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We present an extension of the chaos-tunneling mechanism to spatially periodic lattice systems.
We demonstrate that driving such lattice systems in an intermediate regime of modulation maps
them onto tight-binding Hamiltonians with chaos-induced long-range hoppings tn ∝ 1/n between
sites at a distance n. We provide numerical demonstration of the robustness of the results and
derive an analytical prediction for the hopping term law. Such systems can thus be used to enlarge
the scope of quantum simulations in order to experimentally realize long-range models of condensed
matter.

Introduction.– In recent years there has been consider-
able interest in the quantum simulation of more and more
complex problems of solid state physics [1–3]. In this con-
text, lattice-based quantum simulation has become a key
technique to mimic the periodicity of a crystal structure.
In such systems, dynamics is governed by two different
types of processes: hopping between sites mediated by
tunneling effect and interaction between particles. While
there exists several ways to implement long-range inter-
actions [4–7], long-range hoppings have been up to now
very challenging to simulate. These long-range hoppings
however, have aroused great theoretical interest in con-
densed matter, as they are associated with important
problems such as glassy physics [8], many-body localiza-
tion [9] or quantum multifractality [10]. In this study we
show that such long-range hoppings can be engineered in
driven lattices in a moderate regime of modulation.

Temporal driving techniques are widely used in quan-
tum simulation [11], as systems with fast driving can ex-
hibit new topological effects [12–16] and systems with
strong driving can mimic disorder [17–22]. In the inter-
mediate regime of modulation we focus on, driven lattices
have a classical dynamics which is neither fully chaotic
(corresponding to the strong driving case) nor regular
(corresponding to the fast driving case), but, as most
real-life dynamical systems, show coexistence of chaotic
and regular zones in phase space. Our main result is
based on the richness of the quantum tunneling effect in
such systems: it is known to be chaos-assisted [23–35].
This phenomenon is well understood between two regu-
lar islands, where it translates into large resonances of
the tunneling rate between the two islands when varying
a parameter of the system. It has been observed in dif-
ferent experimental contexts, with electromagnetic waves
[27, 36–41], and with cold atoms [42–45].

In this paper, we address the generalization of this
chaos-assisted tunneling mechanism to the case of a
mixed lattice composed of regular islands embedded in
a chaotic sea, obtained in a moderate regime of tem-
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FIG. 1. Equivalent representations of chaos-assisted tunnel-
ing in a driven lattice. (a) In situ representation: a wave-
function tunnels through different potential wells. (b) Phase
space representation: the wavefunction escapes from an is-
land of stable orbits (blue) by regular tunneling, spreads in
the chaotic sea (red) and tunnels in another island. (c) Tight-
binding representation: the system is composed ofN sites, the
coupling between i-th and j-th site is proportional to 1/|i−j|.

poral driving. We demonstrate that remarkably such a
dynamical quantum system can be mapped onto an effec-
tive tight-binding Hamiltonian with long-range hoppings
∝ 1/n, with n the distance between sites. Beyond the in-
trinsic interest of a new observable quantum chaos effect,
our results open new engineering possibilities for lattice-
based quantum simulations as they are highly generic,
accessible for state-of-the-art experiments and species in-
dependent (in the context of cold atoms).
Model.– We consider an experimental situation similar

to [45], that is to say a dilute condensate of cold atoms
subjected to an optical lattice whose intensity is modu-
lated periodically in time. Using dimensionless variables
[46], the dynamics is governed by the Hamiltonian

H(x, t) = p2

2 − γ(1 + ε cos t) cosx. (1)

Here γ is the dimensionless depth of the optical lattice
and ε the amplitude of modulation. Importantly, the ef-
fective Planck constant h̄eff = −i[x, p] = 2ωL/ω can be
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tuned experimentally (ω being the modulation angular
frequency and ωL is related to the lattice characteristic
energy EL = h̄ωL). This Hamiltonian has a dimension-
less time period T = 2π and spatial period λ = 2π. Be-
sides the choice of this model, our conclusions are valid
for almost any modulation waveform (including phase
modulation and kicked potentials).
Semiclassical picture.– The classical dynamics of this

time-periodic system is best understood through a stro-
boscopic phase space, using the values of (x, p) at each
period of the modulation t = jT , j integer. For ε = 0,
the system is integrable. When ε increases, chaos devel-
ops close to the separatrix, forming a chaotic sea which
surrounds regular islands of oscillating orbits centered
around the stable points (x = 2nπ, p = 0, n an inte-
ger) of the potential wells, see Fig. 1. At ε = 0, with
no chaotic sea, tunneling essentially occurs between ad-
jacent wells, and the system can be described for deep
optical lattices by an effective tight-binding Hamiltonian
with nearest-neighbor hopping. Our main objective is to
describe in a similar way the modulated system, a dy-
namical, spatially periodic lattice of N regular islands
indexed by n ∈ [[0, N − 1]], surrounded by a chaotic sea.

Adopting a stroboscopic point of view, the quantum
dynamics is described by the evolution operator UF
over one period of modulation. Each eigenstate |φl〉 of
UF can be associated with a quasi-energy εl, so that
UF |φl〉 = exp(−iεlT/h̄eff) |φl〉. Equivalently the Hamil-
tonian Hstrob ≡ i(h̄eff/T ) logUF gives the exact same
stroboscopic dynamics as UF and is associated with the
same eigenstates |φl〉 with energies εl.

In the semiclassical regime where h̄eff < A, with A
the area of a regular island, the quantum dynamics
is strongly influenced by the structures of the classical
phase space. Quantum eigenstates can be separated in
two types [24, 47]: regular (localized on top of regular or-
bits) or chaotic (spread over the chaotic sea), see Fig. 2
for a Husimi [48–50] phase-space representation.

The tunnel coupling between regular states is well
understood in the case of N = 2 regular islands sur-
rounded by a chaotic sea and is called chaos-assisted tun-
neling [23, 24]. In the absence of a chaotic sea, tunneling
involves only a doublet of symmetric and anti-symmetric
states localized on the two symmetric islands. In the
presence of a chaotic sea, the key property of chaos-
assisted tunneling is a 3-level mechanism with one of the
regular states interacting resonantly with a chaotic state.
This coupling translates in an energy shift of the involved
regular state and thus of a strong variation of the orig-
inal doublet energy splitting (which is nothing but the
tunneling frequency). As a signature of the chaotic dy-
namics, it was shown [23, 25] that these chaos-assisted
resonances, observed for the first time in a quantum sys-
tem only recently [45], occur quite erratically when vary-
ing a parameter of the system. Chaos-assisted tunneling
involves a purely quantum transport (tunneling to the

chaotic sea) and a classically allowed transport (diffusion
in the chaotic sea). Thus in mixed lattices, long-range
hopping can be expected because the chaotic sea connects
all the regular islands across the lattice (see Fig. 1).
Effective Hamiltonian.– The existence of regular is-

lands in the center of each cell (see Fig. 1) motivates the
introduction of a set of regular states {|nreg〉} forming a
lattice with one site per cell, whose exact construction is
not crucial for our discussion (see [27] for a detailed dis-
cussion). For simplicity, we work in the regime h̄eff <∼ A
such that there is only one regular state by island.
In clear contrast with regular lattices, where only

neighboring sites are directly coupled by standard tun-
neling effect, there exists an indirect transfer of proba-
bility between distant sites of the modulated lattice due
to the mutual coupling with additionnal chaotic states,
strongly delocalized along the system. In the original
scenario [23], the chaos-assisted tunneling mechanism be-
tween regular islands is associated with fast, but weak,
probability oscillations between regular islands and the
chaotic sea. This picture motivates to capture the physics
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FIG. 2. Sketch of an avoided crossing between regular |βreg〉
and chaotic |βch〉 Bloch waves, showing the different quanti-
ties that appear in the two-level model: |W | the strength of
the coupling between |βreg〉 and |βch〉, α the slope of the en-
ergy of |βch〉 and β0 the point of equal mixing. The width of
the crossing ∆β is defined as the intersection of the slope of
the energies of mixed states at β = β0 with the x-axis. Near
β = β0, the eigenstates |β±〉 become a mixture of |βreg〉 and
|βch〉 and form two non-crossing branches. As |β±〉 trans-
forms from one original state to the other, the color code
gives the intensity of the mixing through the projection of
the eigenstate on the regular state |βreg〉. Solid black line
is the effective regular energy (see text). Husimi representa-
tions of selected states are given on top of the stroboscopic
phase portrait. Inset: Quasi-energy dispersion relation of the
Hamiltonian Eq. (1) (h̄eff = 0.4, γ = 0.20, ε = 0.15), black
solid line corresponds to the effective regular band and red
dashed line to a nearest-neighbor approximation with param-
eters extracted from the value of the effective regular band at
β = 0 and β = π/λ.
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of tunneling in our system through an effective Hamilto-
nian Heff, acting only in the regular subspace but gen-
erating the same dynamics as Hstrob in this subspace
[51–53]. This effective Hamiltonian can be defined from
(E−Heff)−1 ≡ Preg(E−Hstrob)−1Preg, with Preg the pro-
jector onto the regular subspace spanned by the |nreg〉.

In the effective picture, coupling with chaotic states
translates in a shift of the energy of each regular Bloch
state |βreg〉 = 1√

N

∑
n exp(iβλn) |nreg〉 (with β an integer

multiple of 2π/λN). The resulting dressed regular band
εeffreg(β) then gives access to the effective tunneling cou-
pling teffn ≡ 〈(m+ n)reg|Heff|mreg〉 through the Fourier
transform in quasi-momentum

teffn = 1
N

∑

β

εeffreg(β) exp(iβλn). (2)

The simplest way to determine the effective spectrum
is to start from the full exact spectrum (obtained numer-

ically for instance) and to choose the N most relevant
energies. The natural choice is to select energies associ-
ated with eigenstates with the largest projection on the
regular subspace. In mixed lattices, this procedure gives
systematic discontinuities in the effective band, coming
from accidental degeneracies between a regular |βreg〉 and
a chaotic state |βch〉. Close to such avoided crossings,
the branch giving the effective regular energy suddenly
changes, resulting in a sharp discontinuity of εeffreg(β) (see
Fig. 2). These sharp discontinuities cause, from property
of the Fourier transform in Eq. (2), a long-range decay
of the effective coupling term teffn ∼ 1/n (see Fig. 4).
The two main features of these resonances come from

the mixed nature of the system. First, they are sharp
because the local slope α = dεch/dβ of the crossing
state is large since ergodic chaotic states are sensitive
to boundary conditions. Second, their heights 2|W | =
2| 〈βch|H|βreg〉 | is larger than the regular band width
2| 〈nreg|H|n+ 1reg〉 | (nearest-neighbor hopping ampli-
tudes for ε = 0, with direct tunneling between islands
without chaotic sea).
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FIG. 3. Dynamics of a wavepacket, initially located on a single regular site n0. Parameters are γ = 0.2, h̄eff = 0.4 and
ε = 0.15 (modulated lattice) or ε = 0 (unmodulated lattice). (a-b) Probability at each site vs time, normalized for visibility at
each time by its maximum value over the lattice. Exact dynamics in the modulated (a) and unmodulated (b) lattices and its
corresponding effective dynamics (note that the system is symmetric through n − n0 → n0 − n). (c) Probability at each site
for t = 1500T and N = 1079, solid line for exact dynamics and symbols for effective dynamics, red for ε = 0.15 and black for
ε = 0. (d) Overlap of the wavefunction with the chaotic sea in the modulated lattice. Same color code as (c), additional blue
(N = 539) and green (N = 269) data for modulated lattices of smaller sizes. (e) Standard deviation of the wavefunction (see
text), same color code as (d).

Numerical simulations.– To test the accuracy of this ef-
fective tight-binding picture, we compare the exact stro-
boscopic dynamics with the one given by the effective
Hamiltonian, considering a wave packet initially local-
ized on a single regular island of the modulated lattice.
(see the Supplemental Material [54] for computational
details). As concerns the exact dynamics, the initial con-
dition was chosen to be a localised (Wannier) state of the
undriven lattice (ε = 0), in the cell n0 = (N − 1)/2, N

being odd. We also used the localized states |nreg〉 to es-
timate the projection of the wavefunction on the chaotic
layer through Pch ≡ 1−Preg. The effective dynamics was
studied by propagation of a state initially localized in the
cell n0 of a discrete lattice ruled by the effective Hamil-
tonian. The effective Hamiltonian was extracted from
diagonalization of the Floquet operator on a single cell,
for different values of β. In both types of simulations, we
defined two observables: a local one p̂n which enables to
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probe the probability at each site, defined as p̂n ≡ |n〉〈n|
in the effective system and p̂n ≡

∫ (n+1)λ
nλ

|x〉〈x|dx in the
exact system, (this choice was motivated to get

∑
n n̂ = 1

in both systems) and a global one ∆̂n2 =
∑
n(n−n0)2p̂n

to estimate the spreading of the wave function.
We have simulated different system sizes up to N =

1079 with periodic boundary conditions and found a very
good agreement between the two approaches (see Fig. 3).
In the modulated case, we observe a fast and long-range
spreading of the wavefunction (Fig. 3a), that is responsi-
ble for the tremendous growth of the standard deviation
(Fig. 3e). As an additionnal signature of the long-range
hopping, the standard deviation appears to saturate with
a clear finite size effect, that we attribute to the fact that
the boundaries are reached very fast. We have also simu-
lated the exact dynamics of the corresponding undriven
lattice with no chaos that highlights the clear contrast
between the two systems. Indeed, the unmodulated case
gives a slow and short-range ballistic spreading of the
wavefunction with no finite-size effect (Fig. 3b and e).
Analytical derivation of the hopping law.– In addition

to the expected long-range decay ∝ 1/n of the effective
coupling term, numerical simulations show apparent er-
ratic fluctuations around this algebraic law (Fig. 4). We
discuss here a simple model to explain their origin. For
each of the Nres resonances in the effective band, we ap-
ply a two-level model that involves only three parameters:
the slope α = dεch/dβ of the energy of a chaotic state
with β, the coupling intensity W between the chaotic
and the regular states and the position β0 of the cross-
ing in the spectrum (see Fig. 2). Using the linearity of
Eq. (2) and assuming sharp resonances (∆β � 2π/λ),
the asymptotic behavior of teffn is (see Supplemental Ma-
terial [54])

teffn ≈
i

πn

∑

resonances
sgn(α)|W |einβ0λ. (3)

This simple model is in very good agreement with nu-
merical data (see Fig. 4) and shows that the relevant
time scale of the tunneling dynamics is h̄eff/|W |. The
phase term einβ0λ, which depends on the position of the
resonances in the effective band, gives the observed fluc-
tuations of hopping amplitudes around the algebraic law.

Since the W ’s of the Nres resonances are associated
with tunnel coupling to chaotic states, Random Matrix
Theory suggests that they can be described as indepen-
dent Gaussian variables with a fixed variance w2. In the
same spirit, as soon as n is large enough the phases nβ0λ
mod [2π] can be considered random. Using the known re-
sults about sums of complex numbers with Gaussian am-
plitudes and random phases [55], Eq. (3) leads to a sim-
ple statistical model for the couplings, with |teffn | ≡ W/n
with W a Gaussian random variable of variance Nresw

2.
We stress that this implies the distribution of n|teffn | is
universal. Fig. 4b shows the validity of this approach.
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FIG. 4. (a) Effective hopping intensity |teffn | vs distance be-
tween sites n for γ = 0.2, ε = 0.15 and h̄eff = 0.4. Blue
solid line corresponds to the data extracted from numerical
Fourier series of the effective band structure. Red solid line
corresponds to Eq. (3) with parameters extracted from the
band structure. Black solid line is the typical value of Eq. (3).
Inset: same data rescaled to show the small-distance behav-
ior, additional black solid line is the unmodulated case ε = 0.
(b) Distribution of fluctuations around the 1/n law for 5 pa-
rameter sets: histogram corresponds to cumulative values for
1500 < n < 10000, dots are partial datasets of 500 consecutive
values of n, black curve is analytical prediction (see text).

Discussion.– The theoretical results presented above
rely on the effective Hamiltonian picture. It is thus
important to assess its validity in our context. The exact
tunneling dynamics between two sites can be written
〈(n+m)reg|UF |mreg〉 = 1

N

∑
β eiβλn 〈βreg|UF |βreg〉.

In the effective approach 〈βreg|UF |βreg〉 writes
exp
(
−iεeffreg(β)t/h̄eff

)
, thus it does not take into ac-

count the Rabi oscillations of each regular Bloch wave
|βreg〉 with the chaotic sea |βch〉, whose amplitude is
given in a two-level approximation by W/

√
W 2 + ∆2

and whose period is πh̄eff/
√
W 2 + ∆2 (∆ being the

energy difference with the chaotic state involved). The
effective picture is thus legitimated by both (1) the
sharpness of the resonances that guarantees that the
total part of the system that is delocalized in the chaotic
sea is small at any time (the amplitude of oscillations
being large only close to the resonances), and (2) on
the observation that the slowest Rabi oscillation is
from Eq. (3) always faster than the induced tunneling
process (h̄eff/|teffn | ≥ πh̄eff/W ). These arguments are
corroborated by Fig. 3d: the projection of the system
on the chaotic sea displays fast and weak oscillations
around a very low value.
The arguments we present emphasize that the long-

range property is a direct consequence of the existence
of sharp and strong tunneling resonances in the band
structure, properties which are fairly generic when the
classical dynamics of the driven lattice is mixed.
Conclusion.– In this letter we generalized the original

chaos-assisted tunneling mechanism between two wells to
spatially periodic lattice systems. We demonstrated that
in an intermediate regime of temporal driving, the system
dynamics could be mapped to a tight-binding Hamilto-
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nian with long-range hopping. Strikingly, this new mani-
festation of chaos at a quantum scale is fairly generic and
could be observed in many different experimental situa-
tions. In the context of quantum simulation, this result
opens the possibility to observe the dynamics of long-
range models, and thus to investigate many important
phenomena of condensed matter such as glassy physics,
many-body localization or quantum multifractality.
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In this Supplementary material, we describe the methods used to numerically simulate the dy-
namic evolutions of the temporally modulated system and of the effective Hamiltonian, whose con-
struction we explain in more details. The code we used is written in Python 3 and uses the Numpy
library. It is available at https://framagit.org/mmartinez/dynamics1d. We then describe in
detail the derivation of the hopping law.

Numerical methods

Exact dynamics of the periodically modulated lattice

The system, composed of Nc cells of spatial size λ = 2π is discretized with Np points per cell; the total basis size
is thus Nt = NcNp. We have used both a spatial |x〉 and momentum |p〉 representation. The corresponding grids are
centered around x = 0 and p = 0 with respective size-step:

δx = λ

Np
and δp = 2π

λ

h̄eff
Nc

. (1)

For the whole of the study, we took Np = 32 after checking that this discretatization was fine enough to faithfully
represent the dynamics of the system: in particular, the total size in the p direction Nph̄eff should be larger than the
extension of the chaotic sea in momentum space.

The time propagation of a given state |ψ〉 is achieved with a symmetrized split-step method:

|ψ(t+ δt)〉 = UPFUXF
−1UP |ψ(t)〉 , (2)

with

UX =
∑

x

exp
(
−iV (x, t)δt

h̄

)
|x〉〈x| , UP =

∑

p

exp
(
−ip

2δt

4h̄

)
|p〉〈p| (3)

F = 1√
N

∑

x,p

exp
(
−ixp

h̄

)
|p〉〈x| (using FFT). (4)

The time step δt = 4π/1000 was chosen after consistency tests.

Construction of the effective Hamiltonian

The determination of the Floquet-Bloch band is equivalent to the determination of the quasi-energy spectrum of
the following Hamiltonian

Hβ(x, t) = (p− h̄effβ)2

2 − γ(1 + ε cos t) cosx, (5)

on a single cell Nc = 1 (with Np = 32, see above), with the quasi-momentum β taking the discrete values
βm = 2πm/(Ncλ), m = 0, . . . , Nc − 1. Thus, for a system size Nc, we repeat Nc times the following procedure
(for each value of βm):
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• First, we build the matrix (in x reprentation) of the Floquet operator from the propagation of Np δ-function
states |x〉. To do so, we use the previous split-step method over two periods of modulation T = 4π (this choice
was made to be consistent with [1], but is of no importance here).

• Second, we diagonalize the Floquet operator and look for the eigenstate having the largest overlap with a
Gaussian state centered on the regular island. This eigenstate is associated with a complex eigenvalue αβ that
gives the effective energy:

εregeff (β) = − ih̄eff
T

logαβ . (6)

• Once we have obtained the Nc values of εregeff (βm), we build explicitly the effective tight-binding Hamiltonian
Heff, whose coupling elements teffn ≡ 〈(m+ n)reg|Heff|mreg〉 are computed from the discrete Fourier Transform:

teffn = 1
N

∑

βm

εregeff (βm) exp(iβmλn). (7)

Dynamic evolution under the effective Hamiltonian

The effective Hamiltonian is a tight-binding model of Nc sites |n〉, with n = 0, . . . Nc − 1. The wavefunction |ψ〉 is
propagated over two periods with effective evolution propagator:

|ψ(t+ T )〉 = Ueff |ψ(t)〉 with Ueff = exp
(
−iHeffT

h̄eff

)
, (8)

obtained using a Padé approximation.

Construction of the regular Wannier-states

The Wannier states of the unperturbed lattice (with ε = 0) provide an approximation of the regular modes |nreg〉
of the modulated lattice discussed in the letter. To construct them, we thus use a procedure similar to that used for
the determination of the effective energy band, but using the unmodulated lattice (with ε = 0): For each value of
βm = 2πm/(Ncλ), m = 0, . . . Nc − 1, we diagonalize the evolution operator over two periods T = 4π and look for the
eigenstate having the largest overlap with a Gaussian state centered on the regular island. The p representation of
this eigenstate gives the coefficient of the Wannier state on the partial (uncomplete) grid p = h̄effβ + nδp of size Np.
After repeating Nc times this procedure, we obtain the full p representation of the Wannier state (on the complete
momentum basis of size NpNc).

Miscellaneous

The classical dynamics is simulated using a RK4 Runge-Kutta algorithm. Husimi phase-space representations are
computed using the procedure described e.g. in [2].

Derivation of the hopping law for large system sizes

To derive the hopping law Eq. (3), we first decompose the effective Bloch band as a regular part ε0 and a sum over
all resonance terms:

εeffreg(β) = ε0(β) +
∑

resonances
ε�(β − β0,W, α) , (9)

where each resonance is characterized by three parameters: β0 the position of the resonance, W the coupling intensity
between the chaotic and the regular state and α the slope of the energy of the involved chaotic state with β. Each
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resonance can be described by a two-level Hamiltonian of an avoided crossing at β = 0:
(
εreg(β) W
W εch(β)

)
(10)

with εreg(β) = 0 (since it is taken into account by ε0 in Eq. (9)) and εch(β) = αβ. The corresponding eigenstates
|β±〉 and eigenenergies ε±(β) follow:

ε±(β) = εreg + εch
2 ±

√
∆2 +W 2 and |β±〉 =

{
cos θ |βreg〉+ sin θ |βch〉
− sin θ |βreg〉+ cos θ |βch〉

, (11)

with ∆ = (εreg − εch)/2 and θ ∈ [0, π/2] verifying tan 2θ = |W |/∆. The prescription for the effective spectrum
construction is to select the energy associated with the eigenstate having the largest projection on the regular subspace.
We thus get:

ε�(β,W,α) = α

2


β − sgn(β)

√
β2 +

(
2|W |
α

)2

. (12)

Taking the Fourier transform, we then have

tn = t0n +
∑

resonances
t�n (β0,W, α) with t�n (β0,W, α) = λ

2π

∫ π/λ

−π/λ
ε�(β − β0,W, α)e−inβλ dβ . (13)

We now assume that ε�(β − β0,W, α) is peaked around β0 and that β0 is sufficiently far from the edge of the
boundary of the Brillouin zone, so that

t�n (β0,W, α) ≈ einβ0λ
λ

2π

∫ π/λ

−π/λ
ε�(β,W,α)e−inβλ dβ . (14)

The latter expression can be evaluated for large n values. We introduce x = βλ and η = 2λ|W |/α = λ∆β/2, it
reads

t�n =einβ0λα

4πλ ×
∫ π

−π

(
x− sgn(x)

√
x2 + η2

)
e−inx dx

︸ ︷︷ ︸
I∗

, (15)

we split the integral I (taking complex conjugation) in two parts, the first one gives
∫ π

−π
xeinx dx = 2iπ

n
(−1)n+1. (16)

The second part can be rewritten
∫ π

0
sgn(x)

√
x2 + η2einx dx− c.c., (17)

we then deform the contour of integration 0→ π to a complex circuit 0→ iT → iT + π → π with T some large real
number. Using Watson’s formula, the first part gives (setting x = iy)

i

∫ T

0

√
η2 − y2e−ny dy ∼ i|η|

n
. (18)

The second part is negligible for T large enough (setting x = y + iT ):

e−nT
∫ π

0

√
(y + iT )2 + η2e−iny dy → 0. (19)
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Using Watson’s formula and assuming ∆β � 2π
λ so that (η/λ)2 � 1, the third part (setting x = π + iy) gives:

i(−1)n+1
∫ T

0

√
(π + iy)2 + η2e−ny dy ∼ iπ

n
(−1)n+1. (20)

Putting all terms together (taking care of complex conjugation) we end up with

t�n ≈
einβ0λα

4πλ

(
2iπ
n

(−1)n+1 − 2iη
n
− 2iπ

n
(−1)n+1

)∗
= einβ0λα

4πλ × i4λ|W |
|α| = i

πn
sgn(α)|W |einβ0λ. (21)

We finally assume that t0n is negligible for large n values (because it decays exponentially), so that

tn ≈
i

πn

∑

resonances
sgn(α)|W |einβ0λ. (22)
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