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We report on the efficient design of quantum optimal control protocols to manipulate the motional
states of an atomic Bose-Einstein condensate (BEC) in a one-dimensional optical lattice. Our
protocols operate on the momentum comb associated with the lattice. In contrast to previous works
also dealing with control in discrete and large Hilbert spaces, our control schemes allow us to reach
a wide variety of targets by varying a single parameter, the lattice position. With this technique,
we experimentally demonstrate a precise, robust and versatile control: we optimize the transfer of
the BEC to a single or multiple quantized momentum states with full control on the relative phase
between the different momentum components. This also allows us to prepare the BEC in a given
eigenstate of the lattice band structure, or superposition thereof.

I. INTRODUCTION

Quantum simulation amounts to using a tunable quan-
tum system to simulate another less controllable one,
and is particularly suited for studying model dynamics
in large Hilbert spaces [1]. This field has been growing
very fast in the past years as an alternative to the all-
purpose quantum computer and quantum simulations are
currently under study on a wide variety of quantum plat-
forms (see [1–4] and references therein).

Key requirements for quantum simulation are the abil-
ity to generate the desired Hamiltonian, to reliably pre-
pare the initial quantum state of interest, and to mea-
sure the subsequent time-evolved state. Many innova-
tive techniques have been developed to produce synthetic
Hamiltonians, using, e.g., properly designed coupling be-
tween external fields and atoms [2, 5, 6] or periodic driv-
ing of the system’s parameters [7, 8]. The time evolution
can either be probed continuously, or investigated at fixed
time intervals in the case of a digitized time evolution [9]
or to study discretized dynamics [10, 11].

Satisfying the requirement of the reliable preparation
of a desired initial state often calls for manipulating a dy-
namical system by means of external time-dependent pa-
rameters. In practice it amounts to steering that system
from a state easily provided by an experimental setup
to the desired one in a minimum time and with a very
high fidelity, while satisfying experimental constraints
and limitations. Many quantum control methods such
as shortcuts to adiabaticity [12], composite pulses [13],
machine learning approaches [14] or protocols based on
optimal control theory with a minimal use of resources
[15–19] have been developed and even combined to reach
this goal in a variety of contexts.

In particular, optimal control theory, which has its
roots in engineering [16], has been transposed with suc-
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cess to quantum systems first in the context of physi-
cal chemistry [20, 21], then applied in Nuclear Magnetic
Resonance for the control of spin dynamics [22–24], and
nowadays in quantum technologies [18]. For quantum
systems with complex dynamics, efficient iterative al-
gorithms have been developed to solve optimal control
problems [23, 25, 26]. This has recently led to exper-
imental realizations of optimal control protocols aimed
at engineering quantum states or operations in various
platforms, such as NV centers [27, 28], photonic states
in a cavity [29], internal states of atoms in low-excitation
states [30, 31] or in a Rydberg manifold [32].

Atomic Bose-Einstein condensates (BECs), in which
all atoms occupy a macroscopic wave function, lend
themselves naturally to the use of optimal control tech-
niques. Theoretical studies have investigated how to
manipulate BECs via a modulation of the magnetic
confinement potential in a one- [33–36] but also three-
dimensional case [37], and on atom chips [38–41], out-
performing simpler control protocols. Experimental evi-
dence of the efficiency of optimal control laws has been
provided for the manipulation of vibrational states in
a single trap [42, 43], in particular for interferometry
applications [44]. Other investigations extended to the
optimal driving of strongly interacting atoms, including
through a phase transition [43, 45].

The control of a BEC in optical lattices is of partic-
ular interest for quantum simulation [46]. Simple mo-
mentum state superpositions can be generated [47] in
order to realize a shaken-lattice interferometer [48–50].
Optimal control at quantum speed limit in a two-level
quantum system realized in a lattice was demonstrated
in [51]. Efficient control targeting specifically the eigen-
states of optical lattices has been achieved in [52], but
required combined optimized manipulations of both the
lattice position and amplitude.

In this study, we use quantum optimal control (QOC)
protocols to shape the momentum distribution of a BEC
in a one-dimensional optical lattice. The Hilbert space
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has a large unbound size provided by a momentum
comb of fixed spacing. In contrast with previous studies
[29, 30, 32, 42, 44], we drive the system through this large
space by continuously varying a single parameter, the lat-
tice position. With this simple but sufficient scheme, we
experimentally achieve a robust and versatile control of
the BEC wave function, and prepare arbitrary states, in
a short time window (typically of the order of 100 µs)
compared to commonly used adiabatic protocols. This
allows us to reach a wide variety of states for which there
is no known analytical solution of the control problem.
We demonstrate the transfer of the BEC to single and
multiple quantized momentum states, with the ability to
control the relative phases between the different momen-
tum components. As a further application, we prepare
the BEC in arbitrary superpositions of Bloch eigenstates
of the lattice. The implementation of the computed op-
timal control systematically leads to an excellent agree-
ment between the numerical target and the experimental
result.

II. EXPERIMENTAL SETUP AND
ALGORITHM

A. BEC Experimental setup

We perform our experiments in a hybrid trap [53] in
which we obtain pure rubidium-87 BECs of typically
2 · 105 atoms in the lowest hyperfine state |F = 1,mF =
−1〉. These BECs are loaded in a one-dimensional op-
tical lattice produced by two laser beams of wavelength
λ = 1064 nm counterpropagating along the x-axis. They
are superimposed on the optical dipole beams and the
quadrupolar magnetic field of the hybrid trap. Along the
optical lattice axis, the atoms experience the potential

U(x, t) = −s
2
EL cos (kLx+ ϕ(t)) + Uhyb(x), (1)

where kL ≡ 2π/d = 2π/(λ/2) and EL = ~2k2
L/(2m) (with

m the mass of an atom and ~ the reduced Planck con-
stant) are respectively the wavevector and the energy as-
sociated with the lattice (EL = 4ER, with ER the re-
coil energy). The harmonic potential of the hybrid trap
Uhyb(x) has an angular frequency ωx = 2π× 50 Hz. The
dimensionless depth of the lattice s is independently and
precisely calibrated [54] for each experiment presented
here.

We adiabatically load the atoms in the ground state
of the lattice potential, i.e. in a Bloch wave of spatial
period d [55]. As a result, the momentum distribution is
made up of equally spaced peaks separated by ~kL. Ex-
perimentally, we image this momentum distribution after
a sufficiently long ballistic expansion following a sudden
switch off of the confining potentials. The final spatial
density n(r) then reproduces the initial momentum den-
sity ñ(p) up to a scaling factor: n(r, t = tTOF) = ñ(p =
mr/tTOF, t = 0), with tTOF the time-of-flight duration.

The phase ϕ(t) of the lattice potential is our control
parameter. Varying ϕ as a function of time amounts to
moving the lattice position along the x-axis. This param-
eter is set by the relative phase between the two phase-
locked acousto-optic modulators controlling the lattice
beams. In the following section, we explain how to engi-
neer ϕ(t) to tailor at will the momentum distribution. As
the phase is varied, we only apply global transformations
to the lattice: as a consequence the quasi-momentum
q in the laboratory reference frame remains equal to its
value for the initially prepared ground state of the lattice,
q = 0. Therefore, in that reference frame, we engineer
arbitrary momentum superposition states of the form

|Ψ〉 =
∑
`∈Z

c` |χ`〉 , (2)

where the vector |χα〉 is the eigenstate of the mo-
mentum operator with eigenvalue α ~kL (and χα(x) =

eiαkLx/
√

2π).

B. Control algorithm

Our objective is to tailor the time variation of the
control field ϕ(t) over a fixed time interval [0, tf ], in or-
der to assign a desired value to the c` coefficients. For
this purpose, we use a standard first-order gradient al-
gorithm [23, 26, 56]. As the quasi-momentum q = 0
is fixed in the laboratory reference frame, we recast the
Schrödinger equation involving only the optical lattice
potential in the following matrix form:

iĊ =M(ϕ(t))C, (3)

where the state of the system is denoted by the vector C
with coordinates {c`} which satisfy

iċ` = `2c` −
s

4
(eiϕ(t)c`−1 + e−iϕ(t)c`+1), (4)

with a rescaling of time: t → ELt/~. The initial condi-
tion is given by the vector associated to the lowest Bloch
state at q = 0 for the lattice depth s. The optimal con-
trol problem is defined with respect to a figure of merit
F(C(tf), C

†(tf)) to be maximized at the fixed final time
tf of the control process. The choice of the function F
depends on the objective of the control (see below). We
do not put any other constraint on the control field ϕ(t).
The optimal solution is formulated from the Pontryagin
Hamiltonian [15, 19]

HP = Re[〈D|Ċ〉] = Im[〈D|M|C〉], (5)

where Re[·] and Im[·] denote respectively the real and the
imaginary parts of a complex number. We introduce D,
the adjoint vector, solution of

iḊ =M(ϕ(t))D, (6)
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with the final condition

D(tf) =
∂F(C(tf), C

†(tf))

∂C†(tf)
. (7)

The correction δϕ to first order of the control field is
proportional to the derivative of HP with respect to ϕ(t)

δHP(t) =
∂HP

∂ϕ(t)
= Im

[
〈D| ∂M

∂ϕ(t)
|C〉
]
. (8)

We thus consider the following gradient algorithm:

1. Choose a guess field ϕ(t) = ϕ0(t).

2. Propagate forward the state C(t) up to the final
state C(tf).

3. Propagate backward the adjoint state of the sys-
tem from Eq. (6), with the final condition given by
Eq. (7).

4. Compute the correction δϕ(t) to the control field,
δϕ(t) = εδHP(t), where ε is a small positive pa-
rameter.

5. Define the new control field ϕ(t) 7→ ϕ(t) + δϕ(t).

6. Repeat from step 2 until the desired value of the
figure of merit F is reached.

In the numerical simulations, ε is determined from a line
search method [56]. A constant phase adapted to the tar-
get state is generally a good starting control field for the
algorithm. For the experimental implementation under
study, we have verified that the accuracy of a first-order
algorithm is sufficient, and second-order corrections are
therefore not necessary [57, 58].

C. Implementation

In practice the optimal control field ϕ(t) manipulated
by the algorithm is a piecewise constant function. The
control sequence is divided into a large number of time
steps ∆t (each of the order of a few hundreds of ns). The
relatively smooth optimal pulses derived from the algo-
rithm justifies this approximation. Its successful imple-
mentation in the experiment imposes stringent technical
requirements, such as the ability to vary the phase in an
arbitrary fashion with an accuracy of less than a percent
and on a frequency scale much higher than the charac-
teristic frequencies of the atomic dynamics (∼ 10 kHz)
[59].

Finally, the choice of the time duration tf of the phase
control is a compromise between two opposite require-
ments. It should be larger than the natural time scale
of evolution for the atoms in the lattice since the algo-
rithm takes advantage of the dynamics, but not too long
to mitigate the deleterious effects of the accumulation of
small errors in the control, due to experimental fluctua-
tions or imperfections. In practice, we choose a control

time tf ∼ 1.5T0, where T0 is the time associated with the
energy difference between the two lowest eigenstates at
q = 0 (T0 ' 70 µs for s ' 5). This experimentally leads
to the highest fidelities to the desired targets.

III. CONTROL OF MOMENTUM STATE
POPULATIONS

In a first set of experiments, we investigate the control
of the populations p` = |c`|2 in the desired momentum
orders (

∑
` p` = 1). To reach a specific target with popu-

lations {pt,`}, we run the previously described algorithm
with the figure of merit

F = 1− 1

2

∑
`

(|c`|2 − pt,`)
2 (9)

= 1− 1

2

∑
`

(C†O`C − pt,`)
2,

where O` is the projection operator onto the state ` [60].
Using this definition, and the algorithm described in
Sec. II B, we present optimal control ramps leading
first to the preparation of a single momentum state
(Sec. III A), and then to arbitrary-weight superpositions
of two or more momentum components (Sec. III B).

A. Populating a single momentum state

We first optimize the control field ϕ(t) to populate a
single momentum state |χn〉. In doing so, we somehow
“erase” in momentum space the information on the peri-
odicity of the wavefunction. We compare the experimen-
tally obtained momentum states to the targeted ones by
computing the average fidelity

F(pexp, pt) =

[∑
`

√
pexp,`

√
pt,`

]2

, (10)

where the pexp,` = |cexp,`|2 correspond to the populations
of the different momentum components of the experimen-
tal distribution pexp, obtained by averaging over 10 ex-
perimental realizations. The ideal targeted momentum
distribution pt is here given by pt,` = δ`,n. We compare
the experimental fidelity to the theoretical value Fnum

obtained from numerical simulations using the same con-
trol field ϕ(t). We use this fidelity to assess our results
rather than the figure of merit of Eq. (9) as it is closer
to the usually defined fidelity in quantum physics (the
modulus squared of the states overlap). The chosen fig-
ure of merit for the algorithm leads however to a simpler
gradient computation, and both quantities should reach
the value 1 for an optimal control solution.

In the experiments shown in Fig. 1, we choose a lattice
depth s ' 5 and populate various positive single momen-
tum states up to the momentum state p = 10 ~kL. The



4

measured experimental fidelities are very close to the nu-
merical ones, and both show a similar trend, with slowly
decreasing values as we go from low momentum targets
to high momentum targets. At the same time, the control
phase profile gets more complex, as seen in Fig. 1 (d). To
reach high single momentum states, such as p = 10 ~kL

(Fig. 1 (d)) we had to increase the time of the control
ramp to ensure the convergence of the algorithm. We
recover here a standard result of optimal control, namely
that the reachable set increases for larger control times.
It is worth noticing that the QOC algorithm allows us to
reach momentum values that are much higher than the
ones accessible from the classical free dynamics [55], for
which p2

max ∼ 2msEL i.e. pmax ∼
√
s ~kL ' 2.2 ~kL. In

using QOC to populate with high fidelity a single diffrac-
tion order n of the lattice, we effectively realize a blazed
grating for matter waves, with the algorithm designing a
constant phase gradient ∆φ(x) = nkLx = 2πnx/d across
the lattice sites.

2

2

(t)

a

2

2 b

2

2 c1c

0 0.75 1.5
2

2 c2

= 0.94 ± 0.01 num = 0.99

= 0.94 ± 0.01 num = 0.99

= 0.89 ± 0.01 num = 0.89

0 2 4 6 8 10

= 0.49 ± 0.03 num = 0.52

0 2 4
t/T0

2

2 d

0 2 4 6 8 10
p/ kL

= 0.74 ± 0.05 num = 0.87

FIG. 1. Single momentum states. (a-d) Left: Control
fields ϕ(t) for the preparation of single momentum states,
respectively 0, 2, 4 and 10 ~kL. Time is given in units of T0

(see text). (a), (b), (c1) and (d) (blue) are obtained by
QOC and (c2) (green) is the quadratic phase evolution of
a uniformly accelerated lattice reaching velocity 4h/md in
1.5T0 (see text). Right: corresponding absorption images
of diffraction orders. Displayed fidelities are computed with
respect to the ideal single momentum target states, with F
the average fidelities of 10 experimental realizations (errors
are statistical and correspond to one standard deviation) and
Fnum the expected fidelities from numerically evolving the
state in the lattice potential with the corresponding ϕ(t). The
calibrated dimensionless lattice depths are sa = 5.1±0.2, sb =
5.2± 0.2, sc1 = 5.2± 0.2, sc2 = 5.0± 0.1 and sd = 5.1± 0.2.

We can compare our QOC method to the more stan-
dard protocol of accelerating the lattice to impart mo-
mentum to the atoms. We illustrate this comparison in
the case of n = 4 in Fig. 1 (c2) : we uniformly accel-
erate the lattice up to a velocity of 4h/(md) for the
same amount of time tf and lattice depth s used for
the QOC experiment. After the acceleration, the fi-
delity to the target state, i.e. the single momentum state

p = 4 ~kL, is much lower than the one obtained using
the QOC method. This is clearly visible on the exper-
imental absorption image, with a noticeable population
on the p = 3 ~kL momentum peak for the acceleration
method [61]. One could argue that the fidelity to the tar-
get state using the acceleration method can be increased
by working adiabatically and performing Bloch oscilla-
tions. Numerical simulations show however that reaching
a fidelity > 90% to a given single momentum state re-
quires low lattice depths s < 1 and that the adiabaticity
condition then leads to a generally much longer control
time tf . The control time will also grow linearly with the
momentum of the targeted state, reaching tf = 1.7 ms for
the p = 4 ~kL state considered here. Such long control
times also mean that the atomic wavepacket moves much
further away from the center of the hybrid trap during
its acceleration, with deleterious effects. We had in fact
to reduce the axial confinement from 50 Hz to 4 Hz when
using the acceleration method to achieve the result of
Fig. 1 (c2). In Tab. I, we summarize the results of such
a comparison between optimal control and Bloch accel-
eration for several momentum orders. We conclude that
the QOC method is both a fast and accurate procedure
to populate single momentum states with a high fidelity.

Target n 2 4 8 10
Fidelity F 0.94±0.01 0.89±0.01 0.76±0.04 0.74±0.05

QOC
s(±0.2) 5.2 5.2 5.1 5.1
tf (µs) 91.7 91.7 260 260

Acc.
s 0.75 1.1 2.1 2.3

tf (µs) 1.7 · 103 1.7 · 103 1.2 · 103 1.4 · 103

TABLE I. Comparison of the control times tf required to reach
a given single momentum target (p = n ~kL) with the same
fidelity using either our Quantum Optimal Control (QOC)
protocol or using the quasi-adiabatic Bloch oscillation scheme
with a uniformly accelerated lattice (Acc.). We indicate the
lattice depth s at which the experiments were performed (for
the QOC case), or which would be required (for the acceler-
ated case).

The comparison between the control fields ϕ(t) in both
methods sheds light on the way the optimal phase is de-
signed: the folded quadratic growth pattern observed in
the control phase for the acceleration method can also be
found in the QOC phases, for instance in Fig. 1 (c1) (and
also in (d)). In this case, the optimal control field ϕ(t)
can be interpreted in terms of a first acceleration stage
(t/T0 < 0.75) towards the targeted momentum state, and
a second “correction” stage to reduce the population in
unwanted momentum states.

The QOC solution turns out to be quite robust. In-
deed, we get small error bars on the measured average
fidelity over 10 realizations, despite the possible shot-
to-shot atom number fluctuations or lattice depth fluc-
tuations (there is no active stabilization of the lattice
beam intensity), the atom-atom interactions that affect
the BEC wave function, and the presence of the external
confinement Uhyb(x) superimposed on the lattice which
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is not taken into account in the algorithm.

B. Populating an arbitrary number of momentum
states

In a second set of experiments, we shape the phase ϕ(t)
to populate an arbitrary number of momentum states
with the desired probabilities. First, we realize equiprob-
able superpositions of two momentum states, varying
their relative momentum: we show the case of neigh-
bouring momentum states (Fig. 2 (a)), opposite momen-
tum states (Fig. 2 (b)) and an arbitrary pair of momen-
tum states (Fig. 2 (c)) for which an earlier simple method
(with a constant phase and a specific control time) gave
decent results in specific cases [55]. A closer look at the
absorption image obtained for two neighbouring momen-
tum states reveals the presence of a diffuse scattering
halo, which results from elastic collisions occuring during
the time-of-flight (see Ref. [55] and references therein).
We also demonstrate the superposition of a high number
of momentum states (five in Fig. 2 (d)) with arbitrary
weights. In each case shown, we achieve good experi-
mental fidelities to the ideal target (larger than 88%), just
slightly below the corresponding numerical fidelities. The
QOC robustness and versatility also allowed us to record
all 27 = 128 combinations of equal-weight superpositions
of momenta between p = −3 ~kL and p = 3 ~kL, which
can then e.g. be stacked together to spell out words (see
Appendix A).

2

2

(t)

a

2

2 b

2

2 c

0 1.5
t/T0

2

2 d

= 0.88 ± 0.03 num = 0.95

= 0.93 ± 0.01 num = 0.92

= 0.93 ± 0.02 num = 0.98

-4 -2 0 2 4
p/ kL

= 0.94 ± 0.01 num = 0.99

FIG. 2. Arbitrarily populated momentum states. (a-
c) Equiprobable superpositions of respectively (−3,−2) ~kL,
(−4, 4) ~kL and (−3, 2) ~kL momentum states. (d) Superpo-
sition of the momenta (−2,−1, 0, 1, 2) ~kL with populations
p` = {1, 2, 3, 4, 5} /15. Left: QOC computed control fields
ϕ(t). Time is given in units of T0 (see text). Right: corre-
sponding absorption images of the momentum distribution.
Displayed fidelities are computed with respect to the ideal
target states, with F the fidelities from an average over 10 ex-
perimental realizations (errors are statistical and correspond
to one standard deviation) and Fnum the expected fidelities
from numerically evolving the state in the lattice potential
with the corresponding ϕ(t). The calibrated dimensionless
lattice depths are sa = 4.6±0.2, sb = 5.0±0.1, sc = 4.6±0.2
and sd = 5.1± 0.1.

IV. FULL STATE CONTROL OF MOMENTUM
SUPERPOSITIONS

In Sec. III, the control field ϕ(t) was optimized toward
a target defined solely in terms of the populations p` of
the momentum peaks regardless of their relative phases.
In this section, we improve the degree of control by tar-
geting both the populations of and the relative phases be-
tween different momentum components. To fulfill these
requirements, we run our optimization algorithm with a
figure of merit sensitive to phase differences, the standard
quantum fidelity:

F = FQ = |〈C(tf)|Ct〉|2, (11)

with Ct the target vector.
In the following, we first show that we can prepare and

identify a superposition of two momentum components
with an arbitrary relative phase (section IV A). Then we
move to the preparation of more complex superpositions
of momenta, such as specific eigenstates of the lattice
potential, and superpositions thereof (Sec. IV B).

A. Controlling the phase of a momentum
superposition

To demonstrate control over the relative phase of mo-
mentum components, we focus here on a simple momen-
tum superposition of the form:

|Ψ∆φ〉 =
1√
2

(|χ1〉+ ei∆φ |χ−1〉). (12)

For several values of the relative phase ∆φj = j ×
π/8, j ∈ {0, · · · , 15}, we find an optimal control ramp
that prepares the corresponding superposition

∣∣Ψ∆φj

〉
.

To identify the relative phase of the prepared superposi-
tion we use the subsequent evolution of the momentum
distribution in the static lattice: just after the prepara-
tion ramp, the lattice phase is set back to its initial value,
ϕ(t > tf) = 0, and we measure the evolution of the mo-
mentum distribution over an extra 110 µs. This evolution
depends strongly on the effective phase of the superpo-
sition, as illustrated in Fig. 3 (a-e). All experiments are
performed in a lattice of depth s ' 5 [54].

A precise determination of the phase of the superposi-
tion is achieved by fitting the time-evolution of the ideal
state |Ψ∆φ〉 to the measured evolution of the momentum
orders, as shown in Figs. 3 (c−2 − c2). A least-square
fitting with ∆φ as free parameter yields the measured
phase ∆φmeas. In Fig. 3 (f), we compare this measured
phase to the prepared phase ∆φprep, which is the phase of
the superposition as given by the optimal control solution
(which may differ slightly from the target ∆φj = j×π/8),
for all the values ∆φj . The error bars represent the
95% confidence interval determined from the likelihood
function [62]. The good agreement between the phase
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FIG. 3. Control and measurement of the phase between momentum components. (a-e) Top: stacks of integrated
experimental images (blue) showing the evolution of the momentum distribution during a 110 µs holding time in a static lattice
after applying a control field ϕ(t) preparing the momentum superposition |Ψ∆φ〉 of momentum components (−1, 1) ~kL (see
text) with an expected relative phase ∆φprep = 3o, 46o, 96o, 184o and 276o. Bottom: numerical propagation (red) in a
static lattice of the same momentum superposition with a relative phase measured by least-squares fitting of the experimental
data (see text), yielding respectively ∆φmeas = (11± 6)o, (48± 7)o, (84± 6)o, (192± 7)o and (285± 6)o. (c−2-c2) Detail
of the evolution of momentum populations in (c), with panel (ci) featuring the i-th momentum component, and showing the
experimental data (blue dots) and numerical propagation of the superposition |Ψ∆φmeas〉 with relative phase ∆φmeas determined
by least-square fitting (continuous red line). (f) Measured relative phase ∆φmeas as a function of QOC prepared relative phase
∆φprep for data (a-e) and more. All data shown were obtained for a calibrated lattice depth s ' 5. The error bars represent
the 95% confidence interval for the value of ∆φmeas deduced from the likelihood function. The grey dotted line is of slope one.

expected from the optimal control law ∆φprep and the
measured result ∆φmeas demonstrates our ability to en-
gineer the phase of momentum superpositions reliably.
Examples of three-momenta superpositions with differ-
ent relative phases are also provided in Appendix B.

B. Preparing lattice eigenstates

To further illustrate our control on the relative phase
in momentum superpositions, we use the very same opti-
mal control algorithm to prepare eigenstates of the lattice
potential. For a given lattice quasi-momentum q ≡ q̃kL,
the nth Bloch function reads:

|ψn,q〉 =
∑
`

c
(n,q)
` |χ`+q̃〉 , (13)

where the coefficients c
(n,q)
` are solutions of the stationary

Schrödinger equation

En,qc` = (`+ q̃)2c` −
s

4
(c`−1 + c`+1), (14)

with En,q in units of EL.
As the atoms are initially prepared in the ground state

of the lattice, for which q = 0, we first target eigenstates
in that subspace. When q = 0, the parity of the quantum
state in the S, D, G ... bands is even (c` = c−`), while it
is odd in the P , F , ... bands (c` = −c−`). The capability

to adjust the relative phase between the different mo-
mentum components is therefore of utmost importance
for such targets.

The result of such a preparation is shown in Fig. 4 (b).
Here we first apply a control field ϕ(t) to generate the
momentum superposition corresponding to the eigenstate
in the P band (at q = 0), and we monitor the evolution
of the momentum distribution over the following 110 µs
' 1.5T0, to reveal the lattice dynamics. The measured
momentum distribution is shown in Fig. 4 (b1) : as ex-
pected, since we prepared an eigenstate of the lattice po-
tential, there is no visible evolution of the distribution.
As a comparison, Fig. 4 (b2) presents the evolution that
one would expect from the prepared state as given numer-
ically by the optimal control phase (which has a fidelity
to the ideal P band eigenstate of FQ,num = 99%). Finally
in Fig. 4 (b3) we compare the time-averaged momentum
distributions for both experimental and theoretical evo-
lutions. We find once again good quantitative agreement
between the observed and expected evolutions.

We can also effectively reach lattice eigenstates at
q = q0 6= 0 by exploiting a change of reference frame.
To that end we first use the optimal control algorithm
to prepare the momentum superposition with the coef-

ficients c
(n,q0)
` (see Eq. (13)). If, as in all previous ex-

periments, the lattice was returned to a constant phase
ϕ = 0 after preparation, then the obtained state would
not be an eigenstate. If however we set the lattice in mo-
tion, applying right after preparation a phase ϕ(t > tf) =
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FIG. 4. Lattice eigenstates. (a): Lattice band structure for
a depth s = 8.2. The grey area denotes the depth of the lattice
potential. Black dots denote the states prepared in (b) and
(c). (b): Preparation of the eigenstate of the P band at quasi-
momentum q = 0. (b1): Experimental data showing the
evolution of the prepared state in the lattice. (b2): Numerical
evolution of the prepared state as expected from the optimal
control phase. (b3): Time-averaged experimental (blue) and
theoretical (red) momentum distributions. The error bars
represent the standard deviation. (c): Same as (b) but for
the eigenstate on the D band at quasi-momentum q = 0.25 kL.

2π(~q0/m)(t− tf)/d, we translate the prepared superpo-
sition into the q = q0 subspace in the reference frame of
the lattice, making it a proper eigenstate.

In Fig. 4 (c), we use this technique to prepare the eigen-
state of the D band at q = 0.25 kL. As expected, the
populations of the prepared superposition do not evolve
in time, demonstrating again that we have generated an
eigenstate (the expected fidelity of the prepared state to
the ideal eigenstate is FQ,num = 99%). Note that the
same state could in principle be reached by a direct opti-
mization in the laboratory frame with an additional force
breaking the translational symmetry.

Finally we can use optimal control to prepare more
complex superpositions, such as the superposition of two
lattice eigenstates. This is illustrated in Fig. 5 where
we show both the experimentally measured and the cal-
culated evolution for equal-weight superpositions of the
P and F bands at q = 0 (Fig. 5 (b)) and of the S and
D bands at q = 0.25 kL (Fig. 5 (c)). A striking feature
of these data is the evolution of all momentum orders
with a single frequency (one can contrast these with e.g.
Fig. 3 (c)), which corresponds to the energy difference
between the eigenstates involved.

FIG. 5. Superposition of lattice eigenstates. (a): Lat-
tice band structure for a depth s = 5.6. The grey area de-
notes the depth of the lattice potential. The pairs of black
dots linked by a plus sign denote the states prepared in (b)
and (c). (b): Preparation of an equal-weight superposition
of eigenstates of the P and F bands at quasi-momentum
q = 0. (b1): Experimental data showing the evolution of
the prepared state in the lattice. (b2): Numerical evolution
of the prepared state as expected from the optimal control
phase. (c): Same as (b) but for an equal-weight superposi-
tion of eigenstates of the S and P bands at quasi-momentum
q = 0.25 kL.

V. CONCLUSION AND PERSPECTIVES

We have demonstrated a versatile optimal control
scheme for ultracold atoms in an optical lattice, that
relies on the modulation of a single parameter, the lat-
tice position. With this simple scheme it is possible to
prepare arbitrary periodic states in the lattice, with full
control on the populations and relative phases of the mo-
mentum components. We have exploited this technique
to reach hundreds of different targets with a high fidelity.
Interestingly, it is possible to produce in a fast man-
ner quantum states that cannot be reached by adiabatic
transformations. This method enables us to efficiently
prepare lattice eigenstates in a straightforward way, as
compared to periodic modulations of phase or amplitude
[63], and is also robust to the presence of a small external
confinement.

This work is a promising step forward in the con-
text of quantum simulation as it could be extended to
the tailoring of the wavefunction to either load specific
semi-classical orbits in the phase-space of the lattice
[10], or to optimally prepare initial states for coupled
atomic momentum lattices [64] or lattice-based Floquet
systems [7, 8, 65]. Our protocol can be readily general-
ized to lattices of higher dimensions. A stimulating per-
spective for quantum simulation is to extend this single
parameter scheme to strongly interacting systems. Be-
sides, optimal control opens new perspectives in quantum
sensing, when the control function is tailored in order to
magnify the response of a quantum system to a specific
parameter, such as an external force.
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Appendix A: BEC “printer”

-3
0
3p/

k L

FIG. 6. Illustration of an experimental BEC dot-
printer : each of the 67 columns of the image is an absorp-
tion image taken after a QOC preparation of an equal-weight
superposition of momentum states chosen among {|χi〉 , i ∈
{−3, · · · , 3}} (see text).

The robustness and versatility of our QOC scheme can
be illustrated in an amusing and striking way through the
realization of an experimental BEC “printer”. Inspired
by the dot-printing technique, we can prepare and record
the absorption images of all 27 = 128 equal-weight super-
positions of momenta between p = −3 ~kL and p = 3 ~kL.
Aligning such images vertically and putting them side-
by-side (in combination with an absorption image with
no atoms for an empty space), we can put together let-
ters of the alphabet, words, and sentences as we please.
An example of such a printout is shown Fig. 6.

Appendix B: Three-momentum superpositions

In Fig. 7, we illustrate the control of the relative
phases of the QOC prepared state on the following
three-component momentum superpositions: |ψa〉 =

(|χ−2〉 + |χ0〉 + |χ2〉)/
√

3, |ψb〉 = (|χ−2〉 + e2iπ/3 |χ0〉 +

e4iπ/3 |χ2〉)/
√

3 and |ψc〉 = (e2iπ/3 |χ−2〉 + |χ0〉 +

e2iπ/3 |χ2〉)/
√

3. For each of these states, we show the
experimentally measured evolution of the momentum dis-
tribution in the static lattice following the state prepara-
tion (in a lattice of depth s = 5.7± 0.2), along with the
numerically calculated evolution expected from the state
as ideally prepared with QOC. The agreement between
experimental and theoretical data is very good, and al-
lows us to identify the prepared superposition.

0

75

a

-2 0 2

0

75

tim
e 

(µ
s)

b

-2 0 2
p/ kL

c

-2 0 2

FIG. 7. Preparation of three-momentum target states.
Preparation of the superpositions (a) |ψa〉 = (|χ−2〉+ |χ0〉+

|χ2〉)/
√

3, (b) |ψb〉 = (|χ−2〉 + e2iπ/3 |χ0〉 + e4iπ/3 |χ2〉)/
√

3,

(c) |ψc〉 = (e2iπ/3 |χ−2〉+|χ0〉+e2π/3 |χ2〉)/
√

3. Top: stacks of
integrated experimental images (blue) showing the evolution
of the momentum distribution during a 110 µs holding time
in a static lattice after applying the control field ϕ(t) prepar-
ing the target momentum superposition. Bottom: numerical
propagation of the expected prepared state in a static lattice
(red). For all three prepared states, the dimensionless lattice
depth is s = 5.7± 0.2.
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