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Time scaling and quantum speed limit in non-Hermitian Hamiltonians
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We report on a time-scaling technique to enhance the performances of quantum control protocols in non-
Hermitian systems. The considered time scaling involves no extra couplings and yields a significant enhancement
of the quantum fidelity for a comparable amount of resources. We discuss the application of this technique to
quantum-state transfers in two- and three-level open quantum systems. We derive the quantum speed limit in a
system governed by a non-Hermitian Hamiltonian. Interestingly, we show that with an appropriate driving the
time-scaling technique preserves the optimality of the quantum speed with respect to the quantum speed limit
whereas reducing significantly the damping of the quantum-state norm.
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I. INTRODUCTION

Fast quantum control protocols have a promising future
in quantum platforms as they mitigate the deleterious effects
of disorder or/and dissipation. Introduced about a decade
ago, shortcuts to adiabaticity (STA) [1] have already a strong
track record of improving quantum procedures in a wide
variety of quantum platforms, including ultracold atom se-
tups [2–5], NMR [6], solid-state [7] systems, superconducting
qubits [8], and topological spin chains [9,10]. There are
several well-established methods to build STA protocols,
such as the optimal control [11], the counterdiabatic driv-
ing [12–15], the use of Lewis-Riesenfeld invariants [16–20],
or the use of properly scaled dynamical variables [21] to
name a few. These methods provide different strategies to
hamper, compensate, or mitigate the effects of nonadiabatic
transitions.

As a matter of fact, STA protocols require more resources
than adiabatic methods and may involve a larger number of
dynamical couplings. For instance, the fast-forward technique
as originally introduced by Masuda and Nakamura [22], Mat-
suda and Rice [23], Takahashi [24], and Zhu and Chen [25],
requires the presence of extra couplings to be regularized in
the limit of strong acceleration [26]. The same conclusion
holds for most counterdiabatic protocols. Indeed, the dynami-
cal control of additional interactions may constitute a limit for
their practical implementation.

In the presence of dissipation, an arbitrary slow driving in
the adiabatic limit is deleterious. The question is rather how to
mitigate the effect of dissipation for a given protocol duration
and to approach the ultimate limit provided by the quantum
speed limit (QSL) [27–36] in non-Hermitian systems. In this
article, we investigate a time-scaling method for finite Hilbert
spaces that tackles these issues: It does not introduce extra
couplings and preserves the quantum speed optimality with
respect to the QSL in the considered systems whereas re-
ducing the deleterious effect of the dissipation on the state

norm. In addition, this strategy enables a minimization of the
resources.

As a starting point, we consider a given quantum trajectory
|ψ0(t )〉 solution of the time-dependent Schrödinger equation
for the Hamiltonian Ĥ (t ),

ih̄
∂|ψ0(t )〉

∂t
= H (t )|ψ0(t )〉, (1)

where the time dependence of the Hamiltonian is encapsu-
lated in a set of parameters Ĥ (t ) = Ĥ [λ1(t ), . . . , λN (t )]. The
quantum trajectory |ψ0[�(t )]〉 is then a solution of the time-
dependent Schrödinger equation for the rescaled Hamiltonian
Ĥ�(t ),

Ĥ�(t ) = �̇Ĥ{λ1[�(t )], . . . , λN [�(t )]}. (2)

where �(t ) is assumed to be a monotone differentiable func-
tion such that �(0) = 0 and �̇(t ) � 0 at any time.

The Hamiltonian (2) simply provides a time rescaling of
the original solution. If T denotes the final time at which
the system reaches the desired quantum-state target under the
driving Ĥ (t ), the evolution under the rescaled Hamiltonian
Ĥ�(t ) reaches the very same target in a time T � = �−1(T ),
that can be much shorter. As a result, time scaling provides
a priori the simplest way to realize a shortcut to adiabaticity
protocol.

The time-scaling method provides an enhancement of the
protocol performance whereas maintaining the original quan-
tum trajectory. In the following, we explain how to design the
time-scaling �(t ) in a wide variety of contexts. The method
is quite general and has a broad range of interdisciplinary ap-
plications in the increasingly relevant field of non-Hermitian
quantum systems [37–39]. To work out quantitatively a strat-
egy that minimizes the influence of dissipation, we define in
Sec. II a driving that ensures a constant damping rate during
the whole parametrized evolution. This systematic approach
provides a clear improvement over the original driving and is
illustrated in two- and three-level systems. This strategy can
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be applied jointly with geometric corrections on the driving
field mitigating the effects of dissipation [40]. We explain
how a suitable choice for the time-scaling function enables
one to minimize the energetic cost of STA protocols for both
closed and open systems whereas achieving the same quan-
tum fidelity. In Sec. III, we discuss the relation between the
time-scaling transform and the quantum speed limit. General-
izations of the QSL to open systems have been obtained within
the density-matrix formalism [35], and in connection with the
concept of Fisher information [36]. Here, we put forward a
simple derivation of the QSL for quantum systems driven by
non-Hermitian Hamiltonians in the spirit of the Vaidmann
bound [30]. We show that the time-scaling transform pre-
serves the ratio of the quantum speed to the QSL in two- and
three-level dissipative systems with appropriate corrections to
the quantum driving.

II. TIME SCALING FOR DISSIPATIVE TWO-
AND THREE-LEVEL SYSTEMS

We discuss here the application of the time-scaling method
to open quantum systems described by non-Hermitian Hamil-
tonian [41,42]. First, we address the commonly called fast
quasiadiabatic (FAQUAD) protocol [43,44] for a dissipative
two-level system [45]. We then investigate the application
of time scaling to the stimulated Raman adiabatic passage
(STIRAP) protocol in a three-level system. For each example,
we first provide a reminder on a reference quantum protocol
in the absence of dissipation. We, subsequently, show how the
time scaling provides a systematic method to reach optimally
the target state in the presence of dissipation.

A. FAQUAD driving in a two-level dissipative system

The FAQUAD protocol has been originally proposed for
dissipationless quantum systems to perform a state to state
transformation as quickly as possible whereas remaining as
adiabatic as possible at all times. Let us recall the main
features of this protocol for a two-level quantum system de-
scribed by the control Hamiltonian,

Ĥ0(t ) = h̄

(
δ(t ) �(t )

�(t ) −δ(t )

)
(3)

expressed here in the decoupled {|e〉, |g〉} basis with a real-
valued Rabi frequency �(t ). Its instantaneous eigenvalues
are E±(t ) = ±h̄

√
δ(t )2 + �(t )2. They are associated with the

instantaneous eigenvectors of Ĥ0(t ),

|φ+(θ )〉 =
[

cos
(

θ
2

)
sin

(
θ
2

)], |φ−(θ )〉 =
[

sin
(

θ
2

)
− cos

(
θ
2

)], (4)

where θ (t ) = acos[δ(t )/
√

δ(t )2 + �2(t )]. In the FAQUAD
approach, the time evolution of θ (t ) is obtained by keeping
constant the adiabatic criterium (equal to a constant c) [43],

θ̇ = c

h̄

|E+(t ) − E−(t )|
|〈φ+(θ )|∂θφ−(θ )〉| , (5)

where 0 < c < 1. The c → 0 limit is nothing but the adiabatic
limit. In this protocol, nonadiabatic transitions are controlled
through the “driving speed.”

We now discuss the implementation of the time-scaling
method on a FAQUAD driving protocol of control pa-
rameters noted {�(t ), δ(t )}. This driving yields a quantum
trajectory that follows closely quasiadiabatically the instan-
taneous eigenstate |φ+[θ (t )]〉. By definition of a FAQUAD
protocol, the angle θ (t ) and the parameters {�(t ), δ(t )} ful-
fill the FAQUAD condition (5) for a given quasiadiabatic
constant c. The time-scaling transform consists in apply-
ing instead the time-scaled control parameters {��(t ), δ�(t )}
with ��(t ) = �̇(t )�[�(t )] and δ�(t ) = �̇(t )δ[�(t )]. These
parameters yield a quantum trajectory |ψ�(t )〉 = |ψ[�(t )]〉
close to the instantaneous eigenvector |φ+[θ�(t )]〉 where
θ�(t ) = θ [�(t )]. In the time-scaled protocol, the left-hand
side of the FAQUAD condition (5) involves the rescaled
time-dependent angle θ�(t ), whereas the right-hand side in-
volves the eigenvalues of the rescaled Hamiltonian Ĥ�(t ) =
�̇(t )Ĥ[�(t )]. Both sides of Eq. (5) are, thus, multiplied by
the same factor �̇(t ) under the time-scaling transform, leaving
the FAQUAD condition (5) and the constant c unaffected. As a
result, we can use this invariance in order to engineer a scaling
function �(t ) which fulfills extra requirements. We propose
hereafter to set �(t ) by defining the acceptable dissipation rate
for the considered quantum protocol.

We model the influence of dissipation with the following
non-Hermitian Hamiltonian [45],

Ĥ (t ) = Ĥ0(t ) − ih̄γ̂ . (6)

Originally introduced in nuclear physics [46], effective non-
Hermitian Hamiltonians describe diverse phenomena, such
as superradiance [47], non-Hermitian transport [38], or time
crystals [39]. The dissipation operator γ̂ typically depends
on the system-environment coupling and on the environment
quantum state and will be treated as a given parameter here.
For the considered two-level system, we assume a diagonal
dissipation operator γ̂ = γe|e〉〈e| + γg|g〉〈g|, where |e〉 (|g〉)
denote the excited (ground) state. For the sake of generality,
we use a generic two-level system, which may correspond to
a two-level atom, to a quantum dot, or to a spin 1/2 depend-
ing on the context. The effective Hamiltonian (3) and (6) is
relevant in a wide variety of domains [37] including NMR sys-
tems [48], quantum electrodynamics, quantum information,
solid-state quantum dots, and quantum optics. Therefore, the
presented time-scaling technique has a broad interdisciplinary
range of applications.

We detail below a systematic procedure to choose the
time-scaling �(t ) in order to mitigate dissipation effects in a
FAQUAD driving. We note N�(t ) =

√
〈ψ�(t )|ψ�(t )〉 as the

norm of the quantum state driven by the time-scaled control
parameters {��(t ), δ�(t )}. As |ψ�(t )〉 ≈ N�(t )|φ+[θ�(t )]〉,
the corresponding norm N� can be seen as a function of the
angle θ parametrizing the trajectory. Otherwise stated, we de-
fine the norm N�

θ by N�
θ [θ�(t )] = N�(t ). Taking advantage

of the extra freedom provided by the time-scaling function, we
impose a fixed “geometric” damping rate along the trajectory,

1

N�
θ

dN�
θ

dθ
= −c′, (7)

with a given constant c′ characterizing the quality of
the driving. Equation (7) acts as a gauge-fixing condition

052620-2



TIME SCALING AND QUANTUM SPEED LIMIT IN … PHYSICAL REVIEW A 104, 052620 (2021)

determining the time-scaling �(t ) and can be easily inte-
grated for the considered quantum trajectory 0 � θ � π as
N�

θ (π ) = N�
θ (0) exp[−πc′]. For a given quantum trajectory,

the final quantum-state damping, thus, depends only on the
value of the constant c′, which is determined by the desired
quantum protocol reliability.

The evolution of the norm N� of the rescaled quan-
tum state under the quasiadiabatic approximation (see
Appendix A) is given by

1

N�

dN�

dt
= −〈φ+[θ�(t )]|γ̂ |φ+[θ�(t )]〉, (8)

where we have substituted the eigenstate |φ+[θ�(t )]〉 to
|ψ�(t )〉 for the estimation of the instantaneous dissipation
rate. This latter approximation is justified for the values of
the constant c considered below. Besides, this approximation
is only used for the design of the time-scaling �(t )—once we
have this time scaling at hand, we evaluate its performance
by resolving numerically the full Schrödinger equation. Using
the chain rule,

dN�

dt
= dN�

θ

dθ�

dθ�

d�
�̇, (9)

and dividing Eq. (8) by Eq. (7), one obtains

�̇
dθ�

d�
= 1

c′ 〈φ+(θ�)|γ̂ |φ+(θ�)〉. (10)

This first-order differential equation with the initial condition
�(0) = 0 enables a complete determination of the time-
scaling �(t ) associated with a constant geometric damping.
From Eq. (10), we see that the gauge-fixing condition (7)
prescribes a driving speed θ̇� = �̇ dθ�/d� proportional to
the instantaneous dissipation rate. It encodes mathematically
the intuitive idea according to which one should increase the
driving speed in a region of strong dissipation. Interestingly,
the driving speed depends here only on geometric features of
the trajectory |φ+(θ )〉, i.e., on the orientation of the associated
Bloch vector and not on its norm.

As a concrete example, we apply the time scaling to a given
FAQUAD protocol [43,44] for which one has a constant Rabi
frequency �(t ) = �0, a time-dependent detuning δ(t ), and a
given quasiadiabaticity constant c [see Eq. (5)]. The quantum
trajectory is determined by the quasiadiabaticity condition
(5) cos θ (t ) − cos θ0 = −4c�0t (see Appendix A). To en-
sure a high-fidelity transfer, the angle θ (t ) must fulfill the
boundary conditions θ0 � 0 and θT � π . We choose cos θ0 =
1 − ε and cos θT = −1 + ε with 0 < ε � 1 as a null param-
eter ε = 0 generates unrealistic infinite detuning at the time
boundaries [43,44]. The quasiadiabaticity constant is, thus,
related to the protocol parameters as c = (1 − ε)/(2�0T ).
One readily finds the angle θ (t ) = arccos[ fε (t )] with fε (t ) =
(1 − ε)(1 − 2t/T ), and the corresponding detuning δ(t ) =
�/ tan θ (t ). We find 〈φ+[θ (t )]|γ̂ |φ+[θ (t )]〉 = 1

2 (γe + γg) +
1
2 (γe − γg) fε (t ) and θ̇ (t ) = 2(1 − ε)/[T

√
1 − fε (t )2]. The

scaling �(t ) is, subsequently, obtained by solving (10). Here,
we look for a time scaling keeping the same protocol duration,
namely, �(T ) = T .

In Fig. 1, we summarize the results of the original
FAQUAD and of its time-scaled version for a specific ex-
ample in the presence of dissipation. We have taken the

FIG. 1. Time-scaled FAQUAD protocol for a two-level system:
(a) Time-scaling function �(t )/T (solid red line) as a function of
the renormalized time t/T . The solid black line corresponds to the
original protocol [�(t ) = t]. (b) Time-dependent occupation prob-
ability of the ground-state |g〉 for the original (solid black line)
FAQUAD protocol and for its time-scaled version (solid red line) as a
function of the renormalized time t/T . Parameters: �0T = 10, ε =
0.01, γeT = 0.1, and γg = 0.01γe.

parameters �0T = 10 and ε = 0.01, yielding an adiabatic-
ity constant c � 0.05. We consider the following dissipation
rates: γeT = 0.1 and γg = 0.01γe. For our parameters, the
condition �(T ) = T dictates the value of the constant c′ �
5.3 × 10−3. The purity is defined as the fraction of the
target state population and reads p(t ) = p|g〉(t )/[p|g〉(t ) +
p|e〉(t )] for the considered transfer to the ground state where
p|g〉(t ) [p|e〉(t )] is the probability of occupation of the ground
(excited) state at time t . Both protocols yield the same pu-
rity p(T ) � 0.998 at the final time. However, our time-scaled
FAQUAD protocol yields a norm reduction N�(T ) � 0.97 to
be compared to N (T ) � 0.90 for the initial protocol. The time
scaling, thus, significantly enhances the performance of the
FAQUAD driving in the presence of dissipation by keeping a
high purity whereas reducing the norm damping by, at least, a
factor of 3 in this specific case.

B. Time scaling in a STIRAP transfer

1. The dissipationless STIRAP solution

In this section, we investigate the interest of time scal-
ing for an accelerated population transfer in a dissipative
three-level system. More precisely, we consider a three-level
system in a � configuration, namely, a situation where the
intermediate-state |2〉 has a higher energy than the initial
and final states |1〉, |3〉. In the absence of dissipation, the
quantum-state |ψ (t )〉 = C1(t )|1〉 + C2(t )|2〉 + C3(t )|3〉 obeys
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the Schrödinger equation associated with the control Hamil-
tonian,

Ĥ0(t ) = h̄

2

⎛⎜⎝ 0 �0
p(t ) 0

�0
p(t ) 0 �0

s (t )

0 �0
s (t ) 0

⎞⎟⎠, (11)

where �0
p(t ) and �0

s (t ) are real valued and correspond to
the pump and Stokes fields, respectively. This Schrödinger
equation is formally equivalent to a precession equation for
an effective spin S0(t ) defined in terms of the quantum-state
components as S0(t ) = −C3(t )x̂ − iC2(t )ŷ + C1(t )ẑ and with
an effective magnetic-field B0(t ) = 1

2 [�0
p(t )x̂ + �0

s (t )ẑ] (see
Appendix B),

dS0

dt
= B0 × S0. (12)

The transfer of the population from initial-state |1〉 to final-
state |3〉 can be realized by following adiabatically the dark
state (associated with the zero eigenvalue), which amounts
to applying Stokes and pump field pulses with a slight delay
whereas maintaining a significant temporal overlap between
the two pulses [49]. Using an invariant-based inverse engi-
neering, such a transfer can be accelerated at the expense of a
transient population in excited-state |2〉. In this latter protocol,
the dissipation-free quantum trajectory follows the eigenvec-
tor of a Lewis-Riesenfeld invariant operator (Appendix C).
Precisely, the quantum trajectory can be parametrized as [17]

|ψ0(t )〉 =

⎛⎜⎝ cos γ0(t ) cos β0(t )

−i sin γ0(t )

− cos γ0(t ) sin β0(t )

⎞⎟⎠. (13)

For this quantum trajectory, the effective spin S0(t ) is real
valued and reads S0(t ) = cos γ0(t ) sin β0(t )x̂ − sin γ0(t )ŷ +
cos γ0(t ) cos β0(t )ẑ. In the absence of dissipation, we intro-
duce a reference trajectory S0(t ) associated with a prescribed
evolution of the angles β0(t ) and γ0(t ) that fulfills the required
boundary conditions to ensure the transfer of the popula-
tion from state |1〉 to state |3〉. The pump and Stokes fields
�p0(t ),�s0(t ) are, subsequently, inferred from the chosen
trajectory (Appendix C).

2. The STIRAP solution in the presence of dissipation

We now take into account dissipation. We assume that the
intermediate level |2〉 suffers a finite damping, modeled by the
anti-Hermitian Hamiltonian Ĥ� = −ih̄�2|2〉〈2|. The effective
spin now obeys the differential equation (Appendix B),

dS
dt

= B × S − � S, (14)

where the dissipation tensor is � = �2ŷŷ. By superimposing
to the original field B0(t ) the following geometric correction
[40]:

δB0(t ) = S0(t ) × �S0(t ), (15)

the effective spin S follows the same trajectory as its dissi-
pationless counterpart S0 despite the damping. Equivalently,
the renormalized state |ψ̃ (t )〉 = |ψ (t )〉/‖ |ψ (t )〉‖ coincides

with its dissipationless counterpart. The corresponding pulse
corrections read

δ�0
p(t ) = −�2 sin 2γ0(t ) cos β0(t ),

δ�0
s (t ) = �2 sin 2γ0(t ) sin β0(t ). (16)

The effective spin S evolves in the magnetic-field B(t ) =
B0(t ) + δB0(t ). Interestingly, this approach restores the
dissipation-free purity p = p|3〉/(p|1〉 + p|2〉 + p|3〉) � 99.8%
of the final population in the target state. However, and similar
to the previous examples, the quantum-state norm N (t ) =
‖|ψ (t )〉‖ suffers a damping in the course of the protocol. The
time-scaling method enables one to mitigate this effect. For
the STIRAP problem, one readily derives the rescaled pulse
fields �0 �

p,s (t ) = �̇(t )�0
p,s[�(t )] and δ�0 �

p,s (t ) = δ�0
p,s[�(t )].

With the considered S0 trajectory, the population in the
damped intermediate-state p|2〉(t ) = |〈2|ψ (t )〉|2 = sin2[γ0(t )]
reaches its maximum value at the half-time t = T/2.

3. Comparing different time-scaled STIRAP solutions

We propose hereafter two different time scalings that ac-
celerate about this half-time to reduce the norm decrease.
First, we consider a polynomial scaling that fulfills this latter
requirement,

�1(t ) = T1P(t/T1) with P(x) = 3x2 − 2x3. (17)

Alternatively, we will consider a time-scaling �2(t ) [see
Fig. 2(b)] associated with a uniform damping of the quantum-
state norm in the sense of (7) and with respect to the geometric
angle β0. The scaling �2(t ) is obtained by solving a differ-
ential equation analogous to (10) for the considered quantum
system [with β�

0 (�) replacing θ�(�)] to fix the condition (7),

�̇ =
〈
ψ�

0 (t )
∣∣iĤ�

∣∣ψ�
0 (t )

〉(
dβ�

0 /d�
)
c′ , (18)

where |ψ�
0 (t )〉 = |ψ0[�(t )]〉, γ �

0 (t ) = γ0[�(t )], and
β�

0 (t ) = β0[�(t )]. The instantaneous dissipation is now pro-
portional to 〈ψ�

0 (t )|iĤ�|ψ�
0 (t )〉 = �2 sin2 γ �

0 (t ). These three
protocols: the pulse sequence �p,s(t ) = �0

p,s(t ) + δ�0
p,s(t )

that compensates for dissipation and their time-scaled
versions based on �1(t ) and �2(t ) are represented in Fig. 2.

For numerical applications, we use the angular trajecto-
ries detailed in Appendix C parametrized with ε = 0.05, δ =
π/4, and for a damping rate equal to �2T = 0.1. First,
we consider time-scaling �1,2(t ) such that �1,2(T ) = T .
This condition amounts to setting T1 = T and c′ � 4.94 ×
10−3. One obtains the respective quantum fidelities F0 =
0.954, F�1,T = 0.966, and F�2,T = 0.982, respectively, for
the initial protocol, for the polynomial scaling �1(t ), and
for the scaling �2(t ). For the three protocols the final purity
remains equal to the dissipation-free value of p(T ) � 99.8%
[see Fig. 2(c)]. This quantity is defined in the STIRAP pro-
tocol as p(T ) = p|3〉(T )/[p|1〉(T ) + p|2〉(T ) + p|3〉(T )] with
p|n〉(T ) as the final probability of occupation of quantum-state
|n〉. The enhancement of the quantum fidelity, thus, results
from a reduction of the quantum-state norm damping.
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FIG. 2. Application of the time scaling to the STIRAP protocol:
(a) Scaling functions �1(t )/T [Eq. (17), dashed blue line], �2(t )/T
[Eq.(18), solid red line], and �3(t )/T [Eq. (19), dash-dotted green
line] as a function of the normalized time t/T [with the choice
�1–3(T ) = T ]. The black dotted line represents the trivial time-
scaling �(t ) = t and is associated with the original dissipation less
protocol. (b) Rabi frequencies �p(t ) (in units of T −1) for the pump
field for the dissipation-corrected STIRAP protocols (16) and (C3)
(dotted black line), and its time-scaled versions for �1(t ) (dashed
blue line), �2(t ) (solid red line), and �3(t ) (dot-dashed green line)
as a function of the normalized time t/T . The original protocol corre-
sponds to the angular trajectories (C4) with ε = 0.05, δ = π/4, and
the dissipation rate is �2 = 0.1/T . (c) Fraction of the population in
the target state (purity) p(t ) = p|3〉(t )/[p|1〉(t ) + p|2〉(t ) + p|3〉(t )] as
a function of the normalized time t/T for the dissipation-corrected
STIRAP protocol (dotted black line), its time-scaled versions for
�1(t ) (dashed blue line), �2(t ) (solid red line), and �3(t ) (dashed-
dot green line).

4. Energetic cost and optimization

Alternatively, one can choose the total duration T1,2 of
the time-scaling �1,2(t ) as to yield a protocol with the same
energy as the original STIRAP protocol. The energy, taken
as E�k = ∫ Tk

0 dt ′‖B�k (t ′)‖2, is proportional to the integrated
Stokes and pump field intensities and inversely proportional to
the total duration T �k . One finds the durations T �1 � 1.10T
and T �2 � 1.53T, giving the quantum fidelities F�1,T �1 �
0.963 and F�2,T �2 � 0.974. At constant energy and in this
dissipative system, the time-scaling �2(t ) applied to the

original STIRAP protocol, thus, enables a reduction by nearly
45% of the discrepancy with a perfect transfer ε̃ = 1 − F .
This improvement at constant resources confirms the viability
of the time-scaling technique.

The previous formalism provides a determination of a
STIRAP transfer protocol with minimal energy whereas keep-
ing the same quantum trajectory. First, we note that even
for strong dissipation rates such that �⊥T = 1 and �‖T =
0.1 with the chosen angle ε = 0.05, the energy overhead
associated with the geometric correction (15) is negligible
(δEcorr/E � 0.6%). Regarding the optimization of the proto-
col through the time scaling, we can, thus, ignore this contri-
bution and minimize E [�, �̇] = h̄

∫ T
0 dt �̇(t )2{�0

p[�(t )]2 +
�0

s [�(t )]2} with the pump and Stokes fields (C3). By perform-
ing a Lagrangian minimization of this functional of � and �̇,
we obtain the following differential equation for the optimal
scaling �3(t ):

�̇ = c

[(
dβ�

0

d�

)2

cot2 γ �
0 (t ) +

(
dγ �

0

d�

)2
]−1/2

, (19)

with the initial condition �3(0) = 0. The constant c is de-
termined self-consistently by imposing the boundary value
�3(T ). The solution of the differential equation obeyed by
�3(t ) imposes a constant norm for the effective field vector
��3 (t ) =

√
��3

p (t )2 + ��3
s (t )2 = cte. This optimal solution

is reminiscent of the π -pulse optimal solution for the two-
level problem. Figures 2(a) and 2(b) represents this optimal
time-scaling �3(t ) [for �3(T ) = T ] and the associated time-
dependent Rabi frequency of the pump field. The time scaling
accelerates when the effective magnetic field is minimal as,
for instance, at the initial and final times. As a result of the
constant norm of the effective field, the Stokes and pump
fields no longer vanish at the initial and final times. With these
optimal pulses, one obtains an energy Eopt � 64.9h̄/T, which
is roughly 10% lower than the original pulse E0 = 72.1h̄/T
for the same final purity p(T ) = 99.8% [Fig. 2(c)].

III. TIME SCALING AND QUANTUM SPEED LIMIT
FOR NON-HERMITIAN HAMILTONIANS

The time optimality of a quantum-state transfer is mea-
sured through the concept of QSL. Quantum systems evolve
at a fraction of the QSL. This fraction constitutes a measure
of the driving efficiency, and for an optimal driving, it reaches
unity. One can readily show that this driving efficiency is in-
variant under a time-scaling transform for a unitary evolution.
Indeed, for closed quantum system the time scaling changes
equally the time and energy scales, respectively, related to the
quantum speed and to the QSL. In contrast, the dissipation
is unaffected by the time-scaling transform and one, there-
fore, expects a breakdown of driving efficiency for dissipative
systems. In the following, we derive the expression of the
QSL for dissipative systems modeled by a non-Hermitian
Hamiltonian, and discuss its physical content on a dissipa-
tive two-level system. Surprisingly enough, for a three-level
system, one can work out explicitly the quantum driving
protocol that restores the dissipation-free driving efficiency.
In this system, the quantum speed ratio to the QSL remains
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invariant through time scaling transforms despite the presence
of dissipation.

A. Quantum speed limit for the non-Hermitian Hamiltonian

The QSL amounts to measuring the minimal time—
associated with the maximal evolution velocity—from a given
initial-state |ψ̃ (0)〉 to a state orthogonal |ψ̃ (t )〉 to the ini-
tial one [we denote |ψ̃ (t )〉 = |ψ (t )〉/‖|ψ (t )〉‖]. For a system
evolving under the action of a time-independent Hamiltonian
Ĥ0, it translates as an upper bound on the rate of variation of
the angle cos φ = |〈ψ (0)|ψ (t )〉|,

dφ

dt
� �Ĥ0

h̄
. (20)

In Appendix D, we show how Vaidman’s derivation of the
QSL in dissipationless system [30] can be transposed to non-
Hermitian time-dependent Hamiltonians Ĥ = Ĥ0 − i�̂. The
new bound reads

φ̇ = dφ

dt
�

√
(�Ĥ0)2 + (��̂)2 − i〈[Ĥ0, �̂]〉

h̄
. (21)

Our expression highlights the role of the dissipation operator
(and its variance) in the evolution of the quantum state. As an
example, this inequality shows that a strictly positive quan-
tum speed limit χ (t ) > 0 exists for an otherwise stationary
eigenstate of the Hermitian Hamiltonian (�Ĥ0 = 0) as long
as dissipation has a strictly positive variance ��̂ > 0. As a
consistency check, we have performed numerical simulations
in two-level systems that confirm the validity of this upper
bound and evidence the role played by the non-Hermitian
terms in this dissipative QSL.

B. Quantum speed limit in a two-level system

We illustrate the application of the non-Hermitian QSL
in a simple dissipative two-level quantum system driven by
a resonant Rabi pulse. We discuss, in particular, how the
QSL is affected by dissipation. To fix ideas, we consider
a two-level atom {|e〉, |g〉} driven by a resonant Rabi laser
pulse, but our argument applies equally well to other generic
two-level systems, such as a spin-1/2 driven by a magnetic
field.

The renormalized quantum-state |ψ̃ (t )〉 = |ψ (t )〉/√〈ψ (t )|ψ (t )〉 is noted |ψ̃ (t )〉 = at |e〉 + bt |g〉, and we assume
the atom initially in the excited state, namely, |ψ̃ (0)〉 = |e〉
(the quantum speed and the QSL are naturally invariant with
respect to the multiplication of the initial state by a global
phase). We use the parametrization at = cos(θt/2)eiϕa,t and
bt = sin(θt/2)eiϕb,t . As shown in Appendix D, a necessary
condition to saturate the QSL is that 〈ψ̃ (t )|ψ̃ (0)〉〈ψ̃ (0)| ˙̃ψ (t )〉
be real valued at all times with | ˙̃ψ (t )〉 the time derivative
of the renormalized quantum state. This condition reads
|at |2ϕ̇a,t = 0 or simply at ∈ R and is equivalent to impose
a planar trajectory for the Bloch vector representing the
quantum-state |ψ̃ (t )〉.

The considered control Hamiltonian is time independent
in the rotating frame and reads Ĥ0 = 1

2�0(|e〉〈g| + |g〉〈e|)
with a Rabi frequency �0 = π/T . The dissipation is de-
scribed by the operator �̂ = �1|e〉〈e| + �2|g〉〈g|, reflecting the

decay rates of each atomic level, and the total non-Hermitian
Hamiltonian reads Ĥ = Ĥ0 − i�̂ driving the quantum-state
|ψt 〉. The Schrödinger equation yields a coefficient at ∈ R
at all times so that the necessary condition to saturate the
QSL is fulfilled. Deriving the QSL [Eq. (21)] is a straight-
forward task, and one obtains (�H0)2(t ) = 1

4�2
0, (��̂)2(t ) =

�2
1 |at |2 + �2

2 |bt |2 − (�1|at |2 + �2|bt |2)2, and i〈[Ĥ0, �̂]〉(t ) =
i
4 (�1 − �2)�0(at b∗

t − a∗
t bt ). One finds that the quantum

speed is equal to the QSL.
To clarify how dissipation affects the quantum speed, we

consider in the following two opposite cases: �e > �g and
�e < �g. In the first configuration, the faster decay of the
excited state contributes to flip down the Bloch vector. One
thus expects a quantum velocity faster than in the dissipation-
free case. In the opposite situation (�e < �g), the ground
state is less stable, and one expects dissipation to slow down
the quantum-state transfer. Our expression for the QSL (D3)
captures this physics through the commutator i〈[Ĥ0(t ), �̂]〉:
depending on the relative strength of the excited- and ground-
state dissipation rates, this contribution increases or decreases
the QSL.

As an example, with the dissipation rates �eT = 0.2 and
�gT = 0.01, the quantum state evolves faster than in the
dissipation-free system for �e > �g, and the π pulse is
achieved for T ∗ � 0.96T whereas T ∗ � 1.04T when the val-
ues of the dissipation rates are exchanged. In both cases the
damping seriously deteriorates the quality of the transfer and
the final quantum fidelity. In these examples, the quantum
speed reaches the QSL at all times. Such a saturation of
the QSL persists after a time-scaling transform. More gen-
erally, we show below that the time-scaling transform can
also preserve the ratio of the quantum speed to the QSL in
a dissipative three-dimensional system.

C. Quantum speed limit in a dissipative STIRAP system

We now consider the dissipative three-level system of
Sec. II B. We use the pulse sequence �p,s(t ) = �0

p,s(t ) +
δ�0

p,s corresponding to the sum of the dissipation-free
pulses �0

p,s(t ) (C3) and the associated geometric corrections
δ�0

p,s(t ) (16). Thanks to the pulse correction, the renormal-

ized quantum-state |ψ̃ (t )〉 follows exactly the dissipation-free
trajectory, i.e., |ψ̃ (t )〉 = |ψ0(t )〉 at all times. Thus, the an-
gle φ(t ) = arccos[|〈ψ̃ (t )|ψ̃ (0)〉|] fulfills φ(t ) = φ0(t ) at all
times, where φ0(t ) = arccos[|〈ψ0(t )|ψ (0)〉|] is the angle as-
sociated with the dissipation-free trajectory. The effective
quantum speed φ̇(t ) is, thus, given by the dissipation-free
trajectory.

In the corrected protocol, the non-Hermitian QSL χ (t )
depends a priori on the dissipation-free control Hamiltonian
Ĥ0, the geometric correction δĤ0, and the dissipation opera-
tor �̂. We find χ (t )2 = (�Ĥ0)2 + 〈{δĤ0, Ĥ0}〉 + (�δĤ0)2 +
(��̂)2 − i〈[Ĥ0, �̂]〉 − i〈[δĤ0, �̂]〉. Remarkably, by using the
explicit form of the geometric correction (16), the dissipa-
tive QSL χ (t ) boils down to χ (t ) = �Ĥ0(t ). Thanks to the
geometric correction, the non-Hermitian QSL (21) is exactly
equal to the dissipation-free QSL (D7) of the original proto-
col. The preservation of the dissipation-free quantum speed
φ̇0(t ) and QSL χ0(t ) despite dissipation comes at the price of
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an energy overhead associated to the extra term added to the
Hamiltonian δĤ0.

As a corollary, when the time-scaling technique is applied,
both the quantum speed and the dissipative QSL undergo sim-
ilar transformations as φ̇�(t ) = �̇(t )φ̇0[�(t )] and χ�(t ) =
�̇(t )χ0[�(t )]. That is to say, the time scaling preserves the ra-
tio r0(t ) of the quantum speed to the QSL as r�(t ) = r0[�(t )]
with r0(t ) = h̄φ̇0(t )/χ̇0(t ). Remarkably and thanks to the ge-
ometric correction, the dissipative dynamics keeps the same
quantum speed and quantum speed limit as for the original
dissipation-free protocol.

IV. CONCLUSION

In conclusion, we have demonstrated the applicability and
relevance of the time-scaling method for quantum-state trans-
fer as a tool to optimize the resources and/or mitigate the
effect of dissipation in non-Hermitian quantum systems. Ac-
tually, the time-scaling function provides an extra freedom in
the system that can be used to minimize the energy used in
the protocol or the norm reduction of the quantum state. This
strategy yields a significant enhancement of the performance
of widely employed protocols in simple quantum systems
(two- and three-level systems), such as the STIRAP transfer.
In particular, it provides a mitigation of dissipation that can
be strongly beneficial in quantum architectures performing
successive operations on quantum states of small dimension.
The quantum speed limit has been here generalized to non-
Hermitian Hamiltonians, and we have shown that time scaling
does not affect the ratio of the quantum speed to the quantum
speed limit. In particular, the optimality is preserved when
the system is driven at the quantum speed limit. Perspectives
for this paper include the application of the time-scaling tech-
nique to the phenomena of non-Hermitian transport.
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APPENDIX A: DETERMINATION OF THE SCALING IN A
FAQUAD PROTOCOL

We derive hereafter the FAQUAD quantum trajec-
tory θ (t ) by resolving Eq. (5). From the expression
of the eigenvectors [see Eq. (4)] and of the associ-
ated energies, one finds 〈φ+(θ )|∂θφ−(θ )〉 = 1

2 and |E+(t ) −
E−(t )| = 2h̄

√
δ(t )2 + �(t )2. Using the relation sin θ (t ) =

�(t )/
√

δ(t )2 + �(t )2, Eq. (5) can be recast as

dθ sin θ = 4c �(t )dt . (A1)

For a constant Rabi pulse �(t ) = �0, it is readily integrated
as cos θ (t ) − cos θ0 = −4c�0t .

To establish Eq. (8) for the quantum-state norm, we first
use the non-Hermitian Schrödinger equation for the time-
scaled evolution,

ih̄
d|ψ�(t )〉

dt
= {�̇(t )Ĥ0[�(t )] − ih̄γ̂ }|ψ�(t )〉.

Combining this equation with its Hermitian conjugate, one
deduces the equation obeyed by the quantum-state norm,

d[N�(t )2]

dt
= d〈ψ�(t )|ψ�(t )〉

dt
= −2〈ψ�(t )|γ̂ |ψ�(t )〉.

We then substitute |ψ�(t )〉 by its quasiadiabatic approxima-
tion |ψ�(t )〉 ≈ N�(t )|φ+[θ�(t )]〉.

APPENDIX B: FORMULATION OF THE STIRAP
DYNAMICS AS THE PRECESSION OF

AN EFFECTIVE SPIN

The equivalence between the Schrödinger equation driven
by the STIRAP Hamiltonian (3) and the precession of an
effective spin S0(t ) is a well-known result [49]. We recall here
the corresponding steps to ease the reading. The Schrödinger
equation reads

dC1(t )

dt
= 1

2
�p(t )[−iC2(t )],

d[−iC2(t )]

dt
= −1

2
�p(t )C1(t ) − 1

2
�s(t )C3(t ), (B1)

d[−C3(t )]

dt
= 1

2
�s(t )[−iC2(t )],

which corresponds to Eq. (14) with the effective spin S0(t ) =
−C3(t )x̂ − iC2(t )ŷ + C1(t )ẑ and the effective magnetic-field
B0(t ) = 1

2 [�0
p(t )x̂ + �0

s (t )ẑ]. The presence of an additional
anti-Hermitian contribution Ĥ� = −ih̄�2|2〉〈2| to the Hamil-

tonian results in an extra dissipative term −� S0 on the
right-hand side of the precession equation, with the tensor

� = �2ŷŷ. This explains the form of the dissipative precession
Eq. (14).

APPENDIX C: ACCELERATED STIRAP PROTOCOL

We reproduce for convenience the invariant-based [18] pro-
cedure used in Ref. [17] to obtain the accelerated STIRAP
protocol. By definition, an invariant is an operator Î (t ) that
fulfills the equation of motion,

∂ Î (t )

∂t
+ 1

ih̄
[Î (t ), Ĥ0(t )] = 0. (C1)

To obtain the explicit form of such an invariant, we express the
Hamiltonian Ĥ0(t ) (11) in terms of the angular momentum op-
erators for the spin 1, namely, Ĥ0(t ) = h̄

2 [�0
p(t )K̂1 + �0

s (t )K̂2]
with the three operators K̂1, K̂2, K̂3 defined as

K̂1 =
⎛⎝0 1 0

1 0 0
0 0 0

⎞⎠, K̂2 =
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠,

K̂3 =
⎛⎝0 0 −i

0 0 0
i 0 0

⎞⎠.
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These operators fulfill the angular momentum commutation
relations [K̂1, K̂2] = iK̂3, [K̂2, K̂3] = iK̂1 and [K̂3, K̂1] = iK̂2.
We take the following ansatz Î (t ) = cos γ0(t ) sin β0(t )K̂1 +
cos γ0(t ) cos β0(t )K̂2 + sin γ0(t )K̂3. By virtue of the previous
commutation relations, the operator Î (t ) follows Eq. (C1) if
and only if,

γ̇0(t ) = 1
2

[
�0

p(t ) cos β0(t ) − �0
s (t ) sin β0(t )

]
,

β̇0(t ) = 1
2 tan γ0(t )

[
�0

s cos β0(t ) + �0
p(t ) sin β0(t )

]
. (C2)

These relations can be easily inverted in order to infer the
pump and Stokes fields �p0(t ),�s0(t ) from the invariant pa-
rameters,

�0
p(t ) = 2

(
β̇0(t )

sin β0(t )

tan γ0(t )
+ γ̇0(t ) cos β0(t )

)
,

�0
s (t ) = 2

(
β̇0(t )

cos β0(t )

tan γ0(t )
− γ̇0(t ) sin β0(t )

)
. (C3)

We now recall an essential property of Lewis-Riesenfeld in-
variants [16], which is a direct consequence of Eq. (C1).
Consider the instantaneous eigenmode basis {|φn(t )〉} of the
invariant operator Î (t ) and assume that the initial quantum
state is expressed on these modes as |ψ0(0)〉 = ∑

n c0
n|φn(0)〉.

Then, at any later time t , the quantum-state |ψ0(t )〉 driven
by the Hamiltonian Ĥ0(t ) reads |ψ0(t )〉 = ∑

n c0
neiϕn (t )|φn(t )〉.

The specific expression of the phase ϕn(t ) is not needed
here. Rather, we use the particular case in which the ini-
tial quantum-state |ψ0(0)〉 is an eigenmode of the invariant
Î (0). Precisely, we choose the initial angular parameters
γ0(0), β0(0) in such a way that |ψ0(0)〉 = eiϕ0 |φ0(0)〉 for some
phase ϕ0 and where |φ0(0)〉 is the zero eigenmode of the
initial invariant Î (0). A diagonalization of Î (t ) shows that
the eigenmode |φ0(t )〉 is given by the right-hand side of
Eq. (13). The quantum-state |ψ0(t )〉 then follows the instan-
taneous zero eigenmode and is also given by Eq. (13). We
emphasize that there is no adiabaticity assumption here: This
property is independent of the driving speed, which makes the
Lewis-Riesenfeld technique particularily well suited for the
implementation of shortcuts to adiabaticity.

We consider a polynomial form for the angular func-
tions γ (t ) = ∑4

j=0 a jt j and β(t ) = ∑3
j=0 b jt j . They fulfill

the boundary conditions of Protocol 2 of Ref. [17],

γ0(0) = ε, γ̇0(0) = 0, γ0(T/2) = δ,

γ0(T ) = ε, γ̇0(T ) = 0,

β0(0) = 0, β0(T ) = π/2,

β̇0(0) = 0, β̇0(T ) = 0, γ0(T/2) = δ. (C4)

Such shortcut-to-adiabaticity solutions give rise to a trade-off
between the amplitudes of Rabi frequencies and the transient
population of intermediate-state |2〉 [17,50].

A small angle initial angle ε is used, which yields an
error 1 − F = O(ε2) for the protocol defined by Eqs. (C3)
and (C4) alone. As in Ref. [17], the invariant technique is
resilient to a small mismatch between the initial quantum
state and the invariant eigenmode. For sake of simplicity, in
our discussion on the quantum fidelity and of the quantum
speed limit, we consider this protocol as such. However, a
perfect transfer may be restored by adding an initial and a

final stage to the STIRAP protocol (C4), namely, by using
an initial and final small pulse of angle ε with the pump
field �p(t )/Stokes field �s(t ) used separately. The full pro-
tocol would then correspond to a sequence |1〉 → (cos ε|1〉 −
i sin ε|2〉) → (−i sin ε|2〉 + cos ε|3〉) → |3〉.

APPENDIX D: QUANTUM SPEED LIMIT FOR THE
NON-HERMITIAN HAMILTONIAN

As a starting point, we recall that for any Hermitian opera-
tor Â and any quantum-state |ψ〉 [30],

A|ψ〉 = 〈A〉|ψ〉 + �A|ψ⊥〉, (D1)

where |ψ⊥〉 is orthogonal to |ψ〉 and �Â is the variance of the
operator Â.

Interestingly, this relation can be generalized to non-
Hermitian Hamiltonian Ĥ = Ĥ0 − i�̂ (with the Hermitian
operators Ĥ†

0 = Ĥ0 and �̂† = �̂) on a given normalized
quantum-state |ψ〉. With the same notations as previously, and
for any quantum-state |ψ〉, we write

χ |ψ⊥〉 = Ĥ |ψ〉 − 〈Ĥ〉|ψ〉, (D2)

where χ is a positive real scalar (see below). To get an explicit
expression for the coefficient χ , we write 〈Ĥ†Ĥ〉 = |〈Ĥ〉|2 +
χ2 and use Ĥ†Ĥ = Ĥ2

0 + �̂2 − i[Ĥ0, �̂]. As a result, we find

χ = [(�Ĥ0)2 + (��̂)2 − i〈[Ĥ0, �̂]〉]1/2. (D3)

The anti-Hermiticity of the commutator [Ĥ0, �̂] guarantees
that the quantity i〈[Ĥ0, �̂]〉 is real valued.

In closed quantum systems, the usual definition of the
quantum velocity rests on the fidelity with respect to
initial-state F (t ) = |〈ψ (t )|ψ (0)〉|2—the quantum velocity is
inversely proportional to the time for which this fidelity goes
to zero. By using the decomposition (D2) in the Schrödinger
equation, one obtains the time derivative of the fidelity for
nonunitary dynamics,

Ḟ (t ) = −2〈�̂〉(t )|〈ψ (t )|ψ (0)〉|2

−2χ (t )

h̄
Re[i〈ψ (t )|ψ (0)〉〈ψ (0)|ψ⊥(t )〉]

= Ḟr + Ḟθ . (D4)

The right-hand side has two contributions with dis-
tinct physical interpretations. The first component Ḟr =
−2〈�̂〉(t )|〈ψ (t )|ψ (0)〉|2 corresponds to a pure quantum-state
damping. In contrast, the contribution Ḟθ accounts for a
genuine rotation of the quantum state. Ḟθ is, thus, the only
relevant contribution to the quantum velocity.

We now propose a definition of the quantum velocity
unaffected by the trivial quantum-state damping. For this pur-
pose, we introduce the renormalized quantum state |ψ̃ (t )〉 =
|ψ (t )〉/√〈ψ (t )|ψ (t )〉 and consider the corresponding quan-
tum fidelity F̃ (t ) = |〈ψ̃ (t )|ψ̃ (0)〉|2. By construction, only the
relevant angular velocity Ḟθ contributes to the variation of this
quantum fidelity, i.e., ˙̃F (t ) = ˙̃F θ .

To determine an upper bound on ˙̃F θ , we apply the con-
cepts introduced in Ref. [30]. The initial state can always be
expanded over at most three orthogonal states as |ψ (0)〉 =
〈ψ̃ (t )|ψ̃ (0)〉|ψ̃ (t )〉+〈ψ̃⊥(t )|ψ̃ (0)〉|ψ̃⊥(t )〉 + α|ψ̃⊥⊥(t )〉. This
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guarantees that |〈ψ̃ (0)|ψ̃⊥(t )〉| �
√

1 − |〈ψ̃ (0)|ψ̃ (t )〉|2. As a
result,

| ˙̃F | = | ˙̃F θ | � 2χ (t )

h̄
|〈ψ̃ (0)|ψ̃ (t )〉|

√
1 − |〈ψ̃ (0)|ψ̃ (t )〉|2.

(D5)

By introducing the usual definition cos φ = F̃1/2 =
|〈ψ̃ (t )|ψ̃ (0)〉|, we obtain the following upper bound for
the quantum velocity,

φ̇(t ) �
√

(�Ĥ0)2 + (��̂)2 − i〈[Ĥ0, �̂]〉
h̄

. (D6)

From Eqs. (D4) and (D5), a necessary condition to saturate the
QSL is to satisfy at all times 〈ψ̃ (t )|ψ̃ (0)〉〈ψ̃ (0)|ψ̃⊥(t )〉 ∈ iR,
or, equivalently, 〈ψ̃ (t )|ψ̃ (0)〉〈ψ̃ (0)| ˙̃ψ (t )〉 ∈ R, where | ˙̃ψ (t )〉
denotes the time derivative of the normalized quantum state.

Other derivations of the QSL for dissipative systems, based
on a matrix density formalism, can be found in Refs. [35,36].
Our nonunitary QSL has a similar form as the QSL obtained
for closed quantum systems [30],

φ̇(t ) � �Ĥ0

h̄
, (D7)

up to a replacement of the energy variance �Ĥ0 by the
quantity χ (t ) (D3). By Ehrenfest’s theorem, the variance
�Ĥ0 is time independent for a unitary evolution in a con-
stant Hamiltonian, leading to a constant QSL in this context.
Nevertheless, for the time-dependent and non-Hermitian
Hamiltonians considered here, the QSL χ (t ) generally varies
with time. By construction the quantity χ2 = (�Ĥ0)2 +
(��̂)2 − i〈[Ĥ0, �̂]〉 is real valued and positive and is, indeed,
bounded below by χ (t )2 � (�H0 − ��)2 � 0.
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