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We study the simultaneous control of an ensemble of springs with different frequencies by means of an
adiabatic shortcut to adiabaticity and optimal processes. The linearity of the system allows us to derive analytical
expressions for the control fields and the time evolution of the dynamics. We discuss the relative advantages of
the different solutions. These results are applied in two different examples. For ion cyclotron resonance, we show
how to optimally control ions by means of electric field. Using a mapping between spins and springs, we derive
analytical shortcut protocols to realize robust and selective excitations of two-level quantum systems.
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I. INTRODUCTION

Control processes are a key factor in many technological
developments at macroscopic or microscopic scale [1–4]. Ap-
proaches for control design can be open loop or closed loop.
The second option, which is generally the most efficient, may
suffer from the nature and the accuracy of the measurements
required by the feedback process. These obstacles have led to
the development of open-loop control techniques, which are
for instance crucial in quantum control where the measure-
ment may modify the state of the system [3,5–8]. Different
methods have been developed extending from adiabatic pro-
cesses [9,10] and optimal control theory (OCT) [3,11–14]
to, more recently, shortcut to adiabaticity (STA) protocols
[15–18]. In view of experimental applications, a major limi-
tation of open-loop techniques concerns the accuracy of the
modeling. This limitation can be overcome by taking into
account robustness constraints in control design [3]. In this
setting, adiabatic pulses are very robust but at the price of
high intensity and long control duration, which can lead to
undesirable effects. The original motivation of STA protocols
is to speed up adiabatic control of dynamical systems, while
preserving as much as possible its efficiency and robustness.
Optimal process has the key advantage to minimize or max-
imize a specific functional, which can depend on the state of
the system and on the control field. For improving robustness
of nonadiabatic control pulses, a standard scenario consists in
controlling an ensemble of systems which differ by the values
of one or several constant parameters [19,20]. This approach
has been widely explored in quantum control, mainly by OCT
[21–24], but also by STA [18,25–27]. Stochastic learning
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control methods have also been developed to design such
robust pulses [28,29].

However, due to the intrinsic nonlinearity of controlled
quantum dynamics, numerical algorithms are generally used
to find the control fields [26,27,30–32]. This aspect is simpli-
fied in linear systems for which formal analytical solutions can
be derived even for high-dimensional dynamical processes
[1,33–36]. In this direction, a systematic comparison between
OCT and STA protocols has been recently made in a simple
linear system [37]. Controlling linear dynamics can also be
relevant in a nonlinear setting as shown recently in [38]. In
this work, a mapping between spins and springs allows one
to design analytical and efficient broadband pulses for spin
dynamics from the optimal control of an ensemble of springs.

We propose in this paper to make a general analysis of
the control of an inhomogeneous ensemble of linear systems
by adiabatic, OCT, and STA protocols. As a case study, we
consider an ensemble of springs with different frequencies.
Adiabatic processes are realized by means of chirped excita-
tion pulses. Mathematical results have been established in the
optimal control of such systems in [36,39,40]. In a completely
different context, STA solutions have been also derived [41].
On the basis of these different results, we explore in this
work different directions. We first show rigorously that, in
the case of a continuous set of frequencies, the control field
is unique for a fixed control time. In this ideal limit, we de-
duce that optimal and STA solutions are identical. Differences
occur for a finite number of springs. Specific constraints on
the control field or on the efficiency of the control process
can then be taken into account. We show how these general
methods can be applied in some examples and we discuss the
relative advantages and flexibility of the different approaches.
Finally, two concrete systems illustrate this general study. We
first consider the optimal control of ions by means of elec-
tric field in Fourier-transform ion cyclotron resonance mass
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spectrometry (ICR). This technique uses a mass spectrometer
based on cyclotron frequency of ions in a fixed magnetic
field [42]. Ions are excited at their resonant cyclotron fre-
quencies to a larger cyclotron radius by an oscillating electric
field orthogonal to the magnetic field. Using a rotating-wave
approximation, we show that the control process can be de-
scribed by the one of a spring ensemble. The efficiency of
optimal control protocols for ion excitation in a realistic setup
is then highlighted. The second example is based on the non-
linear control of spins. We generalize to STA protocols the
results established in [38] for optimal solutions. We derive
robust or selective analytical shortcut pulses for controlling
an ensemble of two-level quantum systems.

The paper is organized as follows. We present the model
system in Sec. II and some mathematical results about the
control of a spring ensemble. Section III is dedicated to adi-
abatic control. The solutions derived by STA and optimal
techniques are, respectively, presented in Secs. IV and V.
A comparison is made and the respective advantages of the
two methods are discussed. Section VI focuses on the ap-
plication of optimal control to ICR in order to manipulate
ion trajectory. The control of spin systems by STA proto-
cols is the subject of Sec. VII. Conclusion and prospective
views are given in Sec. VIII. Technical details are reported in
Appendices A and B.

II. MODEL SYSTEM AND MATHEMATICAL RESULTS

We study the control of an ensemble of springs whose
dynamics is governed by the following differential equations:(

ẋω

ẏω

)
=

(
0 −ω

ω 0

)(
xω

yω

)
+

(
u
0

)
,

where xω(t ) and yω(t ) denote, respectively, the velocity and
position at time t of the spring of frequency ω. The system is
subjected to an external driving u(t ). We consider in this paper
one control field, but the same analysis could be made for two
fields along the x and y directions. The goal of the control
is to simultaneously steer the system from (xω(0), yω(0)) to
(xω(t f ), yω(t f )) at time t f for a continuous set of frequencies
ω ∈ [ωmin, ωmax]. The ensemble controllability for a contin-
uum of harmonic oscillators has been shown in [39] if two
control parameters are available. Only symmetric states of the
form xω = x−ω and yω = −y−ω can be reached if only one
field (in the x direction) is available and the frequency range
is symmetric about the origin.

As an illustrative control example, we consider as initial
and final states the points (0,0) and (1,0) for any frequency
ω. By construction, we can restrict the study to positive fre-
quencies since the target state fulfills the symmetry constraint.
Note that frequency-dependent target states will be considered
through the paper. If we introduce the complex coordinates
zω = xω + iyω, the dynamical system transforms into

żω = iωzω + u. (1)

An explicit solution of Eq. (1) is given by

zω(t ) = eiωt zω(0) +
∫ t

0
eiω(t−τ )u(τ )dτ.

Since zω(0) = (0, 0) and zω(t f ) = (1, 0), we deduce that

e−iωt f =
∫ t f

0
e−iωτ u(τ )dτ, (2)

for ω ∈ [ωmin, ωmax].
Under some hypotheses, we show below the existence

and the uniqueness of the control solution of Eq. (2) for a
continuous set of frequencies. A different proof was given
in [39]. We assume that u ∈ L2([0, t f ]), i.e., u is a square-
integrable function with a compact support included in the
interval [0, t f ], u is zero outside of this interval. Its Fourier
transform û is an analytic function which is known over the
interval [ωmin, ωmax]. Since the zeros of a nonzero analytic
function are isolated, we deduce that there is at most one
solution to Eq. (2). Indeed, if we consider two solutions u1

and u2 to Eq. (2), then û1 − û2 is zero over [ωmin, ωmax], which
contradicts the previous result. The map F defined by

L2([0, t f ]) → L2([ωmin, ωmax]),

u �→ û|[ωmin,ωmax]

is thus injective. The surjectivity of F can be described from
the Paley-Wiener theorem which states the following property.
The function û fulfills the condition

|û(ω)| � Cet f |ω|,

where C > 0, if and only if there exists u ∈ L2([0, t f ]) such
that

û(ω) =
∫ t f

0
e−iωτ u(τ )dτ,

and we can choose C =
∫ t f

0
|u(τ )|dτ . Satisfying the condi-

tions of this theorem by a judicious choice of target states
ensures the existence of a solution to Eq. (2). In the ex-
ample under study, this condition is fulfilled since |û(ω)| =
|e−iωt f | = 1.

To summarize, these results establish the existence and
uniqueness of an ideal mathematical control field u(t ) for a
continuous set of frequencies. However, for practical applica-
tions, it is more interesting to consider a finite set and to take
into account additional constraints on the control field. This
idea will be developed for OCT and STA procedures in Secs.
IV and V where the set of frequencies will be discretized. Note
that the two fields converge toward the same solution when the
discretization step goes to 0.

III. ADIABATIC CONTROL

This section is aimed at deriving an adiabatic protocol
for controlling spring ensemble. This process is used below
as a reference to evaluate the efficiency of OCT and STA
techniques. We consider an adiabatic solution with a chirped
frequency to control the spring radius. The chirp excitation
pulse can be expressed as

u(t ) = u0 cos

[
ωit + st2

2

]
,

where u0 is the pulse amplitude, ωi the initial frequency,
and s the sweep rate. We first recall the stationary phase
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approximation which is used to approximate the time evolu-
tion of the system. We consider the following integral:

ĥ(ω) =
∫ +∞

−∞
h(t )eiϕ(t )dt,

where ϕ is a smooth function, which is assumed to be rapidly
varying with respect to h. A stationary point t0 satisfies
ϕ(1)(t0) = 0, where ϕ(n) denotes the nth time derivative of ϕ.
Using a Taylor expansion around t = t0, we get

ϕ(t ) = ϕ(t0) + (t − t0)ϕ(1)(t0) + (t − t0)2

2
ϕ(2)(t0) + · · · .

We deduce that

ĥ(ω) � h(t0)eiϕ(t0 )
∫ +∞

−∞
ei ξ2

2 ϕ(2) (t0 )dξ

�
√

2π

ϕ(2)(t0)
h(t0)ei[ϕ(t0 )+ π

4 ].

For a chirp excitation, the phase ϕ(t ) is defined by ϕ(t ) =
ωit + st2

2
. The instantaneous frequency ω(t ) can be expressed

as

ω(t ) = ϕ(1)(t ) = ωi + st,

where s = ω(1)(t ). For a linear evolution of ω(t ) between ωi

and ω f , the rate s is given by s = (ω f − ωi )/t f . We assume
that s > 0. We deduce that the Fourier transform of the control
field is given by

û(ω) =
∫ t f

0
u(t )e−iωt dt

= u0

2

∫ t f

0
[ei(ωit+ st2

2 −ωt ) + e−i(ωit+ st2

2 +ωt )]dt .

We denote by ϕ1 and ϕ2 the arguments of the two exponential
terms. It is straightforward to verify that ϕ

(1)
1 (t ) = 0 for t =

t (ω)
1 = ω − ωi

s
and that ϕ

(1)
2 (t ) = 0 for t = t (ω)

2 = −ω − ωi

s
.

We neglect the second contribution since t (ω)
2 < 0. If t (ω)

1 is
not too close to 0 and t f , we can consider that the integral is
defined from −∞ to +∞. We finally arrive at

û(ω) = u0

√
π

2s
ei[ π

4 +ϕ1(t (ω)
1 )].

The phase spectrum ϕ(ω) = π

4
+ ϕ1(t (ω)

1 ) can be written as

ϕ(ω) = π

4
− (ω − ωi )2

2s
.

Coming back to the original control problem, we obtain

zω(t f ) = eiωt f

∫ t f

0
e−iωτ u(τ )dτ

� eiωt f u0

√
π

2s
ei( π

4 − (ω−ωi )2

2s ). (3)

After the adiabatic excitation, all the springs have almost the
same radius |zω(t f )|, but a different phase Arg[zω(t f )], which
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FIG. 1. Evolution as a function of ω of the radius (a) and phase
(b) of an ensemble of springs, with ω ∈ [−3, 3]. The parameters of
the adiabatic control field u(t ) are set to u0 = 1, t f = 400, ωi = 0,

ω f = 2, and s = ω f − ωi

t f
. The solid red (dark gray) lines corre-

spond to the stationary phase approximation. Note that |z(t f )| and
Arg[z(t f )] are, respectively, even and odd functions of ω. Only the
positive frequencies are plotted for the argument of z(t f ). The differ-
ent quantities are dimensionless.

can be expressed as

Arg[zω(t f )] = ωt f + π

4
− (ω − ωi )2

2s
. (4)

As can be seen in Eq. (4), this phase is not constant and varies
quadratically with the frequency ω. The radius which can be
expressed as

|zω(t f )| = u0

√
π

2s

can be fixed by adjusting either the amplitude of the pulse
u0 or the sweeping rate s. As shown in Appendix A, the
time evolution of the control process can be exactly derived
by using the Erfi function. A numerical example is given in
Fig. 1, showing the accuracy of the adiabatic approximation
for a long control time t f in the range of excited springs. The
main problem with this approach is its lack of flexibility since
only a specific family of target states can be reached.
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IV. SHORTCUT TO ADIABATICITY PROTOCOLS

STA protocols correspond to fast routes between initial and
final states that are connected through a slow (adiabatic) time
evolution when a control parameter is changed in time. It is
thus natural to derive shortcut procedures in this control prob-
lem. STA methods generally exploit the algebraic structure of
quantum mechanics [15–18]. Using inverse engineering, STA
has been recently extended to statistical physics and classical
mechanics. In this case, the trajectory is first extrapolated from
the required boundary conditions, the shape of the control
field being deduced in a second step. We propose in this
section a general STA protocol based on a motion planning
approach, known in control theory as Brunovki form [34,35].
We consider here a simple case in which only a discrete set
of frequencies is considered and the target state is the same
for all the springs. We adapt a method introduced in Ref. [41].
A general derivation for any finite-dimensional linear control
system is given in Appendix B. Moreover, this general ap-
proach allows us to design STA trajectory for any reachable
target state, as shown in Sec. VII.

To clarify the construction of the control field, we first
consider the case of two frequencies ω1 and ω2. We introduce
an auxiliary function g(t ) which defines the control field:

u(t ) = g(4)(t ) + (
ω2

1 + ω2
2

)
g(2)(t ) + ω2

1ω
2
2g(t ).

We show below how to determine boundary conditions on the
g function and its derivatives so that to realize the control
process for the two springs at frequencies ω1 and ω2. The
nth derivative of g is denoted g(n). Assuming that g obeys the
boundary conditions

g(0) = g(t f ) = g(1)(0) = g(1)(t f ) = g(2)(0) = g(2)(t f ) = 0

and

g(3)(0) = 0, g(3)(t f ) = 1,

an integration by parts leads to

∫ t f

0
e−iωτ u(τ )dτ = e−iωt f + (

ω2 − ω2
1

)
(ω2 − ω2

2 )G(t f ), (5)

with G(t ) =
∫ t

0
e−iωτ g(τ )dτ . The target state is thus reached

exactly for the two frequencies ω1 and ω2. For the other
frequencies, the distance dω to the target state (1,0), defined

by dω =
√

[xω(t f ) − 1]2 + y2
ω(t f ), is given as the modulus

of the second term in the right-hand side of Eq. (5): dω =
|(ω2 − ω2

1 )(ω2 − ω2
2 )G(t f )|. Many different solutions to this

problem can be derived, such as polynomial functions, but
other families of functions can be chosen. A possible g func-
tion is of the form

g(t ) =
(

t

t f

)4 (−t f )3

3!
(1 − t/t f )3. (6)

It is then straightforward to generalize this computation to the
case of N frequencies. The boundary conditions are given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

g(0) = g(t f ) = 0,

g(1)(0) = g(1)(t f ) = 0,

· · ·
g(2N−2)(0) = g(2N−2)(t f ) = 0,

g(2N−1)(0) = 0; g(2N−1)(t f ) = 1.

The control field can be expressed as

u(t ) =
2N∑

k=0

gkg(k)(t ),

where the even coefficients gk (the odd coefficients are zero)
are the ones of the characteristic polynomial of the diagonal
matrix with the elements (−ω2

1,−ω2
2, . . . ,−ω2

N ). Here, as a
possible g function, we can choose

g(t ) =
(

t

t f

)2N (−t f )2N−1

(2N − 1)!
(1 − t/t f )2N−1. (7)

Note that the g function does not depend on the frequencies
ωk . This process defines a family of control fields based on
g. The distance to the target state can be determined directly
from g:

dω =
∣∣∣∣∣

N∏
k=1

(ω2 − ω2
k )G(t f )

∣∣∣∣∣.
A major limitation of this derivation relies on the definition

of the g function. It is thus difficult to impose constraints on
the control field u starting from the g function. A number of
frequencies lower than 10 has generally to be chosen to limit
the maximum absolute amplitude of the field.

For N springs, 4N boundary conditions have to be fulfilled.
The minimum order of the polynomial g as in Eq. (7) is
therefore 4N − 1. Higher-order polynomials can be derived
by considering additional constraints. For instance, the initial
and final values of the control field u are zero if g(2N )(0) =
0 = g(2N )(t f ). A solution is given by the following polyno-
mial:

g(t ) =
(

t

t f

)2N+2 (−t f )2N−1

(2N − 1)!
(1 − t/t f )2N−1

×[1 + (2N + 2)(1 − t/t f )]. (8)

We have numerically observed that this constraint allows
to limit the maximum amplitude of the pulse. Ultra-high-
efficient protocol around a specific frequency ω̃ can be
obtained if ωk = ω̃ for any k. For ω̃ = 0, the distance d can
be expressed as

dω =
∣∣∣∣ω2N

∫ t f

0
e−iωt g(t )dt

∣∣∣∣.
Since the g function does not depend on ω, an upper bound
to dω is given by ω2N

∫ t f

0 |g(t )|dt . We observe that the error
of the control process goes as ω2N and a very good efficiency
is achieved in a neighborhood of ω = 0 for large values of N .
Figure 2 illustrates this protocol for N = 2, 4, 6, and 8 springs.
As could be expected, the error decreases as a function of N ,
while the maximum amplitude of the field increases.
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FIG. 2. Ultra-high-efficient STA excitation of an ensemble of
springs around the frequency ω = 0. Panels (a) and (b) display,
respectively, the evolution of the distance dω to the target state as
a function of ω and the time evolution of the corresponding control
field u(t ). Black, blue (or dark gray), red (or light gray) solid lines
and dashed lines represent, respectively, a system with N = 8, 6, 4,
and 2 springs. Dimensionless units are used.

V. OPTIMAL CONTROL THEORY

We focus in this section on the derivation of optimal con-
trol pulses. We consider the linear quadratic optimal control
theory where the goal is to steer the system to (or close to) the
target state, while minimizing the pulse energy [33,35]. This
approach has been applied in [39] to control spring ensemble
for a continuous set of frequencies. The optimal solution can
be expressed as an infinite expansion of prolate spheroidal
wave functions. This series is then truncated to a finite set of
frequencies. We propose here a different approach based on
the Pontryagin maximum principle [11]. We first transform
the infinite-dimensional control problem into a finite one by
selecting a finite number of frequencies. We then apply OCT
for two different cost functionals penalizing the energy of the
control field. The same optimal solution as in [39] is obtained
by this method (approach I) which has the advantage of being
more flexible. In particular, it is straightforward to consider
frequency-dependent target states.

Approach I. We consider the control of a finite number N
of springs with frequencies ωk ∈ [ωmin, ωmax]. Starting from

the point (0,0), the goal is to reach exactly at time t f the final
states (xk f , yk f ) = zk f , where zk = xk + iyk is the state of the
spring k, while minimizing the energy E = ∫ t f

0 u(t )2dt . We
have

zk (t ) =
∫ t

0
u(τ )eiωk (t−τ )dτ.

We denote by pk = pxk + ipyk the corresponding adjoint state.
The Pontryagin Hamiltonian can be expressed as

HP =
∑

k

Re[iωkzk p̄k + pku] − u2

2
,

where Re[·] and ¯[·] denote, respectively, the real part and the
complex conjugate of a complex number. The dynamics of the
adjoint states is governed by

ṗk = iωk pk .

The optimal control is given by

u∗(t ) =
∑

k

Re[pk (t )] =
∑

k

Re[pk (0)eiωkt ]

= 1

2

∑
k

[pk (0)eiωkt + p̄k (0)e−iωkt ].

After straightforward computation, we deduce that

2

t f
z j (t f ) =

∑
k

exp

[
i
(ω j + ωk )t f

2

]
sinc

[
(ω j − ωk )t f

2

]
pk (0)

+ exp

[
i
(ω j − ωk )t f

2

]
sinc

[
(ω j + ωk )t f

2

]
p̄k (0)

which can be expressed in a more compact form as follows:

2

t f
z j (t f ) =

∑
k

A jk pk (0) + Bjk p̄k (0)

and

2

t f
z̄ j (t f ) =

∑
k

B̄ jk pk (0) + Ā jk p̄k (0),

where Ajk = exp[i (ω j+ωk )t f

2 ]sinc[ (ω j−ωk )t f

2 ] and Bjk =
exp[i (ω j−ωk )t f

2 ]sinc[ (ω j+ωk )t f

2 ]. Solving this linear system,
we get the initial adjoint states and therefore the optimal
control field and the optimal trajectories. Note that numerical
errors appear if the linear system is close to a singular system.

A comparison of this method with STA protocols intro-
duced in Sec. IV is presented in Fig. 3 for a spring ensemble
with ω ∈ [0, 1]. As above, the goal is to transfer the system
from the point (0,0) to (1,0) in a time t f . We consider two
regular discretizations with N = 4 and 6 frequencies. The
parameters of the different pulses are given in Table I. As
could be expected, we observe a strong similarity between
STA and OCT solutions. The distance to the target state is very
small for points which do not belong to the grid frequency.
Slightly better results are achieved with STA processes, but at
the price of more energetic pulses. The target states are not
exactly reached with the optimal process because the linear
system used to determine the control field is close to a singular
one.
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FIG. 3. STA (blue or dark gray) and optimal (red or light gray)
excitations of an ensemble of springs in the range of frequencies
ω ∈ [0, 1]. The pulses have been computed for a regular distribution
of N = 4 (solid line) and 6 (dashed line) springs. Panels (a) and
(b) display, respectively, the distance to the target state and the
corresponding control fields. The control time is set to t f = 24.
Dimensionless units are used.

Approach II. We consider a second approach where the
distance to the target states (for a finite set of frequencies
ωk) is defined in the cost functional J to minimize. The cost
functional J can be expressed as

J =
∑

k

1

2
{[xk (t f ) − xk f ]2 + [yk (t f ) − yk f ]2} + λ

2

∫ t f

0
u2dt,

TABLE I. Comparison between OCT and STA pulses for con-
trolling a spring ensemble. The control time is set to t f = 24. umax

and E denote, respectively, the maximum absolute value of the con-
trol field and the normalized energy E = ∫ t f

0 u(t )2dt .

N = 4 N = 6

umax (STA) 1.10 3.16
umax (OCT) 0.27 2.38
E (STA) 1.03 6.06
E (OCT) 0.26 2.39

where λ is a positive penalty factor chosen to weight the
importance of the pulse energy. The Pontryagin Hamiltonian
is

HP =
∑

k

Re[iωkzk p̄k + pku] − λu2

2
,

and the optimal control is given by

u∗ = 1

λ

∑
k

Re[pk].

The time evolution of pk can be expressed as

pk (t ) = pk (0)eiωkt = pk (t f )eiωk (t−t f ),

with the final condition

pk (t f ) = zk f − zk (t f ).

After straightforward computation, we deduce that

2λ

t f
z j (t f ) =

∑
k

exp

[
i
(ω j − ωk )t f

2

]
sinc

[
(ω j − ωk )t f

2

]
pk (t f )

+ exp

[
i
(ω j + ωk )t f

2

]
sinc

[
(ω j + ωk )t f

2

]
p̄k (t f ),

which can be expressed as

2λ

t f
z j (t f ) =

∑
k

Cjk[zk f − zk (t f )] + Djk[z̄k f − z̄k (t f )], (9)

with

Cjk = exp

[
i
(ω j − ωk )t f

2

]
sinc

[
(ω j − ωk )t f

2

]
,

Djk = exp

[
i
(ωk + ω j )t f

2

]
sinc

[
(ωk + ω j )t f

2

]
.

Equation (9) and its complex conjugate give the dynamical
state at time t f , and thus the final adjoint state. We then obtain
the control field u(t ). The efficiency of this second approach
is shown in Sec. VI for controlling ion dynamics.

VI. ION CYCLOTRON RESONANCE

The Fourier-transform ion cyclotron resonance (ICR) mass
spectrometry is a type of mass spectrometer based on cy-
clotron frequency of ions in a fixed magnetic field [42–45].
Ions are trapped in a Penning trap, where they are excited by
an electric field. After the excitation process, the ions rotate
at their cyclotron frequency as a packet of ions. The image
charge induced by the ions on a pair of electrodes is detected.
The Fourier transform of the resulting transient signal leads to
the mass spectrum. ICR allows to access the highest resolution
available in mass spectrometry. A schematic representation of
the experimental setup is given in Fig. 4. In this section, we
propose to show how optimal control can be used to design
excitation pulses in ICR. Standard processes in this domain
are based on adiabatic chirped pulses. Optimal control should
allow a much wider range of possibilities, such as a precise
and robust control of ion radius and a linear frequency depen-
dence of the phase. As shown in Sec. IV, the phase evolves
quadratically with the frequency in adiabatic control. While
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FIG. 4. Schematic description of the control of ions in ICR. The
pink (or black) dots represent the time evolution of the ions inside
the cell. A homogeneous constant magnetic field is applied along
the z axis. The ion excitation is controlled by a time-dependent
electric field along the x direction, which is generated by a voltage
difference between the blue (dark gray) plates. The position of the
ion is measured by the charge induced on the red (light gray) plates.

a general study of this process goes beyond the scope of this
work, we propose to analyze a simplified version in which the
rotating-wave approximation (RWA) can be applied. In this
setting, the robust control of ions is described by the one of
a spring ensemble and the material of Sec. V can be directly
used.

A. Model system

The different ions in the experimental cell are subjected to
a magnetic field �B along the z axis and to an electric field �E
in the (x, y) plane [42–45]. The dynamics are governed by the
Lorentz’s equation

mk �̇vk = qk �E + qk (�vk × �B), (10)

which can be expressed as{
v̇xk = ωk (ex + vyk ),
v̇yk = ωk (ey − vxk ), (11)

with ωk = qkB
mk

and �e = �E/B. The frequency ωk belongs to the
interval [ωmin, ωmax]. We consider now the complete control
problem with the speed and the position of the different ions.
The dynamics is governed for the ion k by the following
differential system:⎧⎪⎨

⎪⎩
ẋk = vxk ,

ẏk = vyk ,

v̇xk = ωk (ex + vyk ),
v̇yk = ωk (ey − vxk ).

(12)

In practical applications, only the electric field ex along the x
direction is available for controlling ions, ey(t ) = 0. Starting
from the center of the cell (xk = 0, yk = 0), the goal is to
reach at a fixed control time a given radius with either a con-
stant phase with respect to ω or with a phase varying linearly

with ω. In standard experiments, a chirped adiabatic excitation
is used and leads to a control of the radial coordinate but not
of the phase.

B. Rotating-wave approximation

We describe in this section the RWA which allows to sim-
plify the control of ICR processes. Using this approximation,
we show that the control of ions reduces to the control of an
ensemble of springs of different frequencies. We start with the
speed control which satisfies{

v̇xk = ωkvyk + ωkex,

v̇yk = −ωkvxk.

In complex coordinates, we have

V̇k = −iωkVk + ωkex(t ),

where Vk = vxk + ivyk . We assume that ωk ∈ [ω0 − δω, ω0 +
δω] and ex(t ) = e0(t ) cos(ω0t ), where δω 	 ω0 and e0(t )
varies slowly in time (slowly varying envelope approxima-
tion). We express the complex speed as Vk = Ṽke−iω0t . We
deduce that

˙̃Vk = −i	ωkṼk + ωk
e0

2
[1 + exp(−2iω0t )],

where 	ωk = ωk − ω0 is the detuning term. In RWA, we
neglect the rapidly oscillating term exp(−2iω0t ) and we arrive
at

˙̃Vk = −i	ωkṼk + ωk
e0

2
.

It is worth noting here that only the amplitude of the electric
field (and not the phase)can be controlled in time. In the
rotating frame, the dynamics is thus driven by only one control
parameter.

We recover the control of an ensemble of springs by assum-
ing that ωk � ω0 for any ion, i.e., we replace the term ωk

e0
2 by

ω0
e0
2 . An additional approximation can be made for the posi-

tion of the ion. We set Xk = X̃ke−iω0t . It is then straightforward
to show that

˙̃Xk − iω0X̃k = Ṽk (t ).

Since X̃k varies slowly with respect to eiω0t , we can neglect the
time derivative ˙̃Xk , which gives

X̃k = i

ω0
Ṽk (t ).

In this limit, we deduce that the speed control leads also to the
control of the position of ions.

C. Numerical results

We illustrate the optimal control of ions with the following
numerical example. We consider the approach II presented in
Sec. V.

We first compute the optimal control u(t ) of a spring en-
semble with ω ∈ [0, 200]. The control time t f is set to 1.
At this point, all the quantities are dimensionless. The target
states z f ω depend on the frequency and the final radius of the
trajectory can be expressed as

|z f ω| = 1
2 {1 + tanh[(ωS − ω)μ]},
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where μ = 0.1 and ωS = 100. The target radius is of the order
of 1 for ω < ωS and 0 for ω > ωS . The smooth transition
between the two regions can be adjusted with the parameter
μ. The phase of the target state is defined as:

z f (ω) = |z f ω| exp(iωηt f )

with η = 0.5, the slope of the frequency-dependent phase. We
observe numerically that a nonzero slope in a given range
(η ∈]0, 1[) helps limit the maximum amplitude of the pulse.
The same observation was made for spin control [46,47]. The
parameter λ of the approach II, which weights the importance
of the pulse energy in the cost functional, is set to 10−3. A
regular discretization of 60 frequencies in the range [0,200]
is taken into account in the optimization. Note that the final
result does not change if a sufficient number of frequencies is
used.

The control field is then expressed in physical units as
follows. We define the normalized electric field e(t ) as

e(t ) = E0

B0
u(t ) cos(ω0t ),

where E0 = 100 Vm−1, B0 = 10 T, and ω0/(2π ) = 500 kHZ.
These values are typical of ICR spectrometers. The intensity
of the electric field E0 is fixed to get a radial excitation of a
few centimeters. The control time is assumed to be expressed
in ms, leading to a control duration of 1 ms, which is also
standard in ICR. We deduce that a range of 	ω/(2π ) =
100/(2π ) = 16 kHz is excited around the central frequency
ω0/(2π ). Note that the RWA is justified since 	ω 	 ω0.

Numerical results are presented in Fig. 5. The radius and
the phase of the ion are denoted rICR and ϕICR. A compar-
ison can be made with an adiabatic excitation, characterized
by the following parameters: ωi/(2π ) = 480 kHz, ω f /(2π ) =
520 kHz, t f = 1 ms and an amplitude E0 = 0.625 kVm−1.
The sweep rate s is defined as s = ω f −ωi

t f
. We observe that the

optimal control process generates a very good excitation in-
side the expected range of frequencies. This control procedure
is directly comparable to the adiabatic process.

VII. CONTROL OF TWO-LEVEL QUANTUM SYSTEMS

Performing fast and efficient control of two-level quantum
systems represents a crucial prerequisite in different domains
going from nuclear magnetic resonance to quantum comput-
ing [3]. The design of robust or selective control processes
has been the subject of intense progress in the last decades.
Different methods based either on composite pulses [48–50],
STA principles [18,25–27], or OCT [3,21,22,24,51] have been
developed. However, due to the nonlinearity of the dynam-
ics, the control fields are generally determined by numerical
methods. This problem can be avoided by using a linearization
of the dynamics around an equilibrium point. This approach
is well-known in magnetic resonance (see, e.g., Ref. [52])
and called the small flip angle approximation. It is gener-
ally accepted that this approximation is valid in the case of
standard pulses for small excitation angles (i.e., the angle θ

defined below) up to 90◦. Pronounced nonlinear effects appear
for larger angles. In this setting, a step forward was recently
proposed in [38]. The basic idea consists in using this linear
approximation not only for standard pulses, but also for more
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FIG. 5. Excitation of an ensemble of ions by optimal (black)
and adiabatic (red or light gray) pulses. Panels (a) and (b) depict,
respectively, the final radius rICR (in mm) and the final phase ϕICR

(in radian) of ions as a function of the frequency f in the range of
frequencies [460,540] kHz. In (b), an arbitrary vertical shift has been
added to the phase of the adiabatic excitation to ease the comparison.
(c) Displays the optimal control pulse E0(t ) = E0u(t ) with a duration
of 1 ms.

complicated fields such as the ones derived by optimal control
theory. It was then shown that efficient broadband analytical
pulses for two-level quantum systems can be derived from the
optimal control of the linear system. We propose in this work
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FIG. 6. Robust inversion of an ensemble of two-level quantum
systems with respect to the offset ω by means of spring STA pro-
tocols. The color code is the same as in Fig. 2, i.e., dashed line and
solid blue (or dark gray), red (or light gray), or black lines for N = 2,
4, 6, and 8 springs, respectively. Dimensionless units are used.

to show that this approach can be extended to STA solutions.
For that purpose, we consider both robust and selective control
processes based on the STA approach presented in Sec. IV.

A. Model system

We first describe the mapping between the nonlinear
and linear systems. We consider the control of a two-level
quantum system whose dynamics is governed in Bloch rep-
resentation [53,54] by⎧⎨

⎩
ẋ = −ωy + uz,
ẏ = ωx,
ż = −ux,

where (x, y, z) are the Bloch coordinates, with x2 + y2 + z2 =
1, ω is the offset term, and u(t ) the control field. Using the
spherical coordinates (θ, ϕ) defined by x = sin θ cos ϕ, y =
sin θ sin ϕ, and z = cos θ , we arrive at{

θ̇ = u cos ϕ,

ϕ̇ = ω − u sin ϕ cot θ.

The Laurent series of the cotan function around θ = 0,

cot θ = 1

θ
− 1

3
θ − 1

45
θ3 + · · · ,

leads to {
θ̇ = u cos ϕ,

ϕ̇ = ω − u sin ϕ
(

1
θ

− 1
3θ − 1

45θ3
)
.

(13)

The dynamical equation of the spring is{
ẋ = −ωy + u,

ẏ = ωx.

Introducing the polar coordinates (r,�) such that x = r cos �

and y = r sin �, we get{
ṙ = u cos �,

�̇ = ω − u sin �
r ,

0 20 40 60 80 100
-1

-0.5

0

0.5

1

(a)
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-0.1
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0.1
(b)

FIG. 7. Selective inversion of two quantum systems of frequen-
cies 0 and 0.5. (a) Represents the time evolution of the z coordinate
of the two systems in black and red (or dark gray) solid lines. The
control field is displayed in (b). Dimensionless units are used.

which can be identified to the two-level system of Eq. (13)
at first order in θ where cot θ � 1

θ
. In this mapping, r and �

are, respectively, associated to θ and ϕ. This identification can
be used for a broadband excitation process in which the spin
goes from the state (x = 0, y = 0, z = 1) to (1,0,0) or from
(θ = 0, ϕ = 0) to ( π

2 , 0). The spin inversion can be realized
by combining two successive excitation protocols (with the
second one in time-reversed order) [38].

B. Robust and selective control

We illustrate the efficiency of STA control protocols de-
rived in Sec. IV on two examples, namely, the robust and
the selective control of two-level quantum systems. A first
example is given in Fig. 6 for the inversion process by using
control fields of Fig. 2. Note that the pulses have been scaled
by a factor π

2 since the spring goes here from (x = 0, y =
0) to ( π

2 , 0). The fidelity of the control J (ω) is defined as
J (ω) = −z(t f ) for a specific offset ω. A fidelity of 1 indicates
that the process is perfectly realized. We observe in Fig. 6
the remarkable efficiency of the control protocol for a large
range of frequencies. A second example is given in Fig. 7
for a selective process. We consider two quantum systems
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of frequencies ω1 = 0 and ω2 = 0.5. The goal of the control
protocol is to invert the first system, while returning for the
second spin to the initial state. Using the general procedure of
Appendix B, a STA solution can be obtained with two springs
starting from (0,0) and going to the final points ( π

2 , 0) and
(0,0). Here again, the control field is applied two times to
perform the selective inversion of the spin. We observe that
a long duration is needed to limit the maximum amplitude of
the pulse. The second spin remains close to the origin during
the control process. These two different examples show the
efficiency and the flexibility of the spin-spring mapping to
derive analytical pulses able to control an ensemble of two-
level quantum systems. A polynomial basis has been used, but
the control field could be expanded over other basis functions,
adapted to specific applications. The maximum intensity of
the pulse cannot be directly fixed by this approach. It can be
changed by playing with the control duration.

VIII. CONCLUSION

We have reviewed in this study different approaches to con-
trol the dynamics of an inhomogeneous ensemble of springs.
The different methods presented in this paper can be used
in any linear control system. They also provide interesting
alternatives to design pulses controlling two-level quantum
systems. We have shown that STA and optimal protocols may
exceed the limits of adiabatic control. Any target state and
control duration can be formally chosen, which can lead, e.g.,
to robust or selective control protocols. In order to satisfy
experimental limitations on the shape of the control field,
additional constraints have to be accounted for. For the two
methods, only a finite set of frequencies (with a regular dis-
cretization) are considered. This aspect has not been described
in this paper, but this frequency set can be optimized in a
practical application to improve the efficiency of the control
process. We have also discussed the relative advantages of the
two methods. The efficiency of the derived control fields is
comparable. STA allows to derive simple and smooth control
solutions, which can be expanded in a given basis of functions.
However, it is difficult to account for additional constraints on
the amplitude or the energy of the pulse, requirements that
can be fulfilled with OCT. Another future research direction
is the extension of this approach to other nonlinear dynamical
systems. From a mathematical point of view, this method can
be applied in a neighborhood of a fixed point of the dynamics.
A major limitation of this idea is related to the size of the
region around the fixed point that can be considered to reach
the target state with a given accuracy. As shown in this study,
this size is quite large for a two-level quantum system because
robust or selective excitation processes can be realized from
the linearized system. This characteristic is not known a priori
and has to be determined in each practical case.
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APPENDIX A: EXACT DERIVATION OF ADIABATIC
DYNAMICS

We show in this paragraph that the time evolution of adi-
abatic dynamics can be exactly derived. For that purpose, we
need to compute integrals of the form

I (α, β ) =
∫ t f

0
exp[iαt2 + iβt]dt,

where α and β are real coefficients. We have

I (α, β ) = exp

[
−i

β2

4α

] ∫ t f

0
exp

{[
eiπ/4√α

(
t + β

2α

)]2}
dt .

With the change of variables τ = eiπ/4√α(t + β

2α
), we arrive

at

I (α, β ) = e−iπ/4

√
α

exp

[
−i

β2

4α

] ∫ b

a
eτ 2

dτ,

where a = eiπ/4√αβ/(2α) and b = eiπ/4√α[t f + β/(2α)].
This integral can be computed by using the imaginary error
function Erfi:

Erfi(x) = 2√
π

∫ x

0
et2

dt .

We deduce that

I (α, β ) = e−iπ/4

√
α

exp

[
−i

β2

4α

]√
π

2
[Erfi(b) − Erfi(a)].

For an ensemble of springs, the final state at time t f is given
by

zω(t f ) = eiωt f

∫ t f

0
e−iωt u0 cos

(
ωit + s

t2

2

)
dt .

We get

zω(t f ) = eiωt f

2

∫ t f

0
dt

{
exp

[
i
s

2
t2 + i(ωi − ω)t

]

+ exp

[
− i

s

2
t2 − i(ωi + ω)

]}

and thus

zω(t f ) = eiωt f

2

[
I
(

s

2
, ωi − ω

)
+ I

(
− s

2
,−ωi − ω

)]
.

APPENDIX B: A GENERAL SHORTCUT
TO ADIABATICITY APPROACH

We describe here a general method to derive control fields
based on inverse engineering approach. It can be applied to
any linear control system which fulfills specific properties
given below. To simplify the discussion, we assume that
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the system is controllable, i.e., that the Kalman criterion is
satisfied [1,34,35]. We consider the following linear control
system:

ẋ = Ax + Bu,

where A ∈ Mn,n(R) and B ∈ Mn,m(R) are two constant matri-
ces. The control term u(t ) is such that u(t ) ∈ Rm and the state
of the system x(t ) ∈ Rn. The goal of the control is to bring
the system from x0 to x f in a time t f . Note that, without loss
of generality, we can assume that x0 = 0 by replacing x f by
x f − eAt f x0. The Kalman criterion states here that the rank of
the controllability matrix C(A, B) defined by

C(A, B) = [B, AB, . . . , An−1B]

is n. C(A, B) is a nm × n matrix, where the different matrices
AkB are reshaped into vectors. We also know that the set of
reachable points is the image of C(A, B).

We introduce a time-dependent vector g(t ) ∈ Rm and the
coefficients gk ∈ R such that

u(t ) =
n∑

k=0

gkg(k)(t ). (B1)

We denote by G(t f ) the integral

G(t f ) =
∫ t f

0
e−At Bg(t )dt .

The goal of the control procedure is to find a field u(t ) so that

e−At f x f =
∫ t f

0
e−At Bu(t )dt . (B2)

We consider a g function with the initial conditions g(0)(0) =
g(1)(0) = · · · = g(n−1)(0) = 0. We have

∫ t f

0
e−At Bg(1)(t )dt = e−At f Bg(0)(t f ) + AG(t f ),

∫ t f

0
e−At Bg(2)(t )dt = e−At f [Bg(1)(t f ) + ABg(0)(t f )] + A2G(t f ), · · ·

∫ t f

0
e−At Bg(n)(t )dt = e−At f

n−1∑
j=0

AjBg(n−1− j)(t f ) + AnG(t f ). (B3)

Equation (B2) can be rewritten by plugging the expression (B1) of u(t ) and by using Eq. (B3). We obtain the sum of two
terms. The first one

∑n
k=0 gkAkG(t f ) is equal to zero if we choose the gk coefficients as the coefficients pk of the characteristic

polynomial of A. Indeed, from the Cayley-Hamilton theorem [34], we have
∑n

k=0 pkAk = 0, where we set pn = 1. We finally
arrive at

x f = B
n−1∑
k=0

gk+1g(k)(t f ) + AB
n−2∑
k=0

gk+2g(k)(t f ) + · · · + An−1Bgng(0)(t f ).

If the Kalman criterion is satisfied, then any vector of Rn, and
in particular x f , can be written as a sum of the form

x f =
n−1∑
k=0

AkBbk,

where bk ∈ Rm. We obtain the following linear system:

bn−1 = gng(0)(t f ),

bn−2 = gng(1)(t f ) + gn−1g(0)(t f ), · · ·

b0 =
n−1∑
k=0

gk+1g(k)(t f ). (B4)

Using gn = 1, we can deduce the final conditions g(k)(t f ). The
g function may be obtained by polynomial interpolation, but
other function bases can be used. We consider a polynomial
of order 2n − 1 to fulfill the 2n boundary conditions

g(t ) =
2n−1∑
k=n

ak

(
t

t f

)k

.

The first n vectors ak ∈ Rm are zero by construction and the
others can be computed from the successive derivatives of g
by inverting the system (B4). As an illustrative example of the
general approach, we consider the case of two springs and we
show how to find the control field derived in Secs. IV and VII.
We have⎛

⎜⎝
ẋ1

ẏ1

ẋ2

ẏ2

⎞
⎟⎠ =

⎛
⎜⎝

0 −ω1 0 0
ω1 0 0 0
0 0 0 −ω2

0 0 ω2 0

⎞
⎟⎠

⎛
⎜⎝

x1

y1

x2

y2

⎞
⎟⎠ + u(t )

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠,

where the indices 1 and 2 denote, respectively, the first and
second springs. We assume that the control field u can be
expressed as

u(t ) =
3∑

k=0

gkg(k)(t ).

The coefficients gk are given by the characteristic polynomial
PA of A:

PA = λ4 + (
ω2

1 + ω2
2

)
λ2 + ω2

1ω
2
2,
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i.e., g4 = 1, g2 = ω2
1 + ω2

2 and g0 = ω2
1ω

2
2, g3 = g1 = 0. The

controllability matrix C(A, B) is given by the following vec-
tors:

B =

⎛
⎜⎝

1
0
1
0

⎞
⎟⎠, AB =

⎛
⎜⎝

0
ω1

0
ω2

⎞
⎟⎠

and

A2B =

⎛
⎜⎜⎝

−ω2
1

0
−ω2

2
0

⎞
⎟⎟⎠, A3B =

⎛
⎜⎜⎝

0
−ω3

1
0

−ω3
2

⎞
⎟⎟⎠.

If ω1 = ±ω2, then the rank of C(A, B) is strictly smaller than
4 and any target state of R4 cannot be reached. For a robust

control of two springs, the target state is x f = (1, 0, 1, 0)ᵀ.
We deduce that b0 = 1, b1 = 0, b2 = 0, and b3 = 0 and the
corresponding boundary conditions for g. It is then straight-
forward to derive the g function of Eq. (6) and to extend
this computation to N frequencies for the g function of
Eq. (7). The target state for the selective control of Sec. VII
is x f = ( π

2 , 0, 0, 0)ᵀ. The first step consists in solving the
equation

x f = Bb0 + ABb1 + A2Bb2 + A3Bb3.

For the frequencies ω1 = 0 and ω2 = 0.5, we get
(b0, b1, b2, b3) = ( π

2 , 0, 2π, 0). Using Eq. (B4), we
obtain the final boundary conditions for the g function,
(g(3)(t f ), g(2)(t f ), g(1)(t f ), g(0)(t f )) = (0, 0, 2π, 0), and then
the coefficients of the polynomial.
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