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ABSTRACT

We explore the influence of precision of the data and the algorithm for the simulation of chaotic dynamics by neural network techniques.
For this purpose, we simulate the Lorenz system with different precisions using three different neural network techniques adapted to time
series, namely, reservoir computing [using Echo State Network (ESN)], long short-term memory, and temporal convolutional network, for
both short- and long-time predictions, and assess their efficiency and accuracy. Our results show that the ESN network is better at predicting
accurately the dynamics of the system, and that in all cases, the precision of the algorithm is more important than the precision of the training
data for the accuracy of the predictions. This result gives support to the idea that neural networks can perform time-series predictions in
many practical applications for which data are necessarily of limited precision, in line with recent results. It also suggests that for a given set
of data, the reliability of the predictions can be significantly improved by using a network with higher precision than the one of the data.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021264

Chaotic dynamical systems display high sensitivity to small per-
turbations. Indeed, initially small differences between two tra-
jectories increase exponentially with time (“butterfly effect”), a
process quantified by Lyapunov exponents. This makes the pre-
cise simulation of a specific trajectory difficult, since the limited
precision of the computer leads to small errors, which are ampli-
fied by the dynamics. Recently, machine learning techniques
have been successfully applied to the simulation of chaotic sys-
tems. These techniques use neural networks trained on datasets
to forecast the subsequent evolution of the system. Here, we
explore the effect of the precision of the training data and of the
algorithm itself on the accuracy of the predictions. Our results
indicate that in a consistent way, the precision of the algorithm
is a more crucial factor than the precision of the datasets to get
accurate predictions. This may have interesting applications in
many contexts where the precision of the dataset is difficult to
improve.

I. INTRODUCTION

Techniques of machine learning have been shown lately to be
efficient in a huge variety of tasks, from playing the game of Go1

to speech recognition2 or automatic translation.3 In many cases,
such breakthroughs correspond to complicated tasks with complex
decision-making processes. However, it was highlighted recently
that such tools can also be useful in tasks, which are much more
adapted to standard algorithms, such as simulation of physical sys-
tems. The simulation of chaotic dynamical systems has been known
for a long time to be one of the most demanding, since the insta-
bility of the system makes small errors increase exponentially with
time (see, e.g., Refs. 4–6). Nevertheless, it was shown in Refs. 7–10
that a certain type of machine learning algorithms called reservoir
computing11 was able to forecast the evolution of chaotic dynamical
systems, even of high dimensionality (see also the recent collection
of articles Ref. 12). Remarkably enough, the simulation is made from
the time series of the previous states of the system, without solving
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explicitly the equations defining the model, in a way similar to the
model-free time series analysis approach developed earlier.13 In par-
allel, it was also shown that other types of neural networks may be
efficient as well in predicting the behavior of such systems, i.e., Long
Short-Term Memory (LSTM) networks14,15 or deep artificial neural
networks.16 Some comparisons of the different methods have already
been performed on test models.17,18

Chaotic dynamical systems are inherently unstable with posi-
tive Lyapunov exponents. This implies that any small error in the
trajectory is exponentially amplified by the dynamics, making long-
time simulation of a specific trajectory practically impossible. In
particular, small round-off errors due to the finite precision of the
computation unavoidably get quickly amplified; for example, it was
shown that it leads to an effective irreversibility of the system even
if the equations are formally reversible.19,20 The simulated trajectory
fails to retrace the original one after some time. Such short-time pre-
dictions of a specific trajectory are similar to weather forecasting in
meteorology, where one wants the evolution from a specific initial
state. However, it is known that such limitations do not preclude the
long-time simulation of chaotic systems from describing with rea-
sonable accuracy the typical behavior of trajectories of the system,
enabling them, e.g., to get information about the structure of attrac-
tors in dissipative systems. This is similar to climate simulations,
which can give information about future climates several years in
the future, well beyond the limits of weather forecasting.

The results obtained so far have shown that the different
machine learning techniques implemented for such problems can
simulate with good accuracy both the short-time and long-time
behavior of chaotic dynamics. However, it is important for future
applications to assess the accuracy of these techniques in a precise
way. In this paper, we explore the role of precision of the data used
for the training of the network and of the algorithm itself on the
accuracy of the simulation. We do so on a specific case of reservoir
computing [Echo State Network (ESN)] as well as on two other stan-
dard machine learning techniques used in this context, commonly
called LSTM21 and Temporal Convolutional Network (TCN)22 tech-
niques. We compare the accuracy of these methods to the explicit
integration of the equations of motion, both for short-time and long-
time predictions of a well known chaotic system originating from
meteorology, the Lorenz system. Our results show that the precision
of the algorithm is more important than the precision of the training
data for the accuracy of the simulation. This has interesting conse-
quences for applications, since the precision of the algorithm is by
far easier to control than the one of the training data. We also dis-
cuss the training by considering trajectories of different size and by
computing the time required to train the networks.

II. SYSTEMS STUDIED

The Lorenz system was introduced in 1963 by Lorenz23 as an
extremely simplified model of meteorology. It corresponds to a set
of three nonlinear coupled equations for the variables x, y and z as a
function of time,

ẋ = σ(y − x),

ẏ = x(ρ − z),

ż = xy − βz.

(1)

Throughout the paper, we choose the standard set of parameters:
σ = 10, ρ = 28, and β = 8/3.

This nonlinear and dissipative model displays chaotic features.
In particular, trajectories converge to a low dimensional but com-
plex structure referred to as a strange attractor and, in this specific
case, as the Lorenz attractor.

As said in the introduction, we distinguish two types of pre-
dictions. The short term predictions are similar to meteorological
predictions: one starts from a specific initial point, and the aim is
to follow a specific trajectory of the system for as long as possible.
For strongly chaotic systems, this kind of predictions is limited by
the exponential growth of perturbations: the distance between two
nearby trajectories increases exponentially with time. This process,
quantified by the (maximal) Lyapunov exponent, limits the numeri-
cal prediction of such systems since small imprecisions in the initial
state will quickly increase to a macroscopic size. This phenomenon,
noticed by Lorenz in the first paper on the system and often dubbed
the “butterfly effect” is associated to a Lyapunov time, which is log-
arithmic in the precision and sets a limit to numerical simulations
with a given precision. This is shown in Fig. 1 in which we represent
the distance to a reference trajectory computed with a Runge–Kutta
integration method of order 4 (RK4) in quadruple precision for
trajectories computed using RK4 with lower precision (i.e., sepa-
rated initially by 10−16 or 10−8). They strongly depart after a certain
time from the high precision trajectory. The separation time clearly
increases only logarithmically with the precision.

This property makes numerical simulation of specific trajec-
tories for chaotic systems very difficult: increasing by exponentially
large factors the precision only increases linearly the prediction time.

However, one may ask a different type of questions. Even if the
short term behavior of a specific trajectory is hard to obtain numer-
ically in a reliable manner, is it still possible to get accurate results
on statistical properties of the system for long term? To answer this
question, we calculate the first return application. This application,
introduced by Lorenz, consists in plotting the successive maxima of
z(t) over a long period of time. For that, it is enough to locate the
maxima Zi of the curve and plot the position of a given maximum

FIG. 1. Euclidean distance between the reference trajectory of the Lorenz system
obtained with quadruple precision with the double precision trajectory (dotted line)
and the single precision trajectory (solid line), with a time step dt = 0.02.
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FIG. 2. Comparison of return map of the Lorenz system (long-term behavior) with
quadruple precision (blue dots) and double (red dots) and single precision (green
dots). The points are nearly superimposed revealing that the long-term prediction
is almost the same independently of the precision.

Zi+1 as a function of the preceding one, Zi. These data are related to
the structure of the Lorenz attractor to which trajectories converge
for long time. Figure 2 compares such long-term predictions using
the RK4 algorithm to integrate Eq. (1) with different precision. We
observe that the statistical properties at long time are not dramati-
cally sensitive to the precision at which the calculation is performed.
Even if individual trajectories are not accurately described, their
global properties are correctly described. This is similar to what dis-
tinguish climate simulations from meteorological simulations: even
if individual trajectories cannot be simulated beyond a few weeks to
predict the weather, long-term global properties of the system (cli-
mate characteristics) can be obtained for much longer periods (years
or decades).

To evaluate quantitatively the accuracy of long-term simula-
tions, we made a polynomial fit of the return map obtained with
quadruple precision on each side of the peak of the return map in
the window of parameters delimited by the blue dashed lines on the
left side and by the red dashed lines on the right side (see Fig. 3).
We have then computed the relative error ξ between the fit and the
data. The mean percentage error remains below 0.2% in the zones
delimited by the dashed line.

We then compute for single and double precision the distance
toward the fit as a function of the number of iteration points con-
sidered (see Fig. 4). The results show that the mean relative error
converges to less than 0.2% for sufficiently large databases, in both
single and double precision. The large spread of the relative error for
a small number of iteration steps is due to the fact that the system
has not yet reached the asymptotic behavior of the return map. The
data shown in Fig. 4 indicate that the long-term prediction charac-
terized here by the return map is almost insensitive to the precision
with which the trajectory is computed. We note that for this specific
quantity, the error cannot go to zero and has a minimum value due
to the fact that the fit we use is only an approximation of the correct
return map. Indeed, it is known8,23 that the return map is actually
not a curve but a fractal, of dimension slightly above one, thus close
to a curve but not quite exactly. In the following, we will thus inves-
tigate in parallel as another benchmark the Lyapunov exponents of

FIG. 3. The return map is calculated using a RK4 integration algorithm in quadru-
ple precision (upper panel). We fit the data in between the blue (red) dashed line
with a polynomial of degree 10. We plot the relative difference ξ between the fit
and the return map in the lower panel.

the system, which have also been studied in this context8,10 and do
not suffer from the same limitation.

In order to have data on another system, we also looked at the
Lyapunov exponents of the Rössler system,25

ẋ = −y − x,

ẏ = x + ay,

ż = b + z(x − c).

(2)

We choose the standard set of parameters: a = 0.2, b = 0.2,
and c = 5.7. This model is also chaotic and dissipative with trajecto-
ries converging to a strange attractor called the Rössler attractor.

III. RESULTS: ACCURACY OF PREDICTIONS FOR THE

CHAOTIC MODELS STUDIED

In order to evaluate the accuracy of the machine learning
approaches to predict the behavior of the chaotic systems studied,
we use three different methods: a reservoir computing model as

FIG. 4. Mean relative error in percentage in the distance of the return map
points (calculated from the RK4 algorithm) from the polynomial fit with time step
dt = 0.02 (triangle) and for single precision (large red symbol) and double
precision (small blue symbol).
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pioneered in this context in Refs. 8–10, called Echo State Network
(ESN) and two other approaches based on Recurrent Neural Net-
works (RNNs) used in Refs. 15–18, called LSTM and TCN. The
characteristics of the networks we used are detailed in the Appendix.

In this section, we compare the predictions and performances
of each network for the Lorenz system (1), focusing especially on the
effects of precision of both data and algorithm. Networks are trained
on trajectories generated by the RK4 integration method and having
thousands of points separated by a time step dt = 0.02. Predictions
are performed starting immediately after the last point used in the
training trajectories. Subsequent predictions are systematically done
from the point previously returned by the network.

A. Resources needed for the simulation by the three

neural networks

Figure 5 gives an overview of the different resources consumed
during the training phase by the three networks for achieving a sim-
ilar converged simulation on the same computer once the network
has been set up. It is worth noticing that the performance is for a
standard processor. We have not used GPU cards. For the training
time, we use the same set of training trajectories (100 trajectories,
each trajectory contains 50 000 points separated by a time interval
dt = 0.02). We compare an ESN with a reservoir size having 200
neurons (ESN200), 300 neurons (ESN300), a LSTM network (with a
single hidden layer having 64 neurons), and a TCN network (simi-
lar structure as the LSTM network). Note that the LSTM and TCN
are trained 10 times on the training dataset while the ESN scans the

FIG. 5. Upper panel: Comparison of the training time for different neural networks:
ESN200 (the reservoir contains 200 neurons), ESN300, a LSTM network (with a
single hidden layer having 64 neurons) and a TCN network. The red (blue) color
is used for a computation of the networks parameters in single (double) precision.
Lower panel: Figure of merit of each neural network representing themean relative
error in the estimate of the training trajectories.

FIG. 6. Comparison of number of parameters for the different neural networks
considered in Fig. 5. Red is the training size and blue the total size.

training data set only once. In addition, the number of parameters
that are updated are significantly different depending on the reser-
voir type as illustrated in Fig. 6. The LSTM and TCN networks adapt
themselves by modifying all the network parameters. This is to be
contrasted with the ESN that updates only the connections toward
the output as discussed in the Appendix, making the training size
much smaller than the total size.

The figure of merit of each neural network is represented in
the lower panel of Fig. 5 where we represent the mean relative dis-
tance between the trajectories provided by the network compared to
the training one. This quantity is here averaged over all the train-
ing trajectories. When this relative error is equal to 0.01, it means
that the average relative error is on the order of 1%. As expected,
for each neural network, the computation of the parameters in dou-
ble precision yields better results. We also see that the ESN network
seems more accurate at reproducing the training trajectory. We con-
clude that the ESN turns out to be significantly more efficient that
the LSTM and TCN networks with respect to the training time and
moreover seems to better reproduce the training trajectory.

B. Short-term predictions

We now turn to the accuracy of the predictions of the differ-
ent networks as compared to a quadruple precision simulation by
integration of the equations of the Lorenz system (1).

We first look at short-term predictions, i.e., accurate descrip-
tion of a single specific trajectory. That is the type of predictions
where chaotic systems are the most difficult to handle. It is similar
to meteorological predictions in weather models, since one wants a
precise state of the system starting from a specific initial state. We
recall that the data are generated via the RK4 method, with a time
step of 0.02 and a sampling of thousands of points. Our reference
trajectory is calculated in quadruple precision for the same time step
and sampling.

A parameter set specific to each network architecture has been
established allowing each network to converge. They can be used
to predict future points beyond the training set. As said before, the
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FIG. 7. Comparison between the quadruple precision RK4 simulation (red line)
and the prediction of the ESN in double precision with a reservoir of size
N = 300 (blue line) for the Lorenz system (1). The initial conditions are
x(0) = 0.00, y(0) = 0.45, and z(0) = 1.41, and the time step is dt = 0.02. The
ESN has been trained over 50 000 time step iterations before the prediction for
the subsequent iterations represented in this figure.

protocol is the same for the three types of networks. The output
associated to input vector at time t = T defines the next point for
the trajectory at time T + dt. This procedure is iterated to get the
prediction over a large amount of time. We provide an example in
Fig. 7 for an ESN neural network, which turns out to be able to pro-
vide an accurate prediction of the trajectory over the short term for
relatively long time.

To be more quantitative, we evaluate for each simulation a
limit time, τlim, defined as the time when the simulation departs
from the correct trajectory by at least 5%. This quantity is plotted
in Fig. 8 for the three networks considered, as a function of the size
of training data (number of points of the exact trajectory which are
used to train the network). In all cases, one sees an increase of the
limit time with increasing dataset, until it reaches a plateau where
increasing the dataset does not help any more. This defines a sort
of ultimate limit time for this kind of simulation. All three networks
are effective at predicting the dynamics, giving accurate results for
hundreds of time steps. The LSTM and TCN networks give very
similar results and are significantly and systematically less effective
than the ESN network used in the seminal paper,9 with prediction
times 20% smaller. We recall (see Sec. III A) that the LSTM and
TCN networks are not only significantly less effective at predicting
the dynamics than the ESN, they are also more costly in resources.
The main difficulty for an ESN network is in the search for a viable
parameter.

We note that although these neural network methods are effec-
tive, they are less efficient than standard classical simulations like
RK4 with lower precision (see Fig. 1). We should note, however,
that neural network techniques are still new and far from opti-
mized compared to integration methods. In addition, the neural

FIG. 8. Impact of the precision of training data and of the neural network on the
short term quantified by the time τlim above which the prediction departs by more
than 5% from the quadruple precision trajectory for the Lorenz system (1): (a)
ESN, (b) LSTM, and (c) TCN. Data and network double precision (filled square),
data single precision and network double precision (filled disk), data double pre-
cision and network single precision (empty square), and data and network single
precision (circle). Time step is dt = 0.02. Each point is an average over 100 sim-
ulations with randomly selected initial positions, and error bars correspond to the
standard deviation.

network techniques do not need the equations and do not depend
on approximations, which can have been used to construct them.

Figure 8 also enables to assess the question of the impact of
precision on the predictive abilities of the neural networks. We have
changed independently the precision of the datasets used to train the
network, and the precision of the network algorithm itself. We see
that in all cases, the precision of the network will impact the accu-
racy of the prediction. Indeed, for these short-term predictions, a
double precision network always gives better results than a single
precision network. Interestingly enough, with a single precision net-
work, increasing the precision of the training data does not help. On
the other hand, using a double precision network even on single pre-
cision data is more advantageous than a single precision network on
any type of data. These results are valid for the three types of net-
works over the full range of training sets used. It, therefore, seems
that the precision of the network is crucial for the accuracy of the
prediction, and more so than the precision of the data. It is espe-
cially important in view of the fact that the precision of the data can
be less easily controlled than the precision of the network.

To verify that our results are not affected by a change of the
sampling time, we display in Fig. 9 the same quantity as in Fig. 8 for
the ESN network for two additional sampling times, showing that
the same result holds, the double precision network giving better
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FIG. 9. Impact of the precision of training data and of the neural network on the
short term quantified by the time τlim above which the prediction departs by more
than 5% from the quadruple precision trajectory for the Lorenz system (1), for
different sampling times. Data and network double precision (filled square), data
single precision and network double precision (filled disk), data double precision
and network single precision (empty square), and data and network single pre-
cision (circle). Time step is (a) dt = 0.01 and (b) dt = 0.04. Each point is an
average over 100 simulations with randomly selected initial positions, and error
bars correspond to the standard deviation.

results than the single precision network even when trained with
lower precision data.

C. Long-term predictions

We now turn to long-term predictions. Figure 10 displays an
example of return map constructed from ESN predictions, showing
that, despite the fact that specific individual trajectories are not accu-
rately simulated for long times, nevertheless the points predicted by
the network describe correctly the long time dynamics of a typical
trajectory, giving the general shape of the return map.

To be more quantitative, Fig. 11 uses the measures defined in
Sec. II (see Fig. 3) to assess the efficiency of the neural network

FIG. 10. Return map of the Lorenz system obtained by an ESN network
simulation.

FIG. 11. Impact of the precision of training data and of the neural network on the
long term quantified by the mean relative error defined in Sec. II for the return map
of the Lorenz system (1): (a) ESN, (b) LSTM, and (c) TCN. Data and network dou-
ble precision (filled square), data single precision and network double precision
(filled disk), data double precision and network single precision (empty square),
and data and network single precision (circle). Time step is dt = 0.02. Each point
is an average over 100 simulations with randomly selected initial positions, and
error bars correspond to the standard deviation.

methods for long-term dynamics. Despite the fact that the LSTM
and TCN networks are more cumbersome to implement and take
more running time, the results are clearly better for the ESN net-
work, which can achieve an accuracy similar to the one of the RK4
simulations [see Fig. 11(a)]. For the LSTM and TCN networks, the
results presented in Figs. 11(b) and 11(c) show that these networks
are able to reproduce the long-term dynamics, but the accuracy is
less good than for ESN networks or RK4, even for large sizes of the
training dataset.

The data for the Lyapunov exponents of the Lorenz system (1)
are shown in Tables I–IV. They display the same trend as the data
for the return map. Again, the ESN network performs best, giving
the best approximation of the Lyapunov exponents wherever the
difference is significative. The double precision network is better at
approximating the correct Lyapunov, even if it is trained with single
precision data. On the contrary, training with double precision data,
a single precision network gives clearly worse results. We note that
the third Lyapunov is less well approximated by the network, as was
noted already in Ref. 8, since it is associated with the deviation of the
return map from the approximating curve.

We also include data on the computation of the Lyapunov
exponents for the Rössler system of (2) in Table V, using only the
ESN (reservoir computing) network. Again, even if the third Lya-
punov is not well approximated as for the Lorenz system, the results
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TABLE I. Lyapunov spectrum of the Lorenz system (1) estimated by long-time evolution through different types of networks. Each network is trained with 10 000 points on the

Lorenz system and predicts 50 000 points. Here, the networks are in single precision and the data are in single precision. Each point is an average over 100 simulations with

randomly selected initial positions, and error bars correspond to the standard deviation.

RK4 ESN LSTM TCN

31 0.906 0.884 ± 10−2 0.871 ± 2 × 10−2 0.879 ± 2 × 10−2

32 0 3 × 10−5 ± 10−4 −1 × 10−5 ± 2 × 10−4 −1 × 10−5 ± 2 × 10−4

33 −14.567 −9.203 ± 0.2 −8.498 ± 0.3 −8.614 ± 0.3

TABLE II. Lyapunov spectrum of the Lorenz system (1) estimated by long-time evolution through different types of networks. Each network is trained with 10 000 points on the

Lorenz system and predicts 50 000 points. Here, the networks are in single precision and the data are in double precision. Each point is an average over 100 simulations with

randomly selected initial positions, and error bars correspond to the standard deviation.

RK4 ESN LSTM TCN

31 0.906 0.891 ± 10−2 0.872 ± 2 × 10−2 0.885 ± 2 × 10−2

32 0 −1 × 10−5 ± 10−4 1 × 10−5 ± 2 × 10−4 −2 × 10−5 ± 2 × 10−4

33 −14.567 −9.471 ± 0.3 −8.566 ± 0.3 −8.681 ± 0.3

TABLE III. Lyapunov spectrum of the Lorenz system (1) estimated by long-time evolution through different types of networks. Each network is trained with 10 000 points on the

Lorenz system and predicts 50 000 points. Here, the networks are in double precision and the data are in single precision. Each point is an average over 100 simulations with

randomly selected initial positions, and error bars correspond to the standard deviation.

RK4 ESN LSTM TCN

31 0.906 0.896 ± 10−2 0.881 ± 10−2 0.894 ± 10−2

32 0 −6 × 10−6 ± 10−4 −4 × 10−6 ± 2 × 10−4 −5 × 10−6 ± 2 × 10−4

33 −14.567 −10 × 102 ± 0.3 −9.345 ± 0.3 −9.460 ± 0.3

TABLE IV. Lyapunov spectrum of the Lorenz system (1) estimated by long-time evolution through different types of networks. Each network is trained with 10 000 points on the

Lorenz system and predicts 50 000 points. Here, the networks are in double precision and the data are in double precision. Each point is an average over 100 simulations with

randomly selected initial positions, and error bars correspond to the standard deviation.

RK4 ESN LSTM TCN

31 0.906 0.900 ± 3 × 10−3 0.885 ± 8 × 10−3 0.894 ± 9 × 10−3

32 0 −5 × 10−6 ± 10−4 −4 × 10−5 ± 2 × 10−4 −4 × 10−5 ± 2 × 10−4

33 −14.567 −10.985 ± 0.3 −9.513 ± 0.3 −9.629 ± 0.3

TABLE V. Lyapunov spectrum for the Rössler system (2) with a= 0.2, b= 0.2, and c= 5.7 estimated by long-time evolution through the ESN network (reservoir computing), with

different precisions: from left to right network and data single precision, network single precision and data double precision, network double precision and data single precision,

and network double precision and data double precision. The network is trained with 10 000 points and predicts 50 000 points. Each point is an average over 100 simulations with

randomly selected initial positions, and error bars correspond to the standard deviation.

RK4 ESNsp−sp ESNsp−dp ESNdp−sp ESNdp−dp

31 0.067 0.062 ± 3 × 10−3 0.063 ± 3 × 10−3 0.066 ± 2 × 10−3 0.066 ± 2 × 10−3

32 0 −3 × 10−6 ± 2 × 10−4 3 × 10−5 ± 2 × 10−4 −8 × 10−7 ± 2 × 10−4 −7 × 10−6 ± 2 × 10−4

33 −5.41 −4.377 ± 0.2 −4.434 ± 2 × 10−3 −4.797 ± 0.1 −4.851 ± 9 × 10−2
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TABLE VI. Long-time mean error and standard deviation of predicted trajectories of

the Lorenz system (1) for the ESN network, for different precisions: from top to bottom

network and data single precision, network single precision and data double precision,

network double precision and data single precision, and network double precision and

data double precision. Starting from the 25 000th predicted point, we compare the

point at time step t+ 1 from the ESN trajectories to the one obtained by integrating

(1) through RK4 from the predicted point at time step t. We repeat this procedure for

10 000 points. Each error is further averaged over 100 trajectories with random initial

conditions.

Mean Standard deviation

errorsp_sp 0.009 327 0.001 065
errorsp_dp 0.007 148 0.000 934
errordp_sp 0.000 378 0.000 121
errordp_dp 0.000 359 0.000 107

indicate that the double precision network is better in all cases,
independently of the precision of the training data.

At last, we include a different test on long time, which veri-
fies how the local dynamics at long times is accurately simulated.
Starting from a given time, we compare the points predicted by the
network to the integration of the equation of the Lorenz system (1)
starting from the previously predicted point, and average the error
obtained over many consecutive points. The results for the ESN
network are displayed in Table VI, and again the double precision
network gives an error an order of magnitude smaller than the sin-
gle precision network, almost independently of the precision of the
data.

Globally, as in the case of short-term predictions, the results
presented in Fig. 11 and Tables I–VI allow us to estimate the effects
of the precision on long-term predictions. The ESN network fares
better in predicting the correct quantities, and in all cases it is clear
that the precision of the results is dominantly controlled by the pre-
cision of the network, independently of the precision of the training
data: even with low precision data, the high precision network fares
better than a low precision network with high precision data.

IV. CONCLUSION

The results presented in this paper confirm previous works,
showing that neural networks are able to simulate chaotic systems,
both for short-term and long-term predictions. We also show that
the ESN network (reservoir computing) seems globally more effi-
cient in this task than LSTM or TCN networks, in line with the
recent work.17 Our investigations allow us to assess the effect of
the precision of the training data and precision of the network on
the accuracy of the results. Our results show than in a very consis-
tent manner, the precision of the network matters more than the
precision of the data on which it is trained. It may seem surprising
that using exactly the same single precision data, changing the pre-
cision of the algorithm can give results much closer to a full double
precision simulation. However, this is good news for practical appli-
cations, such as meteorology or climate simulations. Indeed, even
though the errors in the training datasets considered in this paper
are not observational errors and are due solely to the precision of

the integration of the equations, our results seem to indicate that one
can compensate the lack of precision of the dataset by increasing the
precision of the network. In many practical instances, the precision
of the datasets is given by the precision of observations that may be
hard to ameliorate, while the precision of the network is controlled
at the level of the algorithm used and may be increased at a cost of
more computing time.
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APPENDIX: THE THREE MACHINE LEARNING

APPROACHES USED

In the Appendix, we give an overview of the main features of
the three neural networks that have been used in the article, namely,
the ESN, LSTM, and TCN networks.

1. Reservoir computing: ESN network

The first network we use corresponds to reservoir computing.
We focus on a specific model called Echo State Networks (ESNs).
Reservoir computing methods were developed in the context of
computational neuroscience to mimic the processes of the brain.
Their success in machine learning comes from the fact that they
are relatively cheap in computing time and have a simple structure.
Their complexities lie in their training and the adjustment of param-
eters to obtain the desired results. The structure of ESN networks is
schematized on Fig. 12.

To train our ESN on a time-dependent signal un with
n = 1, . . . , T, where T is the duration of the sequence in discretized

time, we must minimize a cost function between y
ref
n and yn. Here, y

ref
n

is the output that we want to obtain with un, and yn is the output of
the network when we give it un as input. For the Lorenz problem, un,

y
ref
n , and yn are 3D vector. Generally, the cost function that one seeks

FIG. 12. Schematic representation of an Echo State Network (ESN).
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to minimize is the error between the output of the network and the
reference signal. This function is often in the form of a mean square
error or, in our case, of the mean standard deviation.

The output of the network is calculated as follows:

yn = Wout[1; un; xn], (A1)

where Wout is the output weight matrix that we are trying to train,
[.;.] represents the concatenation, un is our vectorial input signal,
and xn the vector corresponding to the reservoir neuron activations.
It has the dimension N of the reservoir and is calculated as follows:

xn = (1 − α)xn−1 + αx̃n, (A2)

with x̃n corresponding to the new value of xn,

x̃n = tanh(Win[1; un] + Wxn−1 + ε0 + µ0). (A3)

α is the leaking rate, ε0 = −1.154 is an offset optimized on our set of
data, µ0 is a random Gaussian variable of standard deviation equal to
2.25 × 10−5, W is the system reservoir, and Win is the input weight
matrix of the reservoir. The dimension of Win is N × (3 + 3), and
the +3 term accounts for the bias added to the input (see Fig. 12).
The initialization consists in setting x and y to zero.

There are several important parameters that must be adjusted
depending on the problem we are studying if we want our ESN to
be able to predict our system. The first parameter we can play on is
the size of the reservoir itself. The more complex the problem that
we want to deal with, the more the size of the reservoir will have
an impact on the capacities of the network. A large reservoir will
generally give better results than a small reservoir. Once the size of
our reservoir has been chosen, we can play on the central param-
eter of an ESN: the spectral radius of the reservoir. Often denoted
by ρ(W), this is the maximal absolute value of eigenvalues of the
matrix W. The spectral radius determines how quickly the influence
of an input data dissipates in the reservoir over time. If the problem
being treated has no long-term dependency, there is no need to keep
data sent far in advance. We can, therefore, ensure that the spec-
tral radius is unitary. In some cases, if our problem has long-term
dependencies, it is possible to have ρ(W) > 1 to keep the data sent
in the network longer. The last parameter we can play on is the leak-
ing rate α. It characterizes the speed at which we come to update our
reservoir with the new data that we provide over time.

The matrices W and Win are initialized at the start but are not
modified during training. Only the output matrix Wout is driven,

Wout = YrefXT(XXT
+ βI)

−1
, (A4)

where, for our Lorenz problem, X = (x1, . . . , xT) (dimension

N × T), Yref = (y
ref
1 , . . . , y

ref

T ) (dimension 3 × T) and I is the N × N
identity matrix. As a result, the dimension of Wout is 3 × N + 4.

The fact that connectivities from input to hidden layer and
from hidden to hidden layer are fixed and randomly assigned from
the beginning reduces considerably the number of parameters to
be trained. As a result, the training speed of the network is small
compared to other networks specialized in learning specific tempo-
ral patterns (see below). By increasing the size of the training data,
the network becomes more sensitive to the small fluctuations that

accumulate during Wout calculation. The parameter β makes it pos-
sible to limit this dependence by penalizing the too large values of
Wout. This is all the more true for a single precision network, which
is more sensitive to these fluctuations and whose β must vary by
several orders of magnitude depending on the size of the training
data. In double precision (float64), β varies from 10−8 for 5000 train-
ing points to 10−7 for 5 × 105 training points against 10−4 to 10−1

in single precision (float32). As the reservoir is not changed dur-
ing training, one must choose the initialization hyperparameters to
ensure that one has a consistent output with the expected results.
This requires adjusting the values of the leaking rate, spectral radius,
and input scaling as a priority. The optimization of these parameters
has been done via a grid search, where we decrease the search step
as we find good parameters.

The initialization parameters are for Win a density equal to
d = 0.464 with values randomly distributed from a Gaussian func-
tion of standard deviation equal to σ = 3.352. For the reservoir
matrix W, we have chosen dW = 0.483, σW = 2.901, and a spectral
radius ρW = 0.625.

2. LSTM and TCN networks

The two other networks we use are based on Recurrent Neural
Network (RNN) architectures. RNNs can be represented as a single
module chain (see Fig. 13). The length of this chain depends on the
length of the sequence that is sent to the input. The output of the
previous module serves as input for the next module in addition to
the data on which we train our network. This allows the network to
keep in memory what has been sent previously.

The major problem in this type of network is the exponen-
tial decrease of the gradient during the training of the network.
This is due to the nature of backpropagation of the error in the
network. The gradient is the value calculated to adjust the weights
in the network, allowing the network to learn. The larger the gra-
dient, the greater the adjustments in the weights, and vice versa.
When applying backpropagation to the network, each layer calcu-
lates its gradient from the effect of the gradient in the previous layer.
If the gradient in the previous layer is small, then the gradient in
the current layer will be even smaller. The first layers in the net-
work, therefore, have almost no de facto adjustment in their weight
matrices for a very small gradient.

To solve this problem of attenuation of the corrections, the
LSTM networks (Long Short-Term Memory networks) have been
explicitly developed for this purpose. They can also be represented
as a module chain, but unlike conventional RNNs, they have a more

FIG. 13. General structure of Recurrent Neural Networks (RNNs).
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FIG. 14. Schematic representation of a Long Short-Term Memory (LSTM)
network: structure of one elementary cell.

complex internal structure, composed of four layers which interact
with each other (see Fig. 14).

The first layer is called “input gate” and is represented by a hor-
izontal line that runs through the entire cell. It allows data to easily
browse the entire network. This structure represents the state of the
cell over time. On this line, there are other structures, which will be
used to modify the data that go through the cell.

The next step in our network is the forget gate structure. It con-
sists of a neural network with an activation function of the sigmoid
type and makes it possible to decide which part will be kept in the
cell,

ft = σ(Wf[ht−1, ut] + bf), (A5)

where Wf and bf are the weights and bias of the network for the
update gate layer, ut is the input data at time t, and ht−1 is the hidden
state output by the previous cell.

The second step is to decide what to store. This structure con-
sists of two parts. The first part is a neural network with an activation
function of the sigmoid type and will allow us to choose which value
will be updated in our structure,

it = σ(Wi[ht−1, ut] + bi), (A6)

where Wi and bi are the weights and bias of the sigmoid network for
the update gate layer. ut is the input data at time step t, and ht−1 is the
hidden state output by the previous cell. The second part is another

neural network with this time an activation function of the hyper-
bolic tangent type and that allows to create the new state candidate
of our vector Ct as follows:

C̃t = tanh(Wc[ht−1, ut] + bc), (A7)

where Wc and bc are the weights and bias of the hyperbolic tangent
network for the update gate layer, ut is the input data at time t and
ht−1 is the hidden state output by the previous cell. The new cell state
Ct is then computed by adding different outputs from the input gate,
the forget gate and the update gate as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t, (A8)

where ft is the output of the forget gate layer, it is the input layer
choosing which values are going to be updated, C̃t is the new cell
state candidate, Ct−1 is the cell state of the previous cell, and ∗

denotes elementwise operation. The structure described above is
then repeated from cell to cell.

A final structure makes it possible to determine what will be the
output of the network. The output will be based on the state of the
cell to which we have applied a network with a sigmoid activation
function to choose which part will be returned. Then, we apply a
hyberbolic tangent function to the cell state and multiply it with the
previous value to get the new cell state output,

ot = σ(Wo[ht−1, ut] + bo), (A9)

ht = ot ∗ tanh(Ct). (A10)

ht is then sent into a linear layer for prediction of yt.
The third architecture we use consists in TCN networks,22

which use causal convolutions, meaning that at time step t, the net-
work can only access data points at time step t and earlier, ensuring
no information leakage from future to past (see Fig. 15). The abil-
ity of causal convolution to keep previous data points in memory
depends linearly on the depth of the network. This is why we are
using dilated convolution to model long-term dependencies of our
system as shown in Ref. 24 as it enables an exponentially large recep-
tive field depending on the depth of the network. This enables TCN
to function in a way similar to RNN. For an input sequence U of
size T (with elements un), the dilated causal convolution H we use is

FIG. 15. Schematic representation of a Temporal Convolu-
tional Network (TCN).
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defined as

H(u)n = (U ∗d h)(u)n =

k−1∑

i=0

h(i)un−d.i, (A11)

where d is the dilatation factor, h is a filter ∈ R
k−1 where k is the

filter size, and the indices n − d.i represents the direction of the
past. Using larger dilatation factor enables an output at the top level
to represent a wider range of inputs, thus effectively expanding the
receptive field of the network.

The LSTM and TCN networks are more complex networks and
more demanding in computation than ESN. We have set up these
networks with the Tensorflow library. For a trajectory made of Ni

time step iterations, we use 35 successive points of the trajectory
to predict the next step. In this way, we build a predicting vec-
tor of dimension Ni − 35. We use batches of 32 successive values
of this vector to update the network parameters with the gradi-
ent backpropagation algorithm (using the Adam optimizer with an
exponential learning rate decay). This process is performed over all
the values of the predicting vector, and repeated 10 times (number
of epochs equal to 10). One has indeed to make several passes on the
training data to get good results. On average, an epoch takes 30 s.
Testing different possible architectures, therefore, takes more time
than for the ESN.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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