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3 Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, UPS, France
(Dated: October 11, 2021)

Using a reverse-engineering approach on the time-distorted solution in a reference potential, we
work out the external driving potential to be applied to a Brownian system in order to slow or
accelerate the dynamics, or even to invert the arrow of time. By welding a direct and time-reversed
evolution towards a well chosen common intermediate state, we derive analytically a smooth pro-
tocol to connect two arbitrary states in an arbitrarily short amount of time. Not only does the
reverse-engineering approach proposed in this Letter contain the current—rather limited—catalogue
of explicit protocols but it also provides a systematic strategy to build the connection between arbi-
trary states with a physically admissible driving. Optimization and further generalizations are also
discussed.

Shortcut To Adiabaticity techniques originally aim at
reaching adiabatic outcomes in a finite amount of time
[1]. Adiabatic should be understood here in its quantum
sense, synonymous with “sufficiently slowly driven” [2].
These methods have been extended to generate short-
cuts between two states, regardless of the existence of an
adiabatic connection between them [1]. While this field
is rooted in quantum mechanics [3, 4], related questions
emerge in other domains, namely classical mechanics [5–
11] and stochastic thermodynamics [11–18]. Yet, the
question of transposing to statistical physics protocols
originally developed in quantum mechanics is delicate.
For instance, the so-called counterdiabatic protocol (also
dubbed transitionless tracking) valid for any initial con-
dition [19, 20] can be directly transposed to overdamped
dynamics [13]. However, the very same procedure yields
non conservative forcings, experimentally problematic to
achieve, with underdamped systems [1, 13]. Among the
set of tools for accelerating the dynamics, other classes
of solutions propose tailor-made protocols based on the
specifics of the initial and final states, both in quantum
mechanics [7, 20–25] and in statistical physics [12, 26–28].
More general optimal protocols in small thermodynamic
systems have been obtained from a mapping to optimal
transport, establishing an unexpected connection with
cosmology but requiring a numerical resolution [29–33].
These protocols generically lead to discontinuous-in-time
driving forces [26, 30], which raises a delicate experimen-
tal challenge for implementation.

A central question is thus to work out shortcuts to
transformations between arbitrary states, that should in-
volve non-singular forces and be expressible in closed
form. This is the question we solve in the present Let-
ter, within the framework of the Fokker-Planck equation
[34], which governs the evolution of the probability den-
sity ρ(x, t) of Brownian objects, with x and t denoting
position and time. To this end, we proceed in two steps.
First, we show how to distort and control a reference dy-
namics, i.e., the time evolution taking place in a reference
external potential Ur(x, t), with a well chosen external

FIG. 1. Sketch of the welding strategy to connect two arbi-
trary states, ρi and ρf, through an auxiliary intermediate ρint.
The reference processes are the direct relaxations toward ρint
starting either from ρi or ρf. An acceleration of the first ref-

erence process connects ρi to ρint in a time t
(1)
f . The second

reference process is time reversed and accelerated; it lasts t
(2)
f .

Combining the two steps allows to reach the target state ρf in

a final time tf = t
(1)
f + t

(2)
f , providing a fast shortcut from ρi

to ρf. In general, ρint differs from both ρi and ρf. Otherwise,
one of the steps (forward or backward) becomes unnecessary.

potential U(x, t). The realization of such drivings is now
achieved experimentally in a number of domains, from
cold atom physics [35] to colloids [36], thanks to a proper
steering of the optical potential applied to the system
[16, 17, 37]. This will allow us to accelerate the reference
dynamics (fast-forward) [21], or to decelerate it (slow-
forward), and even to freeze the evolution. Interestingly,
this also opens the way to reverse time’s arrow and devise
a backward drive at arbitrary speed. Second, we combine
a fast-forward drive towards a suitably chosen interme-
diate state ρint(x) with a fast-backward protocol from
ρint(x), to get a whole family of smooth shortcuts, as de-
picted in Fig. 1. In doing so, the system can be brought
from a chosen state ρi(x) to another chosen state ρf(x),
in an arbitrary time. Both states can be equilibrium or,
more generally, out-of-equilibrium [38, 39].
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Reverse engineered potential.- The Brownian objects
considered, such as colloids in dilute conditions, are im-
mersed in a thermal bath at temperature T and submit-
ted to an external force field stemming from a potential
U(x, t). The Fokker-Planck equation for the probability
density ρ(x, t) reads

∂x [ρ(x, t)∂xU(x, t)] = −β−1∂2
xρ(x, t) + γ∂tρ(x, t), (1)

where γ is the bath friction coefficient and β = (kBT )−1,
with kB the Boltzmann’s constant. A unique solution
for U(x, t) can be obtained by imposing a prescribed
time evolution for the density ρ(x, t), from an initial
ρ(x, 0) = ρi(x) to a final ρ(x, tf) = ρf(x) state [40]. Once
ρ(x, t), together with the operating time tf, have been
chosen, Eq. (1) is nothing but a first order differential
equation for the external force −∂xU(x, t) that should
be applied to the system to achieve the appropriate driv-
ing. Assuming that the density current vanishes at the
boundaries of the system, x = xb, we get

∂xU(x, t) = −β−1∂x ln ρ(x, t) +
γ

ρ(x, t)
∂t

∫ x

xb

dx′ρ(x′, t).

(2)
Unfortunately, except in a few cases, like that of a Gaus-
sian distribution [12, 26], shape preserving evolutions
[41], or other very specific situations [33, 41], Eq. (2)
is impractical since it does not lead to an explicit closed-
form potential U(x, t) [42]. We thus seek an alternative
route that provides a systematic approach to obtain ad-
missible driving protocols in closed-form.

From Fast-Forward (FF) to Fast-Backward (FB).- The
idea is to take advantage of the knowledge of a reference
non-trivial dynamics for ρ(x, t) to distort its time evolu-
tion by finding the appropriate driving potential. First,
we show how a time contraction can be performed to
force the system to reach equilibrium in a finite amount
of time. Such a FF protocol realizes in finite time a
process that takes an infinite amount of time, when the
system is unperturbed. Beyond FF, FB protocols—and
also slow forward or backward ones—can also be engi-
neered. We subsequently explain under which conditions
the driving force remains continuous for all times, a key
requirement for practical implementation.

Consider a reference process, i.e., a known solution
ρr(x, t) of the Fokker-Planck equation (1) in a confine-
ment potential Ur(x, t) over a time interval 0 < t < tr,
which we write as a continuity equation

∂tρr(x, t) = −∂x [ρr(x, t)vr(x, t)] , (3a)

vr(x, t) ≡ −γ−1∂x
[
Ur(x, t) + β−1 ln ρr(x, t)

]
. (3b)

We define the desired prescribed density as

ρ(x, t) ≡ ρr(x,Λ(t)) (4)

through a time manipulation of the reference process,
embedded in the function Λ(t). The prescribed and the
reference evolution go through the same states, but dis-
played at a different frame rate and/or time ordering. In-
deed, depending on the choice for Λ(t), one can play “the

movie” at FF speed (Λ̇ > 1), at slow motion (0 < Λ̇ < 1),

pause it (Λ̇ = 0), or even rewind it: either at slow back-

ward motion (−1 < Λ̇ < 0) or at FB speed (Λ̇ < −1). In

the latter case, Λ̇ < 0, our procedure enables a new pos-
sibility: the design of a potential to invert time’s arrow
for an irreversible evolution obeying the Fokker-Planck
equation.

Introducing Eqs. (3) and (4) into Eq. (2), and defin-
ing ∆U(x, t) = U(x, t)−Ur(x,Λ(t)), which measures the
departure from the reference potential, we get

∂x∆U(x, t) =
(

1− Λ̇(t)
)
γvr(x,Λ(t)), (5)

where the time dependence of the protocol is encapsu-
lated in Λ(t) and its derivative Λ̇(t). For simplicity, we
restrict ourselves to Λ(t) that are monotonic functions
of time, either of FF (Λ(0) = 0 and Λ(tf) = tr) or of
FB (Λ(0) = tr and Λ(tf) = 0) type. The times tr and
tf can be finite or infinite. Of particular relevance for
experimental applications though is the shortcut of an
infinite process (infinite tr but finite tf), e.g., for building
irreversible nano heat engines [28, 43–50].

For the sake of simplicity, we consider hereafter a static
reference potential Ur(x). Such a potential is convenient;
it makes it possible to analytically obtain ρr(x, t) through
an expansion in eigenmodes, as shown below [51]. With
tr →∞, the reference process is thus the relaxation to the
equilibrium distribution for Ur(x): ρr ∝ e−βUr . In order
to accelerate such an everlasting dynamics, we impose
limt→t−f

Λ(t) = +∞. For our purposes, it is adequate to

use the family of functions

Λ(t) = τf

(
t

tf

)
, f(z) =

z2

(1− z)ζ
, ζ > 0, (6)

where τ is a characteristic time. The divergence of Λ(t) at

t = tf implies that limt→t−f
Λ̇(t) = +∞, which suggests

that ∆U(x, t) may diverge at the final time. However,
the velocity field vr(x,Λ(t)) vanishes at tf and thus the
behavior of ∆U(x, t−f ) needs to be elucidated.

Regularity of the driving potential.- The family defined
in Eq. (6) has the property Λ̇(0) = 0. This guarantees
the continuity of the force at the initial time, as implied
by Eq. (5). We show now on general grounds that the
force field remains continuous even at tf, provided the
reference potential Ur(x) is confining—in the sense that
there exists a well-defined equilibrium density. The proof
uses the expansion in eigenmodes for the solution of the
reference process, and a mapping to a quantum prob-
lem. Introducing ψ(x, t) = ρr(x, t)e

βUr(x)/2 leads to the
time-dependent Schrödinger equation ∂tψ = −Hψ with
Hamiltonian [52],

H = − 1

γβ
∂2
x +

1

2γ

[
βU ′r(x)2

2
− U ′′r (x)

]
. (7)

The smallest eigenvalue, associated to the equilibrium
distribution, is zero: He−βUr(x)/2 = 0. The other eigen-
values of H are positive, 0 < λ1 < λ2 < · · · , imply-
ing that the corresponding modes decay exponentially in
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time. Specifically, Hϕn(x) = λnϕn(x), where ϕn(x) is
the eigenfunction associated to the n-th eigenvalue [53].

The expansion of the reference process in the eigenbasis
reads

ρr(x, t) =
e−βUr(x)

Zr
+ e−βUr(x)/2

∞∑
n=1

cnϕn(x)e−λnt (8)

where Zr =
∫
D dx e

−βUr(x) is the partition function and

cn = 〈ϕn|ψ(t = 0)〉 =
∫
D dxϕn(x)ψ(x, 0). We are inter-

ested in the limit t → t−f , for which Λ(t) → +∞. From
Eq. (8) we deduce

ρr(x,Λ(t)) ∼ e−βUr(x)

Zr

(
1 + c̃1χ1(x)e−λ1Λ(t)

)
, (9)

where c̃n ≡ Zrcn and χn(x) ≡ eβUr(x)/2ϕn(x). As a
result, to the lowest order in e−λ1Λ(t), we get

∂x ln ρr(x,Λ(t)) ∼ −β∂xUr(x)+c̃1∂xχ1(x)e−λ1Λ(t), (10)

which combined with Eq. (5) gives

∂x∆U(x, t) ∼ −β−1 c̃1
λ1

de−λ1Λ(t)

dt
∂xχ1(x). (11)

There is a vast set of diverging functions Λ(t) including
the family (6) that forces the cancellation of the right
hand side of Eq. (11) when t approaches tf [42], a require-
ment that implies that the driving force remains contin-
uous at the final time. In our proof, the existence of a
well-defined partition function Zr is important. This is
not the case for a free expansion, Ur(x) = 0, in an infi-
nite or semi-infinite space [42]. However, the argument
remains valid for a reference free diffusing system within
a finite box, as shown below.

To sum up, Eq. (5) provides the smooth potential
needed to tune at will the reference process according
to the time mapping function Λ(t). Despite the limited
number of analytically solvable reference processes [42],
we can always rely on an expansion as in Eq. (8), but
with a certain cutoff—examples are provided below. In
doing so, the tailored process does not strictly reach the
target state, but its distance thereto—e.g., with the L2

norm—can be made as small as desired [42, 54].
Diffusion in a box.- We illustrate the time manipula-

tion procedure with the FF transformation of the free
diffusion for a dilute gas within a finite box, x ∈ [0, L].
The gas is initially at equilibrium in the presence of a
constant and homogeneous force, ρr(x, 0) ∝ eβFx, with
thus a sedimentation profile. In the reference process,
at time t = 0, the force is suddenly removed and it
takes an infinite time to reach the stationary homoge-
neous state. The time scale of the relaxation is charac-
terized by λ−1

1 = γβL2/π2.
We have chosen Λ(t) from Eq. (6) with ζ = 1, τ = λ−1

1 ,
and tf = τ/10. The results for the FF transformation are
displayed in Fig. 2, for the density of the gas and the force
−∂xU(x, t). Apart from a short time window where the

forces are negative because of continuity, the forces re-
quired to accelerate homogenization are positive, pushing
the system in the direction opposite to that of the initial
force. As highlighted above, the protocol is smooth in
time, including the initial and final times. In general,
faster accelerations have a higher cost. Both the mag-
nitude of the required force and the excess irreversible
work increase as tf is decreased [42].

Connecting arbitrary states.- We come back to the
welding idea conveyed in Fig. 1. For the sake of con-
creteness, the initial and final densities are the equi-
librium distributions corresponding, respectively, to the
initial and final potential Ui(x) ∝ x4 and Uf(x) ∝ x6.
None of these two potentials provides a convenient refer-
ence potential: the associated reference dynamics cannot
be analytically solved and the FF idea results inopera-
tive. Here, the welding method offers a solution. Indeed,
choosing a Gaussian intermediate state (log ρint ∝ −x2)
is free of the above difficulties, and solvable. We thus
take βUr(x) = x2/(2σ2

x), where σ2
x stands for the vari-

ance of ρint [42]. As previously, we accelerate the for-
ward (FF) and backward (FB) processes by a factor ten,

tf = t
(1)
f = t

(2)
f = τ/10, with τ = λ−1

1 = γβσ2
x. For

both the FF and FB steps, the Λ function is taken to be
the same, with ζ = 1 [55]. The results for the welded
FF and FB protocols are displayed in Fig. 3. In the first
step, the tails of the density have to be pushed away from
the center and the confinement needs to be strengthened
in the central region to reach faster ρint; hence the N -
shape force. During the second stage, the requirements
are opposite, leading to an inverted N -shape. The force
protocol is continuous for all times, including the initial
and final times for both steps of the welding strategy.

We have focused on a specific functional shape for the
time manipulation, Eq. (6), in order to ensure the conti-
nuity properties that we desire for the protocol. One may
consider optimization problems, such as finding the time
manipulation that minimizes some relevant observable—
like the excess irreversible work [29–33]. Remarkably, it
is possible to show that such an optimization over all FF
protocols (attached to a given Ur but with an arbitrary
Λ(t)) lead to processes delivering excess work at constant
rate, as it happens with the full optimization [42]. Be-
sides, when it comes to connecting two Gaussian states,
the optimal FF protocol coincides with the full, uncon-
strained, optimum—and the minimum restricted to the
specific Λ(t) family in Eq. (6) lies only 4% above it, for
a ten-fold expansion of the state [42].

To sum up, we have developed a reverse-engineering
technique in order to manipulate at will the time evolu-
tion of a reference process. This provides us with the
external potential required to reach a target distribu-
tion in a desired time. Interestingly, not only does the
framework allow for the acceleration of forward processes
but also for the inversion of time’s arrow. Taking these
time manipulated reference processes as building blocks,
we have put forward a neat welding procedure to con-
nect two arbitrary states in an arbitrarily small finite
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FIG. 2. Accelerated free diffusion in a finite-size box of size L. Starting from the exponential profile ρr(x, 0) ∝ eβFx, the
subsequent reference solution ρr corresponds to a force-free evolution, Ur(x) = 0. This leads to strict equilibrium in an infinite
time, featuring a characteristic (diffusive) time τ . This reference dynamics is accelerated such that at tf = τ/10, the density
profile is strictly that at equilibrium (flat, i.e., ρ(x, tf) = 1/L). The time evolution of the density is displayed in the left panel,
whereas the right panel shows the force required to drive such an accelerated transformation. The inset shows a zoomed region
for negative forces. Here, βFL = −3 (as conventional for a gravitational field, we take F < 0). For the numerical evaluation,
the cutoff in the expansion (8) is ncut = 70 [42].

FIG. 3. Illustration of an operational welding connection. Left: time evolution of the distribution. Right: driving force to be
applied. The intermediate state is Gaussian with variance σ2

x, associated to the reference potential Ur(x) = x2/(2σ2
x). The

initial (final) state is the thermal Boltzmann distribution in the potential Ui(x) ∝ x4 (Uf(x) ∝ x6). The initial, final, and

reference densities are chosen to have the same variance. The transformation is performed in a finite time tf = t
(1)
f + t

(2)
f with

t
(1)
f = t

(2)
f = τ/10; ncut = 70 [42].

time. The method relies on a non-linear time mapping
of two relaxation processes in the same harmonic poten-
tial; it produces by construction a smooth driving poten-
tial, with continuous force field, for all times. Finally,
our procedure can be generalized to higher dimensional
problems[42, 56]. Some possible venues for developments
lie in the thermalization processes to build irreversible
nano heat engines [12, 28, 43–47, 49, 50] or the genetic

control of an evolving population [57, 58].
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L. Rondin, L. Novotny, and R. Quidant, Optically lev-
itated nanoparticle as a model system for stochastic
bistable dynamics, Nature Communications 8, 15141
(2017).

[17] S. Dago, B. Besga, R. Mothe, D. Guéry-Odelin, E. Trizac,
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neering protocols for controlling spin dynamics, Scientific
Reports 7, 15814 (2017).

[26] T. Schmiedl and U. Seifert, Optimal finite-time pro-
cesses in stochastic thermodynamics, Phys. Rev. Lett.
98, 108301 (2007).

[27] M. Chupeau, S. Ciliberto, D. Guéry-Odelin, and
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Atomic Physics: An Overview (World Scientific, 2011).

[36] S. Ciliberto, Experiments in stochastic thermodynamics:

https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1103/PhysRevLett.104.063002
https://doi.org/10.1103/PhysRevLett.105.123003
https://doi.org/10.1103/PhysRevLett.105.123003
https://doi.org/10.1103/PhysRevA.88.040101
https://doi.org/10.1103/PhysRevA.88.040101
https://doi.org/10.1103/PhysRevE.88.062122
https://doi.org/10.1103/PhysRevA.90.063425
https://doi.org/10.1103/PhysRevX.4.021013
https://doi.org/https://doi.org/10.1016/j.physrep.2017.07.001
https://doi.org/10.1103/PhysRevApplied.8.054008
https://doi.org/10.1088/1367-2630/aa924c
https://doi.org/10.1038/nphys3758
https://doi.org/10.1103/PhysRevE.96.012144
https://doi.org/10.1103/PhysRevE.96.012144
https://doi.org/10.1039/C6SM00923A
https://doi.org/10.1103/PhysRevE.98.010104
https://doi.org/10.1038/ncomms15141
https://doi.org/10.1038/ncomms15141
https://doi.org/10.21468/SciPostPhys.9.5.064
https://doi.org/10.1103/PhysRevLett.124.150603
https://doi.org/10.1021/jp030708a
https://doi.org/10.1021/jp030708a
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1103/PhysRevA.78.062108
https://doi.org/10.1088/0953-4075/48/17/174008
https://doi.org/10.1088/0953-4075/48/17/174008
https://doi.org/10.1103/PhysRevA.94.063418
https://doi.org/10.1103/PhysRevA.94.063418
https://doi.org/10.1038/srep30151
https://doi.org/10.1038/srep30151
https://doi.org/10.1038/s41598-017-16146-2
https://doi.org/10.1038/s41598-017-16146-2
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1103/PhysRevLett.98.108301
https://doi.org/10.1088/1367-2630/aac875
https://doi.org/10.1103/PhysRevE.102.012129
https://doi.org/10.1103/PhysRevE.102.012129
https://doi.org/10.1103/PhysRevLett.106.250601
https://doi.org/10.1103/PhysRevLett.106.250601
https://doi.org/10.1103/PhysRevE.85.020103
https://doi.org/10.1007/s10955-012-0478-x
https://doi.org/10.1007/s10955-012-0478-x
https://doi.org/10.3390/e19070379
https://doi.org/10.1209/0295-5075/128/30002
https://doi.org/10.1209/0295-5075/128/30002
https://books.google.fr/books?id=MG2V9vTgSgEC
https://books.google.fr/books?id=MG2V9vTgSgEC
https://books.google.es/books?id=md_cNwAACAAJ
https://books.google.es/books?id=md_cNwAACAAJ


6

Short history and perspectives, Phys. Rev. X 7, 021051
(2017).

[37] J. A. C. Albay, C. Kwon, P.-Y. Lai, and Y. Jun, Work re-
lation in instantaneous-equilibrium transition of forward
and reverse processes, New Journal of Physics 22, 123049
(2020).

[38] A. Baldassarri, A. Puglisi, and L. Sesta, Engineered swift
equilibration of a Brownian gyrator, Phys. Rev. E 102,
030105 (2020).

[39] A. Prados, Optimizing the relaxation route with optimal
control, Phys. Rev. Research 3, 023128 (2021).

[40] For the moment, we focus our attention on single-step
connections. The concept of the intermediate state will
return when designing the welding strategy.

[41] Y. Zhang, Optimization of stochastic thermodynamic
machines, Journal of Statistical Physics 178, 1336
(2020).

[42] See the Supplemental Material at xxxx for a discussion of
shape-preserving dynamics (which includes a number of
previously proposed explicit protocols) along with other
simple proposals, the analysis of the continuity property
of the steering potential, the dependence of the force in-
tensity on the duration of the process, the study of op-
timal properties, the spectral decomposition backing up
the welding procedure, the convergence of the resulting
expansion, and the generalization to higher dimensions.
A mathematica notebook solving the welding problem is
also provided.

[43] T. Schmiedl and U. Seifert, Efficiency at maximum
power: An analytically solvable model for stochastic heat
engines, EPL (Europhysics Letters) 81, 20003 (2008).

[44] S. Bo and A. Celani, Entropic anomaly and maximal ef-
ficiency of microscopic heat engines, Phys. Rev. E 87,
050102 (2013).

[45] Z. C. Tu, Stochastic heat engine with the consideration of
inertial effects and shortcuts to adiabaticity, Phys. Rev.
E 89, 052148 (2014).

[46] I. A. Mart́ınez, E. Roldán, L. Dinis, D. Petrov, and R. A.
Rica, Adiabatic processes realized with a trapped brow-
nian particle, Phys. Rev. Lett. 114, 120601 (2015).

[47] A. Dechant, N. Kiesel, and E. Lutz, All-optical nanome-
chanical heat engine, Phys. Rev. Lett. 114, 183602
(2015).

[48] I. A. Mart́ınez, E. Roldán, L. Dinis, D. Petrov, J. M. R.
Parrondo, and R. A. Rica, Brownian carnot engine, Na-
ture Physics 12, 67 (2016).
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