that, although we
used similar ideas in the scale-invariant protocols intro-
duced in Eq. (8)—justifying the same notation for the
parameters, processes preserving the shape are different
from those scale-invariant protocols [215]. The quantity
Zi =

∫
D dx e

−βUi(x) is the partition function that guaran-
tees the correct normalization of the distribution. Such
distributions only connect states that belong to the same
family of potentials, whatever this family is. The final
potential then reads [67]

Uf(x) = Ui

[
x− µ(tf)

σ(tf)

]
. (63)

The time-dependent driving potential required to ensure
the shape preservation is found by introducing the ansatz
(62) into the equation. One finds [67]

U(x, t) = Ui

[
x− µ(t)

σ(t)

]
− γ 2µ̇(t)σ(t)[x− µ(t)] + [x− µ(t)]2σ̇(t)

2σ(t)
. (64)

Such a driving potential involves two different contri-
butions: the shape-bearing potential itself and an addi-
tional harmonic potential, whose stiffness and center are
determined by certain combinations of the shift and scal-
ing functions µ(t) and σ(t). The extra time-dependent
harmonic potential is nothing but the counterdiabatic
term, to be discussed further below. To enforce the
smoothness of the potential, one can add the following
extra conditions on the parameters at initial and final
time: µ̇(ti) = µ̇(tf) = 0 and σ̇(ti) = σ̇(tf) = 0.

Inverse engineering techniques have also been em-
ployed to address the underdamped situation [66].
The authors worked out eligible conservative, velocity-
independent, drivings U(x, t). However, the problem be-
comes involved and limitations appear, presumably in-
herent to the functional forms chosen for constructing
explicit solutions.

Related in spirit to inverse engineering are stochastic
methods that generate Brownian paths conditioned to
start and end at prescribed (ensemble of) points [68]. The
conditioning, that endows these paths with precise statis-
tical properties, can be of various types: a bridge, mean-
ing a path that starts at some xi at t = ti, and ends at
a given xf at t = tf; an excursion, meaning a bridge with
xf = xi that is furthermore constrained to lie at all times

to the right of xi, etc. These methods can be used to
generate computationally the constrained paths in an ef-
ficient manner; a naive variant would amount to pruning
an ensemble of unconstrained paths, keeping only those
trajectories that fulfil the imposed constraints, a highly
inefficient way of proceeding. For overdamped Langevin
dynamics, it was shown on general grounds that irrespec-
tive of xi, addition of an external harmonic force centered
at xf and with stiffness γ/(tf− t), which thus diverges for
t→ tf, generates a bona fide bridge [68]. More generally,
as might be anticipated from the previous example, the
gist of the approach is to add a time-dependent entropic
potential of the form −2kBT logQ(x, t); Q, encoding the
constraints considered (such as remaining in the allowed
half-space for an excursion), is the probability density to
be at xf at time tf, having started at point x at time
t < tf [68, 69]:

Q(x, t) ≡ P (xf, tf|x, t). (65)

While this result can be obtained by inverse engineering,
it should be stressed that it does feature an important
difference with short-cutting ideas discussed here, in the
sense that there does not exist an infinitely slow process
that is being accelerated in some form. Note that Q
introduced above fulfills the backwards equation, and is
as such intimately related to first passage problems [70].

B. Counterdiabatic method

In this section, we extend the counterdiabatic method
(see Secs. I and II) to systems in contact with a thermal
bath. As above, we model the evolution of such sys-
tems with overdamped Langevin dynamics at the single-
trajectory level, and with the FP equation at the ensem-
ble level, and we restrict ourselves to systems with a sin-
gle degree of freedom, x. Because momentum is ignored
in the overdamped limit, we will use the generic notation
U(x) rather than H(x, p) to denote the system’s energy
function. This potential, used to drive the system, can
be viewed as a Hamiltonian.

In the isolated quantum and classical cases described in
Secs. I and II, counterdiabatic driving aims to preserve an
adiabatic invariant under rapid driving. In the present
context the role of the adiabatic invariant is played by
the functional form of the probability distribution func-
tion (PDF), ρ(x, t). Specifically, when the potential U is
driven very slowly, its PDF evolves through a continuous
sequence of equilibrium states ρeq(x, t),

ρeq(x, t) = eβ[F (t)−U(x,t)],

F (t) = −β−1 ln

[∫
dx e−βU(x,t)

]
. (66)

In the counterdiabatic method we seek to construct a
term UCD(x, t) such that under the full driving potential
USST = U + UCD, the system evolves through the same
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equilibrium states ρeq(x, t), even when the time depen-
dence of U(x, t) is not slow.

Note that, although the fine details may be different,
the idea behind the counterdiabatic method could be
cast under the umbrella of inverse engineering techniques.
That is, we want to find an auxiliary HCD that enforces
the conservation of the adiabatic invariant. The sepa-
ration into categories of the techniques analyzed in this
review has to be understood as a choice made more by
pedagogical purposes than by a rigorous categorization.

Consider an overdamped Brownian particle whose sta-
tistical state ρ(x, t) obeys the FP equation (58)—see Ap-
pendix B for details—with the potential USST(x, t) =
U(x, t) + UCD(x, t). The instantaneous equilibrium dis-
tribution associated with U , ρeq given by Eq. (66), plays
the role of adiabatic invariant. In other words, we aim
to steer the system so that the equilibrium PDF of the
unperturbed potential U(x, t) is maintained throughout
the process.

When U(x, t) varies at finite rate, UCD 6= 0 is needed
to preserve the prescribed evolution ρeq. Specifically, the
counterdiabatic term escorting the adiabatic evolution is
given by [18]

− ∂xUCD(x, t) = −γ
∫ x

dx′∂tρeq(x
′, t)

ρeq(x, t)
. (67)

This expression can be derived from the cumulative dis-
tribution

F(x, t) =

∫ x

−∞
dx′ρ(x′, t) (68)

and its velocity field

v(x, t) = ∂tx(F , t) = − ∂tF(x, t)

∂xF(x, t)
, (69)

where x(F , t) is the function obtained by inverting
F(x, t) for fixed t. Specifically, using the velocity field,
we obtain

− ∂xUCD(x, t) = γv(x, t). (70)

This approach is particularly appealing since it has been
shown to be useful as a unified procedure to derive coun-
terdiabatic terms in quantum, classical and thermal sys-
tems [16]—as in Eqs. (19) and (20).

The counterdiabatic force given in Eq. (67) allows to
recover the inverse engineering results derived for shape
preserving potentials in section III A. Indeed, injecting
relation (62) into (67) (with ρ playing the role of ρeq)
yields, rather unexpectedly, a counterdiabatic force that
does not depend on U and thus holds irrespective of the
functional form chosen for the PDF [67], provided this
form is conserved (and is thus a preserved “adiabatic in-
variant”):

∂xUCD(x, t) = −γ µ̇(t)σ(t) + [x− µ(t)]σ̇(t)

σ(t)
, (71)

which is consistent with the potential given in Eq. (64),
remembering USST = U + UCD.

The counterdiabatic method has been also employed
in the underdamped situation [18, 71, 72]. At variance
with the conservative drivings U(x, t) derived with the
inverse engineering technique [66], the counterdiabatic
potential contains a term depending on the momentum
of the particle. This entails serious difficulties for the
experimental implementation of such a counterdiabatic
driving. Finally, we present in appendix F a derivation
of the work fluctuation relation [73] from counterdiabatic
type of arguments.

C. Fast-forward

Now, let us consider another strategy for the swift con-
nection of equilibrium states: the so-called fast-forward
procedure. In the quantum case [14, 74], fast-forward
refers to a protocol that makes it possible to reach a de-
sired final state, independently of the path swept to do
so. For the isolated classical systems analysed in Sec. II
of this review, fast-forward has been employed in a simi-
lar sense. Therein, the fast-forward protocol led the sys-
tem to the target state, with the same value of the adia-
batic invariant as the initial state, by adding a velocity-
independent potential UFF (x, t). The price of such a pro-
cedure was the adiabatic invariant no longer preserved
at intermediate times. Derivation of fast-forward proto-
cols are unified in both quantum and classical mechanics
by using the acceleration flow field [16], as discussed in
Sec. II B 3.

Here, we consider the extension of the fast-forward idea
to the context of systems with stochastic dynamics, again
described by the overdamped FP equation (58). In con-
trast to the counterdiabatic driving just described, there
is no underlying adiabatic transformation over which the
shortcut is built. The idea is the following: one considers
a certain reference process—not necessarily slow—that
connects two given states and then searches for a tailor-
made external potential that accelerates this reference
process [67]. In this way, the “frames” of the “movie” are
fixed, given by the reference process, but are played at
a higher rate in the fast-forward protocol. As explained
below, the same idea allows for reproducing the frames
at a lower rate (slow-forward) or even play the movie
backwards, at a higher or a lower rate (fast-backward or
slow-backward, respectively)—somehow generalizing the
shortcuts described in this review.

Going into specifics, and following Ref. [67], we con-
sider a reference solution ρr(x, t) of Eq. (58) under a
reference potential Ur(x, t). Then, we introduce a time
distortion Λ(t) of the reference, i.e., ρ(x, t) = ρr(x,Λ(t)),
and look for the potential U(x, t) required to drive the
evolution following the given prescription ρr(x,Λ(t)). It
is important to remark that, at variance with the clas-
sical case, the connecting path is fixed and given by
ρr(x,Λ(t)).
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The FP equation (58) is rewritten as a continuity equa-
tion

∂tρ = −∂x (ρv) , (72a)

v(x, t) = −γ−1
[
∂xU(x, t) + β−1∂x ln ρ(x, t)

]
(72b)

where v(x, t) is a velocity field [216]. The derivation of
the fast-forward protocol is based on the relation between
the velocity fields in the reference and the manipulated
process,

v(x, t) = Λ̇(t)vr(x,Λ(t)). (73)

Hence, the driving potential can be solved. For the sake
of clarity, we display the solution for the auxiliary poten-
tial,

−∂xUFF (x, t) =[1− Λ̇(t)]

× [∂xUr(x,Λ(t)) + β−1∂x ln ρr(x,Λ(t))].
(74)

The total driving potential is U(x, t) = Ur(x,Λ(t)) +
UFF (x, t). The solution is given in terms of the refer-
ence process and the time map Λ(t). As expected, when
the reference and manipulated dynamics coincide, i.e.,
Λ(t) = t, one simply has ∂xU(x, t) = ∂xUr(x, t) or, equiv-
alently, ∂xUFF (x, t) = 0.

This type of driving not only allows for acceleration
(Λ̇ > 1) but also for deceleration (0 < Λ̇ < 1) and even

for the inversion of time’s arrow (Λ̇ < 0, meaning that the
reference dynamics can be “played backwards”). Com-
bining simple reference processes, it is possible to build
up an operational welding protocol that connects arbi-
trary states [67]. Specifically, one can produce a welding
connection between an initial state ρi(x) and the target
state ρf(x) through an intermediate state ρint(x), dis-
torting two consecutive reference processes. This con-
struction relies on the acceleration of a first reference
relaxation process from ρi(x) to ρint(x); and accelerat-
ing and reversing a second relaxation process from ρf(x)
to ρint(x)—see Fig. 3. If one seeks an operating time tf
(with a starting time ti = 0), one can assign a time dura-
tion tf/2 for each of the two steps, but other choices are
possible.

Note that the counterdiabatic method could be under-
stood as a limit of the fast-forward protocol presented
above. Let us consider a reference process of duration tr
and take the limit tr →∞, so that the reference process
becomes quasistatic. Hence, the limit reference process
would sweep equilibrium states. In this way, the result-
ing limit of the fast-forward protocol would converge to
the counteradiabatic method.

D. Engineering the thermal environment

In previous developments, we addressed Brownian ob-
jects in some environment at thermal equilibrium, mean-
ing the temperature entering the Langevin and FP equa-
tions is fixed. For colloidal systems, the environment is

FIG. 3: Sketch of the welding strategy to connect two arbi-
trary distributions ρi and ρf. The connection is made in two
steps. In the first step, a reference process from ρi to ρint is
submitted to a fast-forward evolution. In the second step, a
reference process starting at ρf and finishing at ρint is time-
reversed and accelerated (fast backward). In doing so, one
achieves the desired connection in a chosen time.

usually water, and it may be difficult to impose a chosen
time dependence for its temperature, especially if a mas-
sive heating is sought [75]. Yet, it is possible to “fool”
the colloidal beads, subjecting them to a random forc-
ing that will emulate an effective temperature exceeding
several thousand kelvins [55, 75]. The method is quite ro-
bust, and essentially requires that the forcing frequency
be large compared to the bead inverse relaxation time. It
is then possible to finely control the time dependence of
the effective temperature, by playing on the amplitude
of the forcing, which opens new means for driving the
system [66], and paves the way towards the more general
goal of reservoir engineering.

Following this idea, a micrometric silica sphere has
been driven in [66] by the joint monitoring of a harmonic
trap stiffness (κ), and the point of zero force (x0). In
other words, the confining potential is of the form

U(x, t) =
1

2
κ(t) (x− x0(t))

2
, (75)

and the idea is to impose the proper time dependence
jointly on both κ and x0. Compared to the more usual
situation where x0 is fixed, a new contribution κ(t)x0(t)
arises in the force balance. It is important that a) x0

remain small compared to the bead size, in order not
to affect the effective stiffness and b) that the correlation
time of the signal x0(t) be small compared to the protocol
duration (itself by construction smaller than the intrinsic
relaxation time). Then, the forcing of x0 results in an ef-
fective heat bath for the colloidal degree of freedom: this
forcing has a time-dependent amplitude and, for practical
purposes, can be viewed as delta-correlated in time. In
Ref. [66], the control of x0 was achieved with an acousto-
optic deflector, and the bath engineering made it possible
to quickly deconfine a colloidal state. Should one be able
to play only on the stiffness κ(t), equivalent transfor-
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mations would require transiently expulsive forces with
κ < 0, which represent an experimental challenge [76, 77].
A limitation of the approach is that the extra stochas-
tic forcing applied results in enhanced Brownian fluctu-
ations, and in an effective temperature increase. Other
techniques would have to be applied when it comes to
cooling the center-of-mass motion of trapped beads, such
as feedback-based approaches [78].

Recently, the effective heating of optically trapped ob-
ject allowed to devise finite-time adiabatic processes [79].
Here, we stress that “adiabatic” is understood in its usual
thermodynamics meaning, of heat-exchange free [3]. A
Brownian object is inherently fluctuating, and strongly
coupled to its environment. Consider the compression
at fixed temperature T of a colloidal bead, where for in-
stance the stiffness κ of a harmonic potential is increased.
When the bead has relaxed, the internal energy differ-
ence ∆U vanishes on average between the initial and final
states, which have the same temperature. The first prin-
ciple of thermodynamics [6] states that, since the bead
received work from the confining force, heat flew towards
the bath, on average [4]. If one seeks a vanishing heat ex-
change on average, it is mandatory that the environment
temperature increase. In the quasi-static limit, this in-
crease has to be proportional to

√
κ. This can be seen as

a consequence of Laplace relation between temperature
T and volume V for the adiabatic reversible transforma-
tion of an ideal gas: TV 2/3 = const for a monoatomic
gas. Here, the confinement length is σeq, so that the role
of the volume is played by σ3

eq. Since σ2
eq = kBT/κ, this

yields a Laplace condition Tσ2
eq = const or, equivalently,

T 2/κ = const. This can be viewed as the statement
that nΛ3 = const, where n is the typical density and Λ
is De Broglie wavelength, which guarantees that volume
in phase space is conserved. This volume is computed
from the (cubed) product of the typical length in real

space, σ, times the typical velocity, scaling like
√
T . This

discussion also illustrates that the quasi-static criterion
T 2/κ = const is space-dimension independent [80, 81].

For finite-time adiabatic processes, not only does the
mean heat released to the thermal environment vanish
between the initial and final states of the transforma-
tion, but it also does at any time in between. The op-
erating time of these irreversible adiabats can be opti-
mized by jointly controlling the potential and the tem-
perature. The condition of zero heat involves the kinetic
contribution to the energy: the only assumption being,
consistently with the overdamped description, that the
velocity degree of freedom is always at equilibrium with
the time-dependent value of the temperature. Some gen-
eral results emerge [79], like (i) forbidden regions, i.e.,
final states that cannot be reached adiabatically, and (ii)
a speed limit, the existence of a minimum, in general
nonvanishing, time t∗f for the adiabatic connection. For
the specific case of a harmonic confining potential, it was
shown that Tσ2 is nondecreasing over the adiabats. This
implies that Tf/Ti ≥

√
κf/κi, taking into account that the

system is at equilibrium at the initial and final times—see

FIG. 4: Fastest control and evolution for an adiabatic (in the
sense of zero average heat) 20% compression of a harmonically
trapped particle. Time τ = t/t∗f has been made dimensionless
with the shortest possible duration of the process t∗f , which is
reached for a linear evolution of σ2

x. The fastest connection
requires the stiffness to be discontinuous at the initial and
final times. The example shown corresponds to Tf/Ti = 16,
κf/κi = 25 and entails an acceleration of a factor around 5.7
with respect to the relaxation time scale trel = γ/κf. See
Sec. IV B and Ref. [79] for further details.

Eq. (61). It is only in the quasistatic limit that Tσ2 re-
mains constant and, moreover, the equilibrium equation
of state (61) holds for all times, which leads to recover
Bo and Celani’s result of constant T 2/κ [80]. Advantage
was taken of these finite-time adiabatic transformations
to construct an irreversible Carnot engine featuring in-
teresting efficiency properties [82], see also Sec. VI A. In
Fig. 4, the fastest possible adiabatic connection is illus-
trated for a 20% compression, σf = 0.8σi.
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IV. OPTIMAL CONTROL THEORY

Hitherto, this review has focused on techniques that
allow for connecting two given states. Naturally, having
established that going from A to B in a finite time is
feasible raises the question of what the best path is. An-
swering this kind of question is the main goal of optimal
control theory [19, 20], which combines well with inverse
engineering problems. However, the choice of the best
pathway depends on the quantity to be optimized (time,
some kind of cost function. . . ) that should thus be de-
fined in the first place. (See for instance Refs. [64, 83]
for specific examples, ranging from ultracold atoms to
granular systems.)

A. Minimization of the mean work

1. Harmonic connections

Although optimal connection problems in the context
of finite-time thermodynamics date back to the 1970’s
and 1980’s [84–86], the first solution of an optimal con-
nection problem in the “modern” context of stochas-
tic thermodynamics and SST is due to Schmiedl and
Seifert [87]. They considered an overdamped Brown-
ian particle submitted to harmonic trapping, where ei-
ther the position or the stiffness of the trap is controlled.
We recall that experiments with colloidal particles are
usually well described by the overdamped FP, or Smolu-
chowski, equation (58) [55]—see also Appendix B.

In Ref. [87], the optimal control needed to minimize
the mean work for an isothermal process

〈W 〉 =

∫ tf

0

dt

∫ +∞

−∞
dx ∂tU(x, t) ρ(x, t)

=

∫ tf

0

dt

∫ +∞

−∞
dx λ̇(t) · ∂λU(x,λ(t)) ρ(x, t). (76)

was derived. Note that we are assuming that the po-
tential U depends on time through some externally con-
trolled parameters λ [217]. Dealing with the variation
of the work, an Euler-Lagrange equation for the control
parameter was obtained and analytically solved. The as-
sumption of harmonic potential, and therefore Gaussian
states, has much to do with the fact that the problem
is analytically solvable. The dynamics of the system, in
principle codified in the FP equation, can be simplified
to an ordinary differential equation for the only relevant
moment of the distribution—e.g. its standard deviation,
see Eq. (60).

It is natural to try to transpose optimal protocols to ac-
tual experiments, for example the compression or decom-
pression of a harmonically trapped Brownian particle—
by controlling the stiffness of the trap. Still, the experi-
mental implementation of the optimal protocols presents
some difficulties. Specifically, the negative values of
the stiffness needed for decompression—for short enough

connecting times [88]—are experimentally challenging. A
step forward to solve this issue has been made by em-
ploying an optical feedback trap [76]. Although the con-
nection considered therein is not optimal, it is neatly
shown that it is possible to decompress the Brownian
particle in a finite-time with a potential that becomes
repulsive—i.e., with negative stiffness—inside a certain
time window. Also, the optimal control—the stiffness
of the trap—possesses finite discontinuities at the initial
and final times in the overdamped limit. These disconti-
nuities have the same formal origin as in the classic prob-
lems of finite-time thermodynamics [85], the linearity of
the Lagrangian in its highest derivative [89].

Discontinuities in the “control functions” are better ra-
tionalized in the context of Pontryagin’s maximum prin-
ciple of optimal control theory than within the frame-
work of variational calculus [19, 20]. In optimal con-
trol theory, the control function only has to be piecewise
continuous, and thus discontinuities in the control like
those appearing in the stiffness of the harmonic trap are
treated in a natural and mathematical rigorous way, see
e.g. Ref. [90]. More general potentials, beyond the har-
monic case, represent a challenge because solving the FP
equation cannot be mapped onto solving an ordinary dif-
ferential equation. However, numerical minimization of
the mean work has been carried out, which shows that
the predicted discontinuities are robust features of the
optimal control [91]. In the underdamped case, the dis-
continuities of the control become harsher, they do not
involve finite jumps but delta peaks [92].

Optimal harmonic connections considering the limita-
tion stemming from bounded stiffness have also been in-
vestigated in the overdamped case [90]. Specifically, the
stiffness has been assumed to be bounded between 0 and
a maximum value, 0 < κ(t) < κmax. Pontryagin’s princi-
ple provides the adequate framework to solve such con-
strained optimal problem. The time evolution of the stiff-
ness turns out to be built by two pieces. In the first one,
the equations for the protocol are similar to those coming
out from the unconstrained problem [87] whereas, in the
second piece, the control is kept fixed and equal to one
of its limiting values. These two pieces smoothly match,
in the sense that the dynamical variable—the variance
of the position of the Brownian particle—is continuous
and has continuous time derivative. As a consequence
of the bounds, and depending on the target value of the
stiffness and the desired connection time, the target state
may become inaccessible. When the connection is possi-
ble, the minimum work is greater than the minimum one
found for the unconstrained case, the difference between
them becomes large in some situations. Similarly to the
unconstrained case, the control develops finite jumps at
the initial and final times.
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2. Beyond the harmonic case

After the problem of optimally connecting Gaussian
states—in the sense of minimizing the mean work—our
interest goes to the analytical derivation of the optimal
connection for an arbitrary nonlinear potential—still in
the isothermal case. This challenging problem has been
first addressed in a series of related papers [93–98]. Start-
ing from the Langevin description, instead of the equiva-
lent FP equation for the PDF, they show that the above
question has quite a general answer in the overdamped
limit. Building on long-established relations between dy-
namical systems and stochastic control theory [99, 100],
the minimization of the average heat released to the reser-
voir can be mapped onto an optimal mass transport prob-
lem, ruled by the Burgers equation, and explicitly solved
for several physical situations [93, 94]. Since optimizing
average heat and work is the same problem [218], for
the particular case of a harmonic trap the optimal pro-
tocol that minimizes the mean work in Refs. [87, 101]
is recovered. Once more, the optimal control presents
discontinuities at the initial and final times [219]. It is
worth stressing that the minimization of heat is shown to
be equivalent to the minimization of entropy production,
providing a refined version of the second law of thermo-
dynamics [94]. In general, this line of research evidences
that differential geometry concepts can also be useful to
investigate optimization problems in stochastic thermo-
dynamics [97, 102].

The generalization of the above results to Markov jump
processes, governed by a master rather than a FP equa-
tion, has also been carried out [96]. In the continuum
limit, the results converge to those previously described.
Furthermore, the possibility of extending the above re-
sults to the underdamped, Langevin-Kramers, case has
been investigated [98]. Therein, the emergence of singu-
larities and also of momentum dependence in the opti-
mal driving potential makes the situation less clear-cut
than that found in the overdamped situation. Recently,
the minimisation of the work for the particular case of a
counterdiabatic connection in the underdamped regime
has been investigated [72], but the driving is once more
velocity-dependent. In fact, the derivation of the opti-
mal conservative driving potential U(x, t) that provides
the minimum irreversible work in the underdamped situ-
ation is, to the best of our knowledge, an open question.

In the overdamped limit, the general problem for the
optimization of the mean work performed during the con-
nection between arbitrary states has also been worked
in the FP framework [103, 104]. Specifically, the start-
ing point is the FP equation for the probability density
ρ(x, t), written as a continuity equation, Eq. (72). Still,
the main role is played by the cumulative distribution in-
troduced in Eq. (68). Making use of the method of char-
acteristics, the general results for the optimal connecting
potential obtained from the Langevin equation [93] are
recovered. Here, we give the main results for deriving the
minimum work and the associated optimal protocol—for

a more detailed derivation thereof, see Appendix D.
For a quasi-static process in which the system remains

at equilibrium for all times, the average work 〈W 〉 equals
the free energy difference ∆F between the final and initial
states. For a finite-time process, the second principle
implies 〈W 〉 > ∆F and the irreversible (or excess) work
is defined as

Wirr ≡ 〈W 〉 −∆F ≥ 0. (77)

Starting from Eq. (76) for the mean work, repeated use
of integration by parts and the FP equation leads to

Wirr =

∫ tf

0

dt Pirr(t), (78a)

Pirr(t) =γ

∫ +∞

−∞
dx v2(x, t)ρ(x, t) ≥ 0, (78b)

i.e. Pirr stands for the irreversible power in the considered
finite-time process and v is given in (72b). Note that,
consistently with our discussion above, Wirr (or Pirr) van-
ishes for a reversible process only: v(x, t) then identically
equals zero—and thus the PDF has the equilibrium shape
ρ(x, t) ∝ e−βU(x,t)—for all (x, t).

The problem of minimizing the average work 〈W 〉 is
then equivalent to finding the fields ρ(x, t) and v(x, t)
such that Wirr becomes minimum, while verifying the
FP equation (72). This can be done by employing the
method of Lagrange multipliers, introducing an auxiliary
field ψ(x, t) and seeking the unconstrained minimum of

J [ρ, v, ψ] ≡
∫ tf

0

dt

∫ +∞

−∞
dxL, L = v2ρ+ ψ [∂tρ+ ∂x(ρv)] .

(79)
The Euler-Lagrange equations for this problem read

∂tψ + v∂xψ = v2, ∂xψ = 2v, (80)

plus Eq. (72). Combining them, one gets the closed equa-

tion ∂tψ+ 1
4 (∂xψ)

2
= 0, which is nothing but the Burgers

equation for the auxiliary field ψ(x, t) [93]. Equivalently,
one may write the Burgers equation in terms of the ve-
locity field v(x, t),

∂tv + v∂xv = 0. (81)

In order to find the optimal profiles for ρ(x, t) and
v(x, t)—note that the latter provides us with the driving
potential U(x, t), the FP equation (72) and the Burgers
equation (81) must be simultaneously solved. The solu-
tion is

v =ϕ(x− vt), (82a)

ρ(x, t) =
ρi(x− vt)

1 + tϕ′(x− vt)
, (82b)

where

ρi(x) ≡ ρ(x, t = 0) (83)
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is the initial distribution and ϕ is—for the time being—
an arbitrary function.

The function ϕ(x) is determined by the system reach-
ing the target distribution at the final time t = tf, i.e.
ρ(x, tf) = ρf(x). This condition is easier to implement
by employing the cumulative distribution introduced in
Eq. (68). Specifically, the initial and final cumulative
distributions Fi,f, corresponding to the initial and final
probability distributions ρi,f, are needed. After defining

Ξ(x) ≡ F−1
i (Ff(x)) , (84)

one gets

ϕ(x) =
Ξ−1(x)− x

tf
, (85)

where A−1(x) stands for the inverse function of A, i.e.
A−1(A(x)) = x. Note that finding ϕ makes it possible to
obtain the driving potential, making use of Eq. (82) and
the definition of the velocity field v(x, t), Eq. (72b),

∂xU = −γv − kBT∂x ln ρ. (86)

The irreversible power over the optimal protocol is
shown to be

P ∗irr =
γ

t2f

∫ +∞

−∞
dx ρi(x)

[
Ξ−1(x)− x

]2
. (87)

Note that, as emphasized by our notation, the optimal ir-
reversible power does not depend on time; it is a constant
proportional to t−2

f . The irreversible work immediately
follows,

W ∗irr = tfP
∗
irr =

γ

tf

∫ +∞

−∞
dx ρi(x)

[
Ξ−1(x)− x

]2
, (88)

which is then proportional to t−1
f . Quite expectedly, it

vanishes in the limit tf →∞, where the optimal process
tends to be quasi-static.

In general, the optimal potential stemming from the
optimal velocity field, by employing Eq. (72b), has dis-
continuities at both the initial and final times. For the
harmonic case, this approach leads to the optimal connec-
tions that can be worked out by using simpler methods,
as described in Sec. IV A 2. For the general non-harmonic
case, finding the optimal driving potential in an explicit
closed form can only be done in a few examples [103, 104].
The main difficulty stems from the expression for the
mapping Ξ(x) defined in Eq. (84): only in simple cases
is it possible to calculate explicitly the cumulative distri-
butions Fi and Ff, and to invert Fi and compose it with
Ff.

The above difficulties limit the usefulness of the ex-
act optimal protocol for practical implementations. Non-
optimal driving potentials but with values of Wirr close
to the optimal one, which can be expressed in closed form
and do not present discontinuities, can be derived with
the welding procedure introduced in Ref. [67]—see also

Sec. III C. Therein, the authors look for the (sub)optimal
connection belonging to fast-forward protocols that leads
to minimal work. Remarkably, such a protocol conserves
the property of the global optimum of delivering work at
constant power.

Linear response theory [105] is a standard frame-
work for understanding nonequilibrium fluctuations. In
fact, the problem above—i.e. optimization of the mean
work performed during the connection between arbi-
trary states—has also been addressed using linear re-
sponse theory [102, 106]. Sivak and Crooks obtained
the optimal protocol minimizing the irreversible work in
the linear regime, making use of information geometry
concepts—see Sec. IV C for further details. Once more,
this approach leads to an optimal work with constant
power [107]. However, the assumption of linear response
prevents this analysis from capturing the discontinuities
of the optimal potential at the initial and final times.
Bonança and Deffner deepened in the linear response ap-
proach, thoroughly discussing its range of validity and
comparing its predictions with exact results [106].

B. Optimization of other figures of merit

In the previous subsection, we have gone over the
literature related to the optimization of average work.
Nonetheless, the optimal approach in the context of SST
is not limited to the minimization of the average work.
Herein, we present different studies where the optimiza-
tion of other relevant quantities has been examined.

The minimization of the statistical error of the free
energy—an estimator of the difference between the free
energy obtained after averaging over a certain number
of individual measurements and the real free energy
change—has been addressed [108]. Studying this quan-
tity makes it possible to estimate the number of exper-
iments needed to attain a certain accuracy when per-
forming free energy measurements. Analytical results
are not available even for simple (harmonic) cases, but
numerical optimization provides step-like protocols with
a significant reduction of the statistical error. Interest-
ingly, this problem is intimately related to the reverse
process [109, 110].

Minimization of the average work carries no insight
on work fluctuations. Hence, interest aroused in the
analysis of alternative figure of merits, combining in-
formation of both average and fluctuations. Solon and
Horowitz studied the minimization of an objective func-
tion, which is a linear combination of the work average
〈W 〉 and the work standard deviation σW , specifically
Jα = α〈W 〉 + (1 − α)σW , [111]. By varying the coef-
ficient α from 0 to 1, the weight of work fluctuations
(mean work) is reduced (increased) in the search of the
optimum protocol. The notion of Pareto-optimal solu-
tions is applied to classify all possible optimal protocols.
Due to the mathematical complexity of the optimization
problem, this is carried out numerically by tuning the
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value of the control in a finite set of times. A first-order
phase transition is found when illustrating the optimiza-
tion procedure above in a quantum dot.

The physical approach to information and memory
storage [112–114] may also give rise to optimization prob-
lems in the general framework described in this review.
Landauer’s principle states the minimum heat cost ex-
hausted to erase one random bit stored in a memory
device [115, 116]. Such a bound refers to a quasistatic
process. Finite-time processes have been considered as
well, posing new relevant problems, not only from the
theoretical point of view but also from the technological
one, where fast computational operations with memory
devices are necessary [117–121].

All previous instances belong in the optimization of
energetic observables. Remarkably, optimal problems in-
volving time have also been investigated. The minimiza-
tion of time related observables is closely linked to infor-
mation geometry concepts and the so-called speed limits,
which are discussed in Sec. IV C. Below, we briefly report
some results that have been obtained outside the general
framework of information geometry ideas.

The optimal static external potential required to mini-
mize the escape time τ , of a Brownian particle confined in
a box has been investigated [122, 123]. The escape time is
defined here as the mean first passage time to the end of
the box, and it is considered that the external potential
does not introduce any bias between the starting and final
points. Rather surprisingly, in the overdamped regime,
the escape time can approach zero arbitrarily close [122],
which requires divergent and strongly “squeezing” poten-
tials [122, 123]. However, when some constraints are con-
sidered (e.g., the maximal potential difference is below
a certain threshold ∆U) an expression, which reminds
Heisenberg’s time-energy uncertainty principle, is ob-
tained τopt∆U = const. Related to this, the optimization
problem for static external potential minimizing the first
passage time to a certain target, distributed according to
a certain symmetric probability distribution with respect
the initial position, has been also worked out [124]. On
a different note, in the context of stochastic resetting,
optimal first passage time is a hot topic [57, 125–128].
Usually, in those studies, the external potential is fixed
and the resetting rate is the object that plays the role of
the external control.

Another relevant time optimization problem is the
minimization of the connection time between the ini-
tial and target states. For the SST between equilib-
rium states, the minimum connection time is zero for
the unconstrained problem—similarly to the situation
described above for the escape time of the Brownian par-
ticle. A different situation arises when the connection
problem has additional restrictions, for example when
the protocol has to be adiabatic in the thermodynamic
sense of zero average heat. Therein, the adiabatic con-
straint together with the second principle gives rise to the
emergence of a speed limit, i.e. the emergence of a min-
imum time for the adiabatic connection [79]. In general,

the instantaneous adiabat does not exist, and moreover
there appear forbidden regions beyond the quasi-static
curve T 2/κ = const at which the minimum connection
time diverges—as discussed in Sec. III D.

C. Information thermodynamics and speed limits

In the previous sections, we have discussed the opti-
mization of the work and other figures of merit over SST
protocols—including the minimization of the connection
time for some specific situations. Here, we focus on the
emergence of the so-called classical speed limits, which
are closely related to information thermodynamics con-
cepts, and their relevance in the context of SST.

The acceleration of the connection entailed by SST
protocols comes at a price: for example, we have already
discussed that there appears a non-vanishing irreversible
contribution to the average work, which only vanishes for
infinite connection time, for the SST connecting equilib-
rium states at constant temperature. In fact, the mini-
mum irreversible work, as given by Eq. (88), is propor-
tional to t−1

f and then blows up for very short connecting
times. Therefore, a natural question arises, whether or
not there exists a speed limit for SST, i.e. a minimum
value for the connection time tf.

The existence of a speed limit in the context of quan-
tum mechanics dates back to the 1940s [129]. It is related
to the time-energy uncertainty relation; for review of the
subject, see Ref. [130]. The simplest situation is that of
the time evolution of a pure state in a conservative sys-
tem. In this case, there appear two inequalities for the
time tf necessary to evolve from an initial state |ψ(0)〉
to an orthogonal target state |ψ(tf)〉, 〈ψ(0)|ψ(tf)〉 = 0.
First, the Mandelstamm-Tamm bound [129], tf∆H ≥
π~/2, and, second, the Margolus-Levitin bound [131],
tf 〈H〉 ≥ π~/2. In these expressions, 〈H〉 and ∆H are
the (time-independent) expectation value and standard
deviation of the energy, respectively. In fact, it has
been proven that the combination of the Mandelstamm-
Tamm and Margolus-Levitin inequalities gives the tight-
est bound for tf [132], i.e.

tf ≥ max

(
π~

2∆H
,
π~

2 〈H〉

)
. (89)

This inequality expresses the existence of a natural time
scale, which cannot be beaten for the evolution of a quan-
tum system with time-independent Hamiltonian H.

In statistical mechanics, only more recently the pos-
sible existence of inequalities resembling the quantum
time-energy uncertainty relation—and the possible as-
sociated emergence of a speed limit—has been investi-
gated [79, 83, 102, 133–143]. One of the first derivations
of an inequality for the connection time is probably that
of Ref. [102], within the linear response regime. For a
review of these ideas, see Ref. [144]. Let us consider a
general system with control functions λ(t), and a pro-
tocol that drives the system from an initial state with
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λ(t = 0) = λi to the target state with λ(tf) = λf; the
initial and final states must be close enough in order to
use linear response theory. The irreversible power can be
written as a bilinear function of the time derivative of
the control functions λ(t), with coefficients provided by
the—positive definite—friction tensor ζ(λ),

Pirr(t) =
dλT (t)

dt
· ζ(λ(t)) · dλ(t)

dt
, (90)

where the superindex T stands for transpose. This ex-
pression naturally introduces a metric in the problem
and, in fact, a statistical length Llin [220] is defined as

Llin =

∫ tf

0

dt
√
Pirr(t). (91)

This length somehow measures the distance swept by the
system in parameter space along the SST path from the
initial to the target state. The connection time tf and the
irreversible work Wirr are shown to verify the inequality

tfWirr ≥ L2
lin. (92)

The equality only holds when Pirr is constant, as it was
for the protocol that minimizes the irreversible work—
but note that Eq. (87) holds for arbitrary initial and final
equilibrium states, not necessarily close, and thus it is not
restricted to linear response [221].

Speed limits have been discussed in a broader context,
beyond the linear response regime [79, 83, 135–138, 138–
143, 145, 146]. Here, we focus on processes that involve a
net transformation of states; for time-periodic or station-
ary processes, there are specific inequalities showing that
the entropy production rate bounds the rate at which
physical processes can be carried out [140]—which has
been experimentally checked [143]. On the one hand,
the first results were derived under the assumption of
Markovian dynamics [135, 137] and are thus restricted
to system with dynamics described by master, for dis-
crete variables, and FP (or Langevin) equations, for con-
tinuous variables. On the other hand, approaches based
on information geometry concepts hold for general dy-
namics [138, 139], not necessarily Markovian. Key to the
latter results is the Fisher information I(t),

I(t) ≡
〈

(∂t lnP )
2
〉

=

∫
dx

(∂tρ(x, t))
2

ρ(x, t)
, (93)

which is the curvature of the Kullback-Leibler divergence,∫
dxρ(x, t+ dt) ln

[
ρ(x, t+ dt)

ρ(x, t)

]
=

1

2
(dt)2I(t) +O(dt)3.

(94)
The Fisher information can be connected with entropy
production and the so-called thermodynamic uncertainty
relations [135, 136, 138, 145], and it is directly linked
with the thermodynamic length L, first introduced in
the 1980s [147–149]. For equilibrium systems, this rela-
tion was addressed in a pioneering work by Crooks [107],

which showed that

L =

∫ tf

0

dt
√
I(t). (95)

Note that, in general, L 6= Llin.
Also relevant to our discussion is the divergence—also

called the thermodynamic cost [138]—of the path,

C =
1

2

∫ tf

0

dt I(t). (96)

The Cauchy-Schwarz inequality makes it possible to es-
tablish the following lower bound for the connection time,

2tf C ≥ L2. (97)

Interestingly, Eq. (97) is implicitly written in Ref. [107]
[see Eq. (9) therein], although it has not been explicitly
stated as establishing a speed limit for finite-time SST
until recently—see Ref. [135] for the case of Markovian
dynamics and Ref. [138] for arbitrary dynamics. At vari-
ance with the quantum case, it must be remarked that the
tightness of the bound in Eq. (97) has not been proven,
to the best of our knowledge. Indeed, Eq. (97) is valid
for an arbitrary dynamics—see Ref. [83] for an analysis
thereof for granular fluids described at the kinetic level,
where the PDF obeys the non-linear (inelastic) Boltz-
mann equation—but there may exist a larger bound for
the connection time.

Equations (92) and (97) provide us with two inequali-
ties that must hold in SST. In principle, one could argue
that Eq. (92) was derived under the framework of linear
response but it is a direct consequence of the definition of
irreversible work and the Cauchy-Schwarz inequality—it
is linking Pirr(t) with a Riemannian metric that linear
response ensures. A comparison between the predictions
of both inequalities for the harmonic case is given in Ap-
pendix E.

V. BEYOND EQUILIBRIUM: CONNECTING
NESS OR ARBITRARY STATES

In the statistical mechanics context, SST have been
mainly employed to connect equilibrium states [17, 18,
55, 59, 66, 67, 75–77, 79, 87, 90–98, 150]. The analysis
of accelerated connection between NESSs has been ini-
tiated in [83, 151]. The delay in the engineering of SST
connections between NESSs stems from some difficulties
that are inherent to the initial and final states being non-
equilibrium, as explained below.

For the sake of concreteness, we revisit the already
addressed paradigmatic example of a colloidal Brownian
particle trapped in a one-dimensional potential U(x, t)
and immersed in a fluid at equilibrium with temperature
T . In the overdamped regime, the distribution func-
tion ρ(x, t) obeys the FP equation (58) and the typi-
cal SST problem is the connection between two equilib-
rium states, those corresponding to the initial potential
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Ui(x) and the target one Uf(x). An advantage of the
equilibrium situation is our perfect knowledge of the ini-
tial and target distributions, ρi(x) ∝ exp[−βUi(x)] and
ρf(x) ∝ exp[−βUf(x)].

An especially simple case is that of harmonic confine-
ment, in which the potential U(x, t) is harmonic for all
times. As described in Sec. III A, the PDF is Gaussian
for all times therein, and thus completely determined by
its average and variance. Moreover, the evolution equa-
tions of the average and variance are analytically solv-
able in closed form. Therefore, although the intermedi-
ate states between the initial and target PDFs are indeed
non-equilibrium ones, SST connections can be exactly
worked out, both non-optimal [17] and optimal in some
sense [87, 90–92]—as already analysed in Sec. IV A 1.

In principle, SST methods are transposable to situa-
tions in which the initial and final states are NESSs, in-
stead of equilibrium states. Still, some problems emerge
because there is not a general form, playing the role of
the canonical distribution, for the PDF corresponding to
any NESS. As a consequence, the initial and target states
are not perfectly known in general; this constitutes a first
limitation for the catalogue of NESS that can be consid-
ered as candidates to be SST-connected.

The SST connection between two NESS of the Brow-
nian gyrator is the subject of study in Ref. [151]. The
Brownian gyrator is an overdamped particle moving in a
two-dimensional potential

U(x, t) =
1

2
κx(t)x2 +

1

2
κy(t)y2 + u(t)xy, x ≡ (x, y),

(98)
where κx and κy are both positive and κxκy − u2 > 0,
in order to have a confining potential. The gyrator is
coupled to two heat baths with temperatures Tx and Ty in
the x and y directions, respectively. The two-dimensional
position x is a Markov process and the FP equation for
its PDF ρ(x, t) reads

γ∂tρ = ∂x (ρ ∂xU) + ∂y (ρ ∂yU) + kB
(
Tx∂

2
xρ+ Ty∂

2
yρ
)
.

(99)

If Tx = Ty, and (κx, κy, u) are time-independent param-
eters, the stationary solution of this FP equation is the
canonical PDF at temperature T = Tx = Ty correspond-
ing to the static potential U(x). If Tx 6= Ty, the station-
ary solution of this FP equation can be exactly computed
and is Gaussian, although it does not have the canonical
shape [151], and induces a current which is rotational.

The approach of Ref. [151] is quite similar to that of
Ref. [17] for the engineered swift equilibration of a Brow-
nian particle moving in a one-dimensional harmonic po-
tential. A non-optimal SST connection of two NESS of
the Brownian gyrator, corresponding to different values
of the triplet (κx, κy, u), can be built in a simple way,
because the PDF is Gaussian, not only in the initial and
target states, but for all times. Therefore, one can write

ρ(x, t) =
e−

1
2ν1(t)x2− 1

2ν2(t)y2−ν3(t)xy

2π [ν1(t)ν2(t)− ν2
3(t)]

−1/2
. (100)

The functions ν(t) ≡ (ν1(t), ν2(t), ν3(t)) obey a closed
system of first-order ODEs, in which λ ≡ (κx, κy, u) play
the role of control functions and appear linearly. Thus,
the controls λ can be explicitly written asA(ν)+B(ν)ν̇,
where A and B are certain functions of ν—the exact ex-
pression for which is not relevant here and can be found
in Ref. [151]. In this way, the “equilibrium swift equili-
bration” technique introduced in Ref. [17] is generalized
to the connection of two NESS, taking advantage of the
simplicity of the mathematical problem for the Brownian
gyrator. Although the problem is two-dimensional and
the initial and target states are NESS, the main charac-
teristic features that facilitates the SST connection of a
harmonically trapped particle still hold: perfect knowl-
edge of the initial and target distributions, Gaussianity
of the PDF for all times, and simple enough evolution
equations for the relevant variables (making it possible
to obtain exact analytical solutions thereof).

Another physical situation in which the SST connec-
tion between two NESS has been considered is the uni-
formly heated granular fluid [83]. This case is more in-
volved than the Brownian gyrator, due to the intrinsi-
cally dissipative character of the dynamics. The evolu-
tion equation for the PDF P (v, t) has two terms: a diffu-
sive, FP, term stemming from the stochastic forcing and
an inelastic Boltzmann collision term, which makes the
evolution equation non-linear in the PDF.

In the long-time limit, the granular fluid reaches a
homogeneous NESS due to the balance—in average—of
the energy loss in collisions and the energy input by the
applied stochastic forcing. Even for this homogeneous
NESSs, the velocity PDF is non-Gaussian and thus is
not completely characterized by the variance—the granu-
lar (kinetic) temperature. In addition, nor is the velocity
PDF perfectly known: it is necessary to resort to approx-
imate schemes, keeping track of non-Gaussianities that
are essential. The simplest way of doing so is through
the so-called first Sonine approximation, in which the
granular fluid is assumed to be described by its granular
(kinetic) temperature T and the excess kurtosis a2 (the
fourth cumulant of the velocity),

P (v; t) =
e−w

2

[πv2
T (t)]

d/2

[
1 + a2(t)S2

(
w2
)]
, w ≡ v

vT (t)
.

(101)
The thermal velocity vT is defined by v2

T ≡ 2T/m in
terms of the granular temperature, and S2(x) = x2/2 −
(d+ 2)x/2 + d(d+ 2)/8 is the second Sonine polynomial
where d is space dimension. Within this approximation,
the evolution equations of T and a2 constitute a system
of two coupled ODES, in which the control function is the
intensity of the thermostat χ(t). The problem of finding
the protocol that minimises the connection time between
two NESSs corresponding to different values of the driv-
ing intensity, χi and χf, has been analysed in Ref. [83].
This control problem is, at first, non-trivial, since the
evolution equations in the Sonine approximation are non-
linear in (T, a2) and then not analytically solvable. Still,
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the control function χ(t) enters linearly in the evolution
equations, and this simplifies the mathematical problem:
the optimal controls are of bang-bang type. That is, the
optimal control comprises two time-windows, inside each
of them χ(t) is constant and equal to either its maximum
possible value χmax or its minimum possible value χmin,
with one switching between these extreme values at a cer-
tain intermediate time [222]. For a full-power thermostat,
χmin = 0 and χmax =∞, the optimal control problem can
be exactly solved—the bangs with χmax =∞ are instan-
taneous whereas the bangs with χmin = 0 correspond to
time windows where the granular fluid freely cools. Both
the thermodynamic length and the information geometry
cost can be evaluated over the optimal protocols, being
consistent with the recently derived general inequalities
that impose the existence of a speed limit for arbitrary
dynamics, not necessarily Markovian [138, 139]—see also
Sec. IV C. The case of a more realistic thermostat, where
χmin > 0 and χmax <∞, has been addressed in the linear
response regime [152].

VI. APPLICATIONS: HEAT ENGINES AND
BEYOND

A. Heat engines

SST have been employed in the last decade to design
irreversible heat-engines [27, 56, 71, 76, 80, 82, 101, 153–
166]. Loosely speaking, these heat engines can be con-
sidered as the mesoscopic counterparts of the classical,
macroscopic, heat engines, in which the branches of the
corresponding cycle last for a finite time. Note that we fo-
cus on classical heat engines, described at the mesoscopic
level by nonequilibrium classical statistical mechanics—
their quantum counterparts are thus not addressed in this
review.

Let us go back to the colloidal particle trapped in a har-
monic potential of stiffness κ, and immersed in a fluid at
equilibrium with temperature T , thus described by the
Smoluchowski equation (59). Recall that both the stiff-
ness of the trap and the bath temperature can be time-
dependent, with their time-dependence being externally
controlled. This system is experimentally realizable, see
for example Refs. [154] and [56] for experimental imple-
mentations of Stirling-like and Carnot-like cycles, respec-
tively.

A difficulty arises in the designing of these mesoscopic
heat engines when they involve, as is the case of the
Otto or the Carnot cycles, adiabatic—in the sense of
zero heat, not in the sense of infinitely slow employed
before [3]—branches. Complete decoupling of the sys-
tem from the heat bath is not possible, since the inter-
action between the mesoscopic object—i.e., the Brown-
ian particle—and the heat bath cannot be switched off.
In addition, zero-heat (in average, fluctuations are un-
avoidable) and isoentropic processes are not equivalent
for finite-time protocols like those in SST. This makes

the definition of adiabatic processes a subtle issue in the
mesoscopic world [56, 80, 82, 90, 101, 164].

In a pioneering work [101], Schmiedl and Seifert ana-
lyzed an irreversible Carnot-like heat engine, built on an
overdamped Brownian particle confined in a harmonic
trap. This heat engine works cyclically, with two isother-
mal and two pseudoadiabatic branches [101]—like the
original Carnot engine—that connects equilibrium states.
However, unlike with the original Carnot engine, all the
branches are irreversible. More specifically, during the
hot (cold) isotherm, the system is in contact with a heat
bath at temperature Th (Tc) for a certain finite time
th (tc). In the instantaneous pseudoadiabats, the tem-
perature of the system suddenly jumps from Th to Tc
(or vice versa) while keeping the probability distribu-
tion for the position of the Brownian particle unchanged.
Therefore, what remains constant over the adiabats is
the configurational contribution to the entropy or, equiv-
alenty, the ratio T/κ. As already noted in Ref. [101],
this means that there appears a nonzero heat—and a
nonzero entropy increment—along the pseudoadiabatic
branches associated with the instantaneous change of the
kinetic contribution to the energy. This is the reason why
we term these branches pseudoadiabatic, to differentiate
them from the actual adiabats, over which the heat van-
ishes in average, as described below.

This heat engine is optimized in the following way:
keeping the isotherm times th and tc fixed, one can mini-
mize the irreversible work, i.e., maximize the output work
−W (which is a function of th and tc). Afterwards, one
can maximize the output power P = −W/(th + tc) and
obtain the corresponding efficiency at maximum power
η∗, which reads

ηSS =
2ηC

4− ηC
, (102)

where ηC is Carnot’s efficiency,

ηC = 1− Tc
Th
. (103)

The study of efficiency at maximum power is a clas-
sic problem in the field of finite-time thermodynam-
ics [84, 167–171]. The so-called Curzon-Ahlborn effi-
ciency at maximum power is

ηCA = 1−
√
Tc
Th
, (104)

which was obtained for an endoreversible heat en-
gine [84]—an engine that operates reversibly but for the
irreversible coupling to the heat-baths [223]. There is
no general proof ensuring that the efficiency of any arbi-
trary heat engine at maximum power is bounded by the
Curzon-Ahlborn value. Still, ηSS < ηCA, although in the
limit of small temperature difference, for which ηC � 1,
both efficiencies coincide up to second order in ηC ,

ηCA =
η

2
+
η2

8
+O(η3), ηSS − ηCA = O(η3). (105)
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Nevertheless, the universality of the efficiency at maxi-
mum power up to quadratic order in ηC is quite a general
feature [82, 153, 155, 156, 158, 164, 172, 173], which can
be shown to hold for heat engines with left-right sym-
metry (switching of the baths entail an inversion of the
fluxes) [174]. Less strict conditions for this universality
have been derived in Refs. [156, 173], which also apply
to heat engines without left-right symmetry such as the
Feynman ratchet [175] or the Curzon-Ahlborn endore-
versible heat engine [84]. Besides, this kind of universal-
ity has been extended to other figures of merit, beyond
the maximum power regime [176].

Different variants of this Carnot-like heat engine have
been investigated in the literature. Holubec consid-
ered an overdamped Brownian particle moving in a log-
harmonic potential [155]. The cycle is exactly the same
as in Ref. [101], with two optimal isotherms and two
instantaneous pseudoadiabats, adapted to the different
binding potential. The efficiency at maximum power
also agrees with ηCA up to second order in ηC. Bo and
Celani analyzed a Brownian particle immersed in a fluid
with inhomogeneous temperature [80]. The linear tem-
perature profile makes it necessary to consider the un-
derdamped description, because of the so-called entropic
anomaly stemming from the temperature gradient [177].
In this work, the authors also derive the condition to
obtain quasistatic (reversible) adiabatic branches: T 2/κ
is the quantity that must be kept constant, see section
III D. Martinez et al. employed these quasistatic adia-
batic branches to realize experimentally an irreversible
Carnot-like engine [56], with a charged colloidal particle
immersed in water and optically trapped. The charge of
the particle allows for adding a noisy electrostatic force:
in this way, the effective temperature felt by the particle
can be varied from room temperature to thousands of
kelvins. Over the “adiabats”, there is a nonzero fluctuat-
ing heat that must be taken into account when defining
the efficiency of such an engine. The authors analyzed
the probability distribution function of the efficiency as a
function of the number of cycles and observed the appear-
ance of super-Carnot efficiencies, even far from the qua-
sistatic regime. Tu also investigated a Carnot-like engine
built with a Brownian particle in the underdamped de-
scription, but with the temperature of the thermal bath
being homogeneous [71]. Suitable shortcuts are intro-
duced along the isothermal branches, whereas the Brow-
nian particle is decoupled from the thermal bath and
submitted to a velocity-dependent force during the “adi-
abatic” branches. Both the decoupling from the thermal
bath and the velocity-dependent force limit the experi-
mental feasibility of such an engine, but makes it possible
to exactly derive the Curzon-Ahlborn value for the effi-
ciency at maximum power.

As the discussion above suggests, the construction of
the adiabatic branches of the Carnot-like engine is a sub-
tle issue. Recently, Plata et al. showed how to build
finite-time actually adiabatic—in the sense of zero av-
erage heat—branches for an overdamped Brownian par-

ticle trapped in an arbitrary nonlinear potential [79]—
see also Secs. III D and IV B. Figure 5 illustrates the
difference between the classical quasistatic Carnot cycle
and its optimal finite-time counterpart. Nakamura et
al. also thoroughly studied the adiabatic connection—
again in the sense of zero average heat—for the specific
case of harmonic confinement within the underdamped
description of the dynamics [164]. Extending ideas of the
fast-forward protocol—already discussed in section III C,
they built a Carnot-like heat engine with fast-forwarded
isothermal and adiabatic branches. On the one hand,
similarly to the situation in Ref. [71], the extra potential
contains terms involving the velocity; the efficiency at
maximum power then equals the Curzon-Ahlborn bound
for “weak dissipation” (in the “strongly” underdamped
regime). On the other hand, for strong dissipation (in
the overdamped limit), the efficiency at maximum power
is smaller than ηSS, as given by (102). Nakamura et al.
claimed that the overdamped approximation cannot be
used to describe the full cycle of a Carnot-like stochas-
tic heat engine. Still, Plata et al. built an irreversible
Carnot-like engine with an overdamped colloidal particle
trapped in a harmonic potential [82]. The main novelty
with regard to Ref. [101] is the authors’ employing of the
finite-time adiabatic branches derived in Ref. [79], in-
stead of the instantaneous pseudoadiabats that involve a
nonvanishing heat. In addition to minimum work (max-
imum work output) isotherms, minimum time adiabats
are employed to construct the Carnot-like cycle. Fur-
ther optimization of the cycle shows that the efficiency
at maximum power of this overdamped Carnot-like heat
engine is very close to the Curzon-Ahlborn value through-
out the whole range of temperature ratios Tc/Th.

Other cycles, of the Stirling or Otto types, have been
studied in the literature. In fact, the first experimental
realization of a mesoscopic heat engine was achieved with
the Stirling cycle [154], which comprises two isothermal
and two isochoric branches. A Brownian particle (a sin-
gle melamine bead of diameter close to 3µm) suspended
in water was trapped in a two-dimensional harmonic po-
tential created with optical tweezers. The stiffness of
the trap linearly varies with time along the isothermal
branches, whereas it is kept constant in the almost in-
stantaneous processes that connect the isotherms—which
are thus isochoric, the average work vanishes. The de-
termined efficiency at maximum power is, within exper-
imental error, in agreement with the Curzon-Ahlborn
value. Optimal protocols for the overdamped Stirling
engine have been derived in Ref. [157] by a mapping to
an optimal mass transport problem, with an efficiency
at maximum power given by Eq. (102). Also, a Stir-
ling engine with active baths has been investigated [178].
Therein, it seems that non-Gaussianities are responsible
for the improved efficiency of the active engine.

SST for the Otto cycle have been considered in
Ref. [27]. In this paper, it is shown that the accelerated
connection intrinsic to SST does not only increase power
output of the engine but also may increase its efficiency,
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FIG. 5: Sketch of a Carnot cycle with a overdamped harmonic
oscillator. The cycle is made by two isothermal branches (red
lines) and two adiabatic ones (green lines). On the one hand,
in the traditional Carnot cycle (top panel), the states are
swept quasistatically, and the system keeps at equilibrium at
all times. On the other hand, the optimal finite-time version
(bottom panel) involves non-equilibrium evolution between
operation equilibrium points. See Ref. [79] for further details.

both in the quantum and the classical case. Abah et al.
further investigated the quantum Otto engine, establish-
ing the energetic cost of driving with SST and finding
that the efficiency at maximum power is very close to
the Curzon-Ahlborn bound [162].

It is worth mentioning that several works have ad-
dressed the problem of attaining the Carnot efficiency
at finite power [159, 160, 179–185]. Mostly, attaining—
or even exceeding [185]—Carnot’s efficiency is connected
with the antiadiabatic limit of infinitely fast transfor-
mations [159, 160, 181, 183]. Recently, the optimiza-
tion of quite general heat engines has also been con-
sidered [104, 186]. In Ref. [104], the cycle comprises
two isothermal branches connected by the instantaneous
pseudoadiabats described above. The driving potential
that minimizes irreversible work or heat dissipation is
obtained, which in relevant cases leads to results previ-
ously derived in the framework of optimal mass trans-
port [93, 94, 187]—see also Sec. IV of this review. In
Ref. [186], the full space of non-equilibrium thermody-
namic cycles is explored but within the linear response
regime. Therein, the authors employ information geom-
etry ideas for deriving an upper bound for the efficiency
and building finite-time heat engines that outperform—
in terms of efficiency—other recent proposals.

B. Other Applications

The idea to control the time required to reach a
given transformation, or perform a certain task has a re-
spectable history in the field of engineering [188], where
a common situation is that pertaining to crane driving
(trolley displacement and rope length). Yet, the similar-
ities between such a macroscopic system and the dynam-
ical equations ruling the transport of ultracold ions or
neutral atoms in effectively one-dimensional traps with
time-dependent controllable parameters (as used in ad-
vances towards scalable quantum-information process-
ing), opens the way for a transfer of method between
the two fields [189].

Besides, SST allow to circumvent some shortcomings of
existing manipulation techniques. In particular, optical
manipulations of colloids are plagued by the impractical-
ity of creating time-dependent expulsive confinements,
that are required when seeking to deconfine a colloidal
state [17, 150]. While feedback protocols offer a way
out [76], we seek a purely feedforward technique, with-
out applying any retroaction on the system. Taking ad-
vantage of diffusiophoresis, i.e. the migration of colloids
induced by solute gradients, one can drive the system by
a proper time-dependent control of the salt concentration
in a buffer in contact with the solution. A fast decom-
pression can thereby be achieved [77], from a joint optical
and diffusiophoretic driving. To remain in the field of soft
matter, a related proposal of driving a bulk system from
its boundaries was put forward in [190]: by monitoring
the potential (or the charge) difference between the two
plates of a nanocapacitor, one can accelerate significantly
electrolyte relaxation following a charging of the system.

A rather unexpected application of SST has emerged
in the context of biological evolution [191]. The setting
is provided by the Wright-Fisher model [192], describ-
ing the evolution of a population of organisms through
a space of M possible genotypes. The state of the pop-
ulation is characterized by a time-dependent probabil-
ity distribution ρ(x, t), where x ≡ (x1, · · ·xM ) is a fre-
quency vector whose component xm gives the fraction of
the population found in genotype m ∈ [1,M ] at time t.
The Wright-Fisher model describes the diffusive evolu-
tion of ρ(x, t) due to mutations that induce a random
walk among genotypes. It is additionally assumed that
there exists an externally controlled environmental pa-
rameter λ, corresponding for example to a drug con-
centration that affects the fitness of a pathogen. If λ
is held fixed, then under the Wright-Fisher model the
population evolves to an evolutionary equilibrium state
ρeq(x, λ). If the parameter is varied with time, then the
actual state of the population ρ(x, t) lags behind the in-
stantaneous equilibrium state ρeq(x, λ(t)). Applying the
tools of SST, Ref. [191] shows how to construct a counter-
diabatic control protocol that eliminates this lag. This
opens the possibility of controlling biological evolution to
drive a population from an initial equilibrium state to a
desired final equilibrium state in finite time.
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SST have also been used to develop strategies for im-
plementing computational tasks rapidly and accurately,
and to study the inherent thermodynamic costs associ-
ated with these tasks [193]. Specifically, protocols were
designed to create, erase and transfer a single bit of
information stored in a double-well potential. These
tasks dissipate energy into the bit’s thermal surround-
ings. Ref. [193] explored how this dissipated work scales
with the rate of computation, the characteristic length
scale of the system, and the robustness of the (in-
herently metastable) information storage. A key find-
ing of Ref. [193] was that although Landauer’s princi-
ple [114, 115] establishes the minimum dissipated energy
needed to erase a bit of information, there is no simi-
lar bound on the amount of time needed to erase the
bit. Using SST, a bit can be erased arbitrarily rapidly
and with arbitrarily high fidelity, provided one is willing
to pay the requisite thermodynamic cost in dissipated
energy. The results of Ref. [193] illustrate, in a compu-
tational thermodynamic setting, the refined second law
of thermodynamics obtained in Ref. [94]. Generalizing
these approaches to underdamped systems is challenging
[116].

To conclude, we emphasize that the key ideas behind
SST, and inverse engineering, can be illustrated in an
early undergraduate course, with RC, LC or RLC cir-
cuits. An experimental demonstration was proposed in
[194], that furthermore provides an original approach to
the venerable teaching of differential equations.

VII. PERSPECTIVES AND CONCLUSIONS

Shortcuts to adiabaticity (STA) are finite-time proto-
cols that produce the same state as an infinitely slow
(so-called adiabatic) driving. We have here generalized
this approach to finite-time protocols connecting arbi-
trary states, referred to under the terminology of SST
(Swift State-to-state Transformations). For both Hamil-
tonian and stochastic dynamics, we have classified SST
into different types, inverse-engineering, counterdiabatic
(CD), and fast-forward (FF), mirroring the usual catego-
rization of quantum STA. This categorization is indeed
useful for presentation purposes but not so clear-cut as
it may seem: in the stochastic case, CD protocols can be
thought both as a special case of inverse-engineering ones
and as a certain limit of FF protocols—which somehow
smears the boundaries between the different categories.
One of the goals of our review is to highlight the common
fundamentals behind all of them. To conclude the paper,
we offer below some perspectives that emerge.

For isolated Hamiltonian systems (Sec. II) we foresee
three topics of potential future investigation. In systems
with one degree of freedom, one could drop the assump-
tion that the steering potential U(x, t) is a confining po-
tential with a single minimum, and instead consider a
confining potential with a double-well structure, with a
local maximum separating the two wells. If Umax gives

the value of the potential at this local maximum, then
each energy shell with E > Umax forms a single closed
loop in phase space, while each energy shell E < Umax

forms a pair of non-intersecting closed loops. The shell
E = Umax is a separatrix, with the characteristic shape
of a “figure-eight” closed loop. The adiabatic invariance
of the action I(E, t) breaks down in the vicinity of the
separatrix [195] and this in turn leads to subtle topologi-
cal effects [196], which may have interesting implications
for the design of shortcuts for such systems. Next, as al-
ready noted in Sec. II B 5, it is plausible that Hamiltonian
shortcuts can be generalized to integrable systems with
N > 1 degrees of freedom, as such systems effectively de-
compose into N independent one-degree-of-freedom sys-
tems. Finally, as also suggested in Sec. II B 5, it would be
worthwhile to investigate the design of SST for ergodic
and chaotic Hamiltonian systems that constitute canon-
ical families. These are systems with the (non-generic)
property that H(x,p, t) and H(x,p, t′) are related by a
canonical transformation, for any t, t′ ∈ [0, tf]. Progress
on any of these three questions may in turn provide in-
sight into quantum shortcuts for corresponding systems.

Most SST have been developed for one-dimensional
systems. As a rule, the generalization of these
protocols—either inverse engineering, counterdiabatic,
fast-forward, or thermal engineering—to higher-
dimensional systems is not straightforward. Still, inverse
engineering protocols, akin to those originally devised
for a colloidal particle in a one-dimensional harmonic
trap [17], have been worked out for an arbitrary curved
configuration space [197]. This shows the feasibility of
extending SST to arbitrary geometries, but engineering
optimal protocols—in the sense of minimizing work,
heat, entropy production, connection time or any
other relevant physical property over them—remains a
challenge in this case. On a related note, the protocols
detailed in our review are mostly designed in the over-
damped regime. Future theoretical developments in SST
are expected in the underdamped regime to accompany
the development of new experimental setups having a
tunable damping rate [198].

The irreversible work unavoidably appearing in SST
has been linked to information geometry ideas in linear
response [102]. In the information geometry approach,
a key role is played by the Fisher information, which at
equilibrium is related to derivatives of the distribution
function and, in certain specific situations, to fluctuations
of relevant quantities [86, 107, 147, 199]. This theoretical
framework also makes it possible to establish a speed-
limit inequality for SST, Eq. (92), which resembles the
quantum speed limit (the time-energy uncertainty rela-
tion [129, 131]). Recently, the information geometry ap-
proach has been employed beyond linear response. This
has led to the emergence of several versions of classical
speed-limits inequalities—also resembling the quantum
time-energy uncertainty relation—for systems described
by stochastic dynamics [133–135, 137–139, 142]. Never-
theless, the tightness of the obtained classical bounds, for
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instance that given by Eq. (97), is not well established—
unlike in the quantum case [130, 132]. Clarifying this
specific issue and, on a more general note, linking in-
formation geometry concepts and physical quantities be-
yond linear response are open questions. Answering them
constitutes an enticing perspective for future work, and
may provide a novel way to tackle and move forward non-
equilibrium statistical mechanics and, more specifically,
the field of SST.

We have exposed here several strategies for the con-
trol of systems in contact with a thermostat. Closed-
loop control protocols, i.e. those with feedback, have
not been discussed since they are intrinsically subject to
the system’s own time scales. However, such approaches
have the advantage of not requiring a perfect modeling
of the system under study. This is to be contrasted with
open-loop control protocols detailed in this review arti-
cle, that are of the feed-forward type. They provide a
wide range of strategies to accelerate the transition from
a given state to another over an a priori arbitrarily short
amount of time. The methods presented here provide
such solutions, despite the intrinsic randomness associ-
ated to the coupling with a reservoir, and even propose
to engineer the randomness.
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Appendix A: Summary of acronyms

CD Counterdiabatic
FF Fast-forward
FP Fokker-Planck
GCD Global Counterdiabatic
LCD Lobal Counterdiabatic
NESS Non-equilibrium Steady State
PDF Probability density function
STA Shortcut(s) to adiabaticity
SST Swift State-to-state Transformation(s)

Appendix B: Stochastic processes framework

1. Langevin and Fokker-Planck descriptions

For the sake of concreteness, let us consider a colloidal
particle immersed in a fluid in equilibrium at tempera-
ture T in the overdamped regime. For one-dimensional
motion, the evolution equation for the position x of the
Brownian particle is

γẋ = −∂xU(x, t) +
√

2γkBT (t) η(t), (B1)

where γ is the friction coefficient, U(x, t) is the driving
potential, T (t) is the temperature, kB is the Boltzmann
constant, and η(t) is a Gaussian white noise of unit vari-
ance,

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = δ(t− t′). (B2)

Note that, in general, both the potential and the temper-
ature may depend on time—as explicitly stated in our
notation. The diffusion coefficient and the temperature
verify Einstein’s relation D = kBT/γ, so the diffusion co-
efficient is in general also time-dependent. Different real-
izations of the noise η(t) give rise to different trajectories
for the colloidal particle. In the Langevin description,
〈· · · 〉 thus mean averaging over the different trajectories
of the stochastic process.

It is also possible to analyze the stochastic motion of
the colloid by using the ensemble picture. Therein, we
introduce the PDF ρ(x, t), which obeys the FP equation

γ∂tρ(x, t) = ∂x {[∂xU(x, t)]ρ(x, t) + kBT (t)∂xρ(x, t)} .
(B3)

For time-independent potential and temperature, the FP
equation has only one stationary solution that is the equi-
librium one, ρeq(x) ∝ exp[−βU(x)], with β = (kBT )−1.

It is interesting to note that the FP equation can be
cast in the form of a continuity equation,

∂tρ(x, t) = −∂xJ(x, t), (B4)

where the probability current J(x, t) is defined as

J(x, t) ≡ −γ−1 {[∂xU(x, t)] ρ(x, t) + kBT (t)∂xρ(x, t)} .
(B5)

Writing the probability current as J(x, t) = ρ(x, t)v(x, t),
a velocity field v(x, t) is introduced as

v(x, t) = −γ−1 [∂xU(x, t) + kBT (t)∂x ln ρ(x, t)] . (B6)

2. Stochastic thermodynamics

Following Sekimoto [4], we can write down the first
principle at the mesoscale by defining stochastic work
W and heat Q. As usual, work is the potential energy
change associated with the variation of the external pa-
rameters λ(t) in the potential (volume, stiffness of the
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trap, etc.). In other words, we consider

U(x, t) = U(x,λ(t)), (B7)

∂tU(x, t) = λ̇(t) · [∂λU(x,λ)]λ=λ(t) . (B8)

For each trajectory of the stochastic process, i.e. for each
realization of the white noise in the Langevin equation,
work is thus calculated as

W =

∫ tf

0

dt [∂tU(x, t)]x=x(t)

=

∫ tf

0

dt λ̇(t) · [∂λU(x,λ(t))]x=x(t) . (B9)

Note that W changes from trajectory to trajectory, i.e.
it is stochastic. We can also introduce the stochastic
instantaneous power,

Ẇ = λ̇(t) · [∂λU(x,λ(t))]x=x(t) , (B10)

such that W =
∫ tf

0
dt Ẇ . For each trajectory of the

stochastic process, the configurational contribution to
heat is thus the potential energy change due to the time
evolution of the particle’s position x(t), i.e.

Qconf =

∫ tf

0

dt ẋ(t) [∂xU(x, t)]x=x(t) . (B11)

For mathematical consistency, the above integral must
be understood in the Stratonovich sense [93]. Physically,
this entails

Qconf +W =

∫ tf

0

dt
d

dt
U(x(t), t) = ∆U, (B12)

where ∆U is the potential energy increment over the con-
sidered trajectory, i.e. ∆U is also stochastic.

In the Langevin picture, mean work and heat are ob-
tained by averaging over noise realizations. For example,
the average work reads

〈W 〉 =

〈∫ tf

0

dt λ̇(t) · [∂λU(x,λ(t))]x=x(t)

〉
, (B13)

where 〈· · ·〉 on the rhs means average over the noise η(t).
In the equivalent ensemble picture, the PDF ρ(x, t) obeys
the FP equation (B3) and one has

〈W 〉 =

∫ +∞

−∞
dx

∫ tf

0

dt λ̇(t) · ∂λU(x,λ(t)) ρ(x, t). (B14)

Consistently, the average configurational heat ensures
that Eq. (B12) holds in average,

〈Qconf〉 = 〈∆U〉 − 〈W 〉 =

∫ +∞

−∞
dx

∫ tf

0

dtU(x, t)∂tρ(x, t)

=

∫ +∞

−∞
dx

∫ tf

0

dt [∂xU(x, t)]v(x, t)ρ(x, t). (B15)

In order to have energy conservation—i.e. the first
principle—we must incorporate the kinetic contribution
to the energy. In the overdamped regime, the velocity
degree of freedom instantaneously relaxes to equilibrium,
so that the average kinetic energy 〈K〉 = kBT (t)/2 and
therefore average heat has a kinetic contribution,

〈Q〉 =
1

2
kB∆T︸ ︷︷ ︸
〈Qkin〉

+ 〈Qconf〉 . (B16)

The first principle states

〈Q〉+ 〈W 〉 = 〈∆E〉 , (B17)

where E is the total energy, E = K + U . For isother-
mal processes, T is constant and then there is no kinetic
contribution to the heat. Conversely, 〈Qkin〉 6= 0 for non-
isothermal processes: this is important, for example, to
correctly define finite-time adiabatic (in the sense of zero
average heat) processes [79]—see also Sec. III D.

Appendix C: Conditions for the existence of
Boltzmann’s breathers under static confinement

We work here in the framework of the Boltzmann equa-
tion for dilute gases, as described in section II D. We
have reported that when the external confining poten-
tial U is time-independent and harmonic, permanent (un-
damped) undriven breathing modes do exist, with a time-
dependent and periodic temperature. We address here
the reciprocal question: under which conditions on U do
such solutions exist? We restrict to a one-dimensional
dynamics for simplicity.

We start from the potential given by (45), where the
contribution Ū stems from Eq. (43). The confining po-
tential then reads

U(x, t) =
1

σ2
U0

(x
σ

)
− m

2

σ̈

σ
x2 +

b

x2
, (C1)

in which we require that σ be time dependent, with nev-
ertheless a time independent U on the left hand side.
Taking the third derivative with respect to x, we arrive
at

∂3
xU =

1

σ5
U

′′′

0

(x
σ

)
− 24 b

x5
, (C2)

which should be independent of time, and thus indepen-
dent of σ. This implies that x̃ U IV0 (x̃) = −5U

′′′

0 (x̃) = 0,

i.e. U
′′′

0 (x̃) must be a power-law function in 1/x̃5. Sub-
sequent integration yields

U0(x) =
A

x2
+Bx2 + Cx, (C3)

where A, B and C are constants. Plugging this back into
Eq. (C1) and requiring once more the time-independence
of U , we get C = 0. This indicates



29

• what differential equation σ should fulfil:

B

σ4
− m

2

σ̈

σ
= Constant. (C4)

This is an Ermakov-like relation for which
...
β +

4Ω2β̇ = 0 with Ω2 = 2 Constant/m, see section II D
and in particular Eqs. (52) and (53). We recover
the breathing modes found out by Boltzmann him-
self, and described in [48, 49].

• that apart from the 1/r2 contribution already men-
tioned in section II D (here 1/x2), U should be a
harmonic potential.

While the present argument transposes directly to
isotropic potentials of the type

U(r, t) =
1

σ2
U0

(r
σ

)
− m

2

σ̈

σ
r2 +

b

r2
, (C5)

generalization to higher dimensions does not seem
straightforward.

Appendix D: Derivation of the expression for the
minimum irreversible work

In this appendix, we give more details of the derivation
of the expression for the minimum irreversible work. The
calculation below somehow puts on a common ground the
approaches developed in Refs. [93, 103, 104].

Our starting point is the Burgers equation (81), which
must be jointly solved with the FP equation (72) to
find the optimal profiles for ρ(x, t) and v(x, t). On the
one hand, the characteristic system of ODEs (Lagrange-
Charpit equations) for the Burgers equation is

dt

ds
= 1,

dx

ds
= v,

dv

ds
= 0. (D1)

Therefore, s = t, v = vi, and x = vis+ xi. At the initial
time t = ti = 0, we have that vi = ϕ(xi), where ϕ is an
an arbitrary smooth function, and thus v = ϕ(xi), with
xi = x− vt. The solution of the Burgers equation can be
given in implicit form,

v = ϕ(x− vt). (D2)

On the other hand, the characteristic system of ODEs
for the FP equation is

dt

ds
= 1,

dx

ds
= v,

dρ

ds
= −ρ ∂xv. (D3)

The two first equations are the same as for the Burgers
equation, so we focus on the third one,

dρ

ds
= − ϕ′(xi)

1 + sϕ′(xi)
ρ, (D4)

which can be readily integrated to give

ρ(s) =
ρi(xi)

1 + sϕ′(xi)
. (D5)

We have taken into account that ρ(s = 0) = ρi(xi). Go-
ing back to the original variables (x, t),

ρ(x, t) =
ρi(x− vt)

1 + tϕ′(x− vt)
, (D6)

in which v(x, t) is in turn implicitly given by Eq. (D2).
Equation (D6) can also be written in an equivalent form:
making use of Eq. (D2), vx = (1− tvx)ϕ′(x− vt) and

vx =
ϕ′(x− vt)

1 + tϕ′(x− vt)
=⇒ 1− tvx =

1

1 + tϕ′(x− vt)
.

(D7)
Therefore, one has that

ρ(x, t) = (1− tvx)ρi(x− vt), (D8)

and

dxρ(x, t) = dxiρi(xi, t), xi ≡ x− vt. (D9)

Now, the function ϕ is determined by imposing that
the system must reach the target distribution ρf(x) at
the final time t = tf, i.e.

ρf(x) =
ρi(x− vf(x)tf)

1 + tf ϕ′(x− vf(x)tf)
, (D10a)

vf(x) ≡ v(x, tf) = ϕ(x− vf(x)tf). (D10b)

Taking spatial derivative in the last equation and insert-
ing the result into the previous one, we get

ρf(x) = ρi(x− vf(x)tf) [1− v′f(x)tf] , (D11)

which determines vf(x) or, equivalently, the (up to now)
unknown function ϕ.

Zhang’s solution to the optimization problem [103, 104]
is recovered by going to the cumulative distribution func-
tion defined in Eq. (68). Integrating Eq. (D11) from −∞
to some arbitrary point x, one gets

Ff(x) = Fi(x− vf(x)tf), (D12)

after assuming that limx→−∞ [x− vf(x)tf] = −∞; Fi and
Ff are the cumulative distributions corresponding to ρi

and ρf, respectively. Since both ρi and ρf are positive
definite for equilibrium states, Fi and Ff are strictly in-
creasing functions and we can explicitly solve the above
equation for vf(x),

x− vf(x)tf = F−1
i (Ff(x)) , (D13)

where F−1
i is the inverse function of Fi [224]. By defining

the function

Ξ(x) ≡ F−1
i (Ff(x)) , (D14)
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we get that

vf(x) =
x− Ξ(x)

tf
. (D15)

Note that determining vf(x) is utterly equivalent to de-
termining ϕ(x), because Eq. (D10b) tells us that

vf(x) = ϕ(Ξ(x)) =⇒ ϕ(x) = vf(Ξ
−1(x)) =

Ξ−1(x)− x
tf

.

(D16)
It is useful to recall that, in the connection problem we
are addressing, both Fi and Ff are given, so that the
function Ξ(x) in (D14) is perfectly defined. Then, the
function ϕ(x) follows from Eq. (D16) and v(x, t) is thus
implicitly provided by (D2), which completes the solution
to the optimization problem.

It is important to remark that shocks cannot appear
in the obtained solution when connecting equilibrium
states,

1 + tϕ′(x) = 1 +
t

tf

(
d

dx
Ξ−1(x)− 1

)
> 0 (D17)

for all times t ∈ [0, tf]. Proving the above inequality is
equivalent to prove that the term inside the parenthesis
in Eq. (D17) is always larger than −1 or, equivalently,
that d

dxΞ−1(x) > 0 for all x. This is indeed true, since
Eq. (D14) can be rewritten as

Fi(x) = Ff(Ξ
−1(x)) =⇒ d

dx
Ξ−1(x) =

ρi(x)

ρf(Ξ−1(x))
> 0.

(D18)
Bringing to bear Eqs. (D2), (D6), (D9), and (D16), the

irreversible power over the optimal protocol is

P ∗irr =γ

∫ +∞

−∞
dx ρ(x, t)v2(x, t)

=γ

∫ +∞

−∞
dx (1− tvx)ρi(x− vt)ϕ2(x− vt)

=γ

∫ +∞

−∞
dxi ρi(xi)

[
Ξ−1(xi)− xi

tf

]2

=
γ

t2f

∫ +∞

−∞
dxi ρi(xi)

[
Ξ−1(xi)− xi

]2
. (D19)

where Eq. (D8) has been used and xi was defined in
Eq. (D9). The expression (D19) for the optimal irre-
versible power is identical to Eq. (87) in the main text.
Therefrom, the minimum irreversible work is readily ob-
tained,

W ∗irr = tfP
∗
irr =

γ

tf

∫ +∞

−∞
dxi ρi(xi)

[
Ξ−1(xi)− xi

]2
,

(D20)

which is again identical to Eq. (88)—we repeat it here to
keep the appendix self-contained.

Appendix E: Comparison of speed limit inequalities
for the harmonic case

It is illuminating to compare inequalities (92) and
(97) for the harmonic case, for which the probabil-
ity distribution is Gaussian for all times, ρ(x, t) =

(2πσ2)−1/2 exp
(
− x2

2σ2

)
. A simple calculation leads to

Pirr(t) = γσ̇2, I(t) = 2

(
σ̇

σ

)2

. (E1)

Making use of these expressions, we have that

Llin =
√
γ

∫ tf

0

dt|σ̇| ≥ √γ
∣∣∣∣∫ tf

0

dt σ̇

∣∣∣∣ =
√
γ|σf − σi|,

(E2a)

L =
√

2

∫ tf

0

dt

∣∣∣∣ ddt lnσ

∣∣∣∣ ≥ √2

∣∣∣∣∫ tf

0

dt
d

dt
lnσ

∣∣∣∣ =
√

2 ln

∣∣∣∣σf

σi

∣∣∣∣,
(E2b)

and thus

tfWirr ≥ γ|σf − σi|2, tf C ≥
(

ln

∣∣∣∣σf

σi

∣∣∣∣)2

. (E3)

On the one hand, these inequalities do not immediately
translate to bounds for the connecting time, because both
Wirr and C depend on tf—and on the path swept by the
system to go from the initial to the target state. In fact,
in the harmonic case we are analysing

Wirr = γ

∫ tf

0

dt σ̇2, C =

∫ tf

0

dt

(
d

dt
lnσ

)2

. (E4)

If one assumes that all the time dependence occurs
through a reduced time s = t/tf, i.e. σ = σ(s),

Wirr =
γ

tf

∫ 1

0

ds

(
dσ

ds

)2

, C =
1

tf

∫ t1

0

ds

(
d

ds
lnσ

)2

,

(E5)
and tf disappears from Eq. (E3). On the other hand, both
inequalities are equivalent in the linear response regime—
a property that is somehow expected, since the Fisher
information I(t) is directly related to the friction tensor
ζ(λ) in Eq. (90) [102]. Within linear response, σ = σf +
δσ and non-linearities in δσ are neglected. Therefore, we
have that

Llin ∼
√
γ|δσi|, L ∼

√
2

σf
|δσi|, (E6)

and

Wirr ∼ γ
∫ tf

0

dt

(
d

dt
δσ

)2

, L ∼ 1

σ2
f

∫ tf

0

dt

(
d

dt
δσ

)2

.

(E7)
Finally, both inequalities can be cast in the same form,

tf

∫ tf

0

dt

(
d

dt
δσ

)2

≥ |δσi|2. (E8)

Consistently with our notation, δσi = σi − σf.
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Appendix F: A shortcut to the fluctuation relation

The idea of counterdiabatic driving, in the framework
of the Langevin/Fokker-Planck equation used in section
III B, offers an economical derivation of the work fluctu-
ation relation [73]. In a potential U(x,λ(t)) where λ(t)
stands for the collection of external parameters controlled
by an operator (say, the experimentalist), the particle
density ρ obeys Eq. (58) with fixed temperature (i.e.
fixed β). Here, it is understood that a given protocol is
chosen from the outset, through the time dependence of
the steering parameter λ. What would be the counterdia-
batic force to be applied, such that the particle density
would be forced to follow the equilibrium distribution?
In other words, we seek to enforce

ρ(x, t) = ρeq(x,λ(t)) =
1

Z(λ(t))
e−βU(x,λ(t)) (F1)

with the partition function

Z(λ) =

∫ ∞
−∞

e−βU(x,λ) dx, (F2)

assumed well defined for all λ (i.e. U is supposed to be
confining enough). The required counterdiabatic term
is given by Eq. (67). Introducing the Fokker-Planck
operator Lu associated to U(x,λ(t)), such that

Luρ ≡ ∂x[ρ ∂xU(x,λ(t))] + β−1∂2
xρ (F3)

the evolution equation for ρeq can be written

∂tρeq(x,λ(t)) = Luρeq − β
(
Ẇ −

〈
Ẇ
〉)

ρeq (F4)

= −β
(
Ẇ −

〈
Ẇ
〉)

ρeq. (F5)

Here, we have introduced the instantaneous power

Ẇ (x, t) = λ̇ · ∂λU(x,λ(t)), (F6)

the dot denotes a time derivative, and the bracket is for
an average with weight ρeq:〈

Ẇ
〉

=

∫ ∞
−∞

Ẇ ρeq(x,λ) dx. (F7)

Note that integrating Ẇ over a trajectory, one obtains
the corresponding stochastic work W .

While relation (F5) is straightforwardly obtained from
the very definition of the equilibrium density in Eq. (F1),
we are here more interested in the seemingly more com-
plex form in Eq. (F4). Consider indeed the auxiliary
dynamics defined by the evolution equation

∂tQ(x, t) = LuQ− βẆQ (F8)

and initial condition

Q(x, t = 0) = ρeq(x,λ(0)) =
1

Z(λ(0))
e−βU(x,λ(0)).

(F9)
Compared to Eq. (F4), the term in β〈Ẇ 〉Q is missing
in (F8). To proceed, it is instructive to reinterpret the
dynamics encoded in (F4) as follows. A collection of inde-
pendent random walkers, diffusing in the force field−∂xU
(hence the presence of the operator Lu), is subject to a
population/depopulation mechanism, such that walkers

are added at rate βẆ . This leads to an overall popula-
tion change, such that when U increases locally, Ẇ > 0
and particles are removed, to match a lesser probabil-
ity of presence. Conversely, when Ẇ < 0, particles are
added locally. The counter-term in 〈Ẇ 〉ρeq has the effect
to correct for this gain/loss, and conserve globally the to-

tal number of walkers. The resulting integral
∫ +∞
−∞ ρeqdx

is thereby conserved. The counter-term does not change
the x dependence; it only affects normalization, and can
be viewed as the action of a global rescaling ρeq → Λρeq.
If this counter-term is absent, as in the case in Eq. (F8),
we obtain the unnormalized solution

Q(x, t) =
1

Z(λ(0))
e−βU(x,λ(t)). (F10)

The final step in the argument is the realization that
Q can be reinterpreted as [200]

Q(x, t) =
〈
e−βW δ(x− x(t))

〉
. (F11)

Here, the brackets correspond to averaging over all tra-
jectories starting from a point x0 drawn according to the
distribution ρeq(x0,λ(0)), and that end up at position x
at time t. The stochastic work is

W =

∫ t

0

λ̇(τ) · ∂λU(x(τ),λ(τ)) dτ. (F12)

This is a facet of the Feynman-Kac correspondence.
Since〈

e−βW δ(x− x(t))
〉

=
1

Z(λ(0))
e−βU(x,λ(t)) (F13)

we can integrate over x on both sides to get

〈
e−βW

〉
=

Z(λ(t))

Z(λ(0))
≡ e−β∆F (F14)

where the last equality serves to define the free-energy
difference ∆F . The above relation, valid at all time t
for an arbitrary protocol λ(t), is the work fluctuation
relation [73].
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France 85, 431 (1957).
[70] S. Redner, A Guide to First-Passage Pro-

cesses (Cambridge University Press, 2001), ISBN

9780521652483, URL https://books.google.es/

books?id=xtsqMh3VC98C.
[71] Z. C. Tu, Physical Review E 89, 052148 (2014),

URL https://link.aps.org/doi/10.1103/PhysRevE.

89.052148.
[72] G. Li, J.-F. Chen, C. P. Sun, and H. Dong,

arXiv:2110.09137 (2021), URL http://arxiv.org/abs/

2110.09137.
[73] C. Jarzynski, Physical Review Letters 78, 2690 (1997).
[74] S. Masuda and K. Nakamura, Physical Review A 78,

062108 (2008), URL https://link.aps.org/doi/10.

1103/PhysRevA.78.062108.
[75] I. A. Mart́ınez, E. Roldán, J. M. R. Parrondo, and

D. Petrov, Physical Review E 87, 032159 (2013),
URL https://link.aps.org/doi/10.1103/PhysRevE.

87.032159.
[76] J. A. C. Albay, P.-Y. Lai, and Y. Jun, Applied Physics

Letters 116, 103706 (2020), URL https://doi.org/

10.1063/1.5143602.
[77] P. Bayati and E. Trizac, New Journal of Physics 23

(2021).
[78] T. Li, S. Kheifets, and M. G. Raizen, Nature Physics 7,

527 (2011), ISSN 1745-2481, URL https://doi.org/

10.1038/nphys1952.
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and J. R. Green, Nature Physics 16, 1211 (2020), URL
https://doi.org/10.1038/s41567-020-0981-y.

[140] G. Falasco and M. Esposito, Physical Review Letters
125, 120604 (2020), ISSN 0031-9007, 1079-7114, URL
https://link.aps.org/doi/10.1103/PhysRevLett.

125.120604.
[141] Y. Rosales-Cabara, G. Manfredi, G. Schnoering, P.-A.

Hervieux, L. Mertz, and C. Genet, Physical Review Re-
search 2, 012012 (2020), URL https://link.aps.org/

doi/10.1103/PhysRevResearch.2.012012.
[142] M. Nakazato and S. Ito, Physical Review Research 3,

043093 (2021), ISSN 2643-1564, URL https://link.

aps.org/doi/10.1103/PhysRevResearch.3.043093.
[143] L.-L. Yan, J.-W. Zhang, M.-R. Yun, J.-C. Li, G.-Y.

Ding, J.-F. Wei, J.-T. Bu, B. Wang, L. Chen, S.-L.
Su, et al., Physical Review Letters 128, 050603 (2022),
ISSN 0031-9007, 1079-7114, URL https://link.aps.

org/doi/10.1103/PhysRevLett.128.050603.
[144] S. Deffner and M. V. S. Bonança, EPL (Europhysics

Letters) 131, 20001 (2020), URL https://doi.org/10.

1209/0295-5075/131/20001.
[145] Y. Hasegawa and T. Van Vu, Physical Review E 99,

062126 (2019), URL https://link.aps.org/doi/10.

1103/PhysRevE.99.062126.
[146] A. Dechant, Journal of Physics A: Mathematical and

Theoretical 52, 035001 (2019), ISSN 1751-8113, 1751-
8121, URL https://iopscience.iop.org/article/

10.1088/1751-8121/aaf3ff.
[147] P. Salamon and R. S. Berry, Physical Review Letters

51, 1127 (1983), ISSN 0031-9007, URL https://link.

aps.org/doi/10.1103/PhysRevLett.51.1127.
[148] P. Salamon, J. D. Nulton, and R. S. Berry, The Journal

of Chemical Physics 82, 2433 (1985).
[149] T. Feldmann, B. Andresen, A. Qi, and P. Salamon,

The Journal of Chemical Physics 83, 5849 (1985), ISSN
0021-9606, 1089-7690, URL http://aip.scitation.

org/doi/10.1063/1.449666.
[150] M. Chupeau, B. Besga, D. Guéry-Odelin, E. Trizac,
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[176] N. Sánchez-Salas, L. López-Palacios, S. Velasco, and

A. Calvo Hernández, Physical Review E 82, 051101
(2010), ISSN 1539-3755, 1550-2376, URL https://

link.aps.org/doi/10.1103/PhysRevE.82.051101.
[177] A. Celani, S. Bo, R. Eichhorn, and E. Aurell,

Physical Review Letters 109, 260603 (2012), URL
https://link.aps.org/doi/10.1103/PhysRevLett.

109.260603.
[178] S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapa-

thy, and A. K. Sood, Nature Physics 12, 1134 (2016),
ISSN 1745-2473, 1745-2481, URL http://www.nature.

com/articles/nphys3870.
[179] A. E. Allahverdyan, K. V. Hovhannisyan, A. V.

Melkikh, and S. G. Gevorkian, Physical Review Letters
111, 050601 (2013), ISSN 0031-9007, 1079-7114, URL
https://link.aps.org/doi/10.1103/PhysRevLett.

111.050601.
[180] N. Shiraishi, Physical Review E 92, 050101 (2015),

ISSN 1539-3755, 1550-2376, URL https://link.aps.

org/doi/10.1103/PhysRevE.92.050101.
[181] M. Campisi and R. Fazio, Nature Communications

7, 11895 (2016), ISSN 2041-1723, URL http://www.

nature.com/articles/ncomms11895.
[182] J. Koning and J. O. Indekeu, The European Phys-

ical Journal B 89, 248 (2016), ISSN 1434-6028,
1434-6036, URL http://link.springer.com/10.1140/

epjb/e2016-70297-9.
[183] V. Holubec and A. Ryabov, Physical Review E 96,

062107 (2017), URL https://link.aps.org/doi/10.

1103/PhysRevE.96.062107.
[184] V. Holubec and A. Ryabov, Physical Review Letters

121, 120601 (2018), URL https://link.aps.org/doi/

10.1103/PhysRevLett.121.120601.
[185] L. M. Cangemi, M. Carrega, A. De Candia,

V. Cataudella, G. De Filippis, M. Sassetti, and G. Be-
nenti, Physical Review Research 3, 013237 (2021), ISSN
2643-1564, URL https://link.aps.org/doi/10.1103/

PhysRevResearch.3.013237.

[186] A. G. Frim and M. R. DeWeese, arXiv:2112.10797
(2021), URL http://arxiv.org/abs/2112.10797.

[187] S. Bo, E. Aurell, R. Eichhorn, and A. Celani, EPL
(Europhysics Letters) 103, 10010 (2013), ISSN 0295-
5075, 1286-4854, URL https://iopscience.iop.org/

article/10.1209/0295-5075/103/10010.
[188] O. J. M. Smith, Feedback Control Systems (McGraw-

Hill Book, 1958).
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then similar impulses at those times can “rescue” the
fast-forward method.

[209] H(x,p, t) is a canonical family if H(t1) can be mapped
to H(t2) by a canonical transformation, for any t1, t2 ∈
[0, tf] [201].

[210] This conclusion follows by comparing Eqs.(6) and (22)
of Ref. [16], which give the exact time-dependent wave-
functions for LCD and FF dynamics, respectively.

[211] The time-in-dependence of the normalization constant
Z0 follows from the form of U(r, t), as can be shown by
inspection.

[212] Also variants such as Engineered Swift Relaxation for
the connection of non-equilibrium states [83], see also
Sec. V.

[213] For a linear system of the type f(X,λ(t)) = AX(t) +
Bλ(t), we define the n× nr controllability matrix C =
[B AB ... An−1B]. The system is controllable if C has n
linearly independent columns, i.e. rank(C) = n [19, 60].

[214] This can be viewed as a consequence of the central limit
theorem, and dwells on the fact that the solution to
Langevin equation is then linear in the noise history.

[215] Specifically, one can be mapped onto the other if Ui(x) is
proportional to a power of x. For example, if we consider
the harmonic potential Ui(x) = kix

2/2, the potential
U remains harmonic for both cases, shape-preserving
and scale-invariant, but with a different stiffness, ki/σ

2

and ki/σ
4 respectively. For general Ui, the map is not

guaranteed.
[216] This velocity field is exactly the same defined in the

counterdiabatic driving, since spatial integration of the
FP equation, written in the form (72), from −∞ to x
leads precisely to Eq. (69).

[217] See Appendix B for a brief account of the definitions of
work and heat in the context of stochastic thermody-
namics.

[218] Note that the first principle states that 〈Q〉 + 〈W 〉 =
∆U . As the initial and final states of the SST are fixed,
∆U is also fixed and minimizing 〈W 〉 thus entails mini-
mizing −〈Q〉, i.e. the average heat released to the ther-
mal bath.

[219] The authors addressed the regularization of these dis-
continuities by introducing a penalty for the current ac-
celeration [95]. A different “surgery” procedure, which
also introduces boundary layers, has been considered to
avoid these jumps [90].

[220] The subindex “lin” stresses that this definition of sta-
tistical length is valid in linear response, see below for a
more general definition based on the Fisher information.

[221] A perturbative approach to solve the FP equation has
been introduced with the aim of extending the range of
validity of Sivak and Crook’s results [202].

[222] For evolution equations that are linear both in the con-
trols and in the variables, there exist rigorous theorems
that ensure that the optimal control is of bang-bang
type, with n − 1 switchings for a system with n vari-
ables. For evolution equations that are non-linear in the
variables but linear in the controls, Pontryagin’s max-
imum principle implies that a similar situation is ex-
pected and, since here n = 2, there is one switching [83].

[223] A microscopic theory for the Curzon-Ahlborn cycle has
been recently proposed [203].

[224] Note that Eq. (D13) ensures that
limx→−∞ [x− vf(x)tf] = −∞, since Ff(−∞) = 0
and F−1

i (0) = −∞.
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