
Methods
1. Experimental

Reconstruction of the populations in the regular islands -
Due to sub-wavelength spacing between the regular islands,

we cannot measure in-situ by optical means the atomic pop-
ulations in each island. To circumvent this limitation, we use
two experimental tricks: (i) we perform a π/2 phase space
rotation: by letting the system evolve for an additional T/2
time in the modulated lattice, the atomic wavepacket initially
on the right (resp. left) island acquires a negative (resp. pos-
itive) momentum (see SI); (ii) we subsequently switch off all
trapping potentials and perform a 25 ms time-of-flight before
taking an absorption image.
The corresponding patterns (see both Fig. 1e of the main

text and Fig. 1a-d of Methods) consist in regularly spaced in-
terference peaks centered about discrete momenta pj = jh/d ,
with j an integer and d the lattice spacing. We identify the
zero-momentum peak position by a preliminary experiment
performed on a static lattice. We then label each peak with
its corresponding discrete momentum value. The population
initially in the right (resp. left) island is then determined from
the integration of the peaks with negative (resp. positive) mo-
menta after the time-of-flight. Performing the experiment for
different times in the modulated lattice (an even number of
modulation periods n × 2T ), we infer the time evolution of
the populations (see Fig. 1i of Methods).
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Fig. 1 | Determination of the populations in the left and right islands. a-d, Experimental absorption images taken after a 25 ms
time-of-flight for different numbers of modulation period. e-h, Solid lines: profiles of the experimental images integrated along the
vertical axis, giving access to the momentum distribution along the lattice axis (the dashed line separates the positive and negative
momentum components). i, Time-evolution of the population of the right (red color) (resp. left (blue color)) regular island obtained
from the integration of the momentum profiles (e.g. e-h) over negative (resp. positive) momenta.

Bifurcation - For a given phase space (see Fig. 2a-c of
Methods), we can probe experimentally the number and po-
sition(s) of the regular island(s) along the x-axis. For this
purpose, we load the lattice adiabatically and then shift sud-
denly the lattice by a distance ∆x before modulating the lat-
tice amplitude for a few modulation periods (an even number
of periods between 4 to 10). This choice of modulation time
results from a trade-off: the tunneling is still marginal while
the spreading of the wave packet when placed in the chaotic
zone is clearly visible. The analysis is performed after a 25
ms time-of-flight absorption image which reveals the momen-
tum distribution. The dispersion in momentum is extracted
from the integrated profile of the experimental images (see
e.g. Fig. 1e-h of Methods). Using a multi-Gaussian fit of
this momentum dispersion plotted as a function of the initial
offset ∆x (see Fig. 2d-f of Methods), we extract the posi-
tion(s) for which the momentum dispersion is minimal, and
therefore infer the position(s) of the center(s) of the regular
island(s).

Oscillation frequency extraction - To extract experimental
oscillation frequencies (see Figs. 4 of the main text, 4c and 5c
of SI), we compute the Fourier spectra of the time evolution of
the left and right populations. We extract from their average
a main peak and keep the secondary peaks only when their
weight is at least 1/3 of the main one, a choice that captures
efficiently the main characteristics of the oscillations. Each
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Fig. 2 | Determination of regular island(s) position(s). Phase
space generated by the parameters ε = 0.268 and a γ = 0.188, b
γ = 0.265, c γ = 0.348, showing the splitting of the central
regular island into two and three islands. d-f, Experimental
results associated to each phase space: the standard deviation of
the atomic momentum distribution is plotted as a function of the
in-trap initial position ∆x of the atomic wave packet. Dotted
lines: multi-Gaussian fits.

frequency is determined from a three-point average around
the corresponding maximum. The error on the frequency
determination is assumed to follow a triangular law around
the maxima with an uncertainty of ±f0/(2

√
6), where f0 is

1



the sampling rate.

2. Numerical

The numerical simulations compute the evolution of an
interaction-free wavefunction in the time-dependent potential
using the split-step method. For Figs. 4a and b of the main
text, and 4c and 5c of the SI, the dynamics is simulated on
a single cell of size equal to the lattice spacing.
The mixed classical phase space exhibits two stable islands

symmetric in position. The initial state is a Gaussian wave
packet placed at the center of one of the islands with the
following relations between the quadratic sizes in position
and momentum ∆x = 2∆p to maximize the overlap with

the classical lateral island. The observable probed every two
periods is the modulus squared of the overlap either with
the initial state or its symmetrical partner centered on the
other island. The oscillation frequencies are obtained from
the Fourier transform performed over 10,000 periods.

In the more realistic simulations of Figs. 4d-f of the main
text, we consider a system made of 151 cells and we initially
populate the same island on 13 successive cells.

The analysis in terms of Floquet eigenstates, relevant for
Fig. 3 of the main text, is inferred from the evolution oper-
ator (Floquet operator) over two periods. Quasi-energies are
directly extracted from the phase of the eigenvalues.

Supplementary Information
1. Bifurcation and rotation in phase space

The bifurcation - To introduce the main features of the bifurcation, we linearize the classical equation of motion close to
x = 0 and introduce explicitly the period of modulation T . In this way, we get at third order of expansion the Mathieu-Duffing
equation:

dp

dt
+ γ
(

1 + ε cos
(

2π t

T

))(
x − x3

6

)
= 0. (1)

The standard linear Mathieu equation displays instabilities (unbounded solutions) for a discrete set of ratios between the
forcing and the natural frequencies (∝ √γ). The non-linearities of Eq. (1) shifts those resonances and can even restore their
stability. This latter effect is responsible for the bifurcation.
According to the analytical approach developed in Refs. [1, 2], the bifurcations occur at two critical values γc = (1±ε/2)−1.

For a fixed amplitude of modulation, ε, the first bifurcation when the lattice depth γ is increased amounts to breaking the
central stable island into two off-centered symmetric stable islands whose phase space coordinates are given by(

x?

p?

)
= ±

√
8
(

1 + ε

2 −
1

4γ

)(
cos(πt/T )

sin (πt/T )/2

)
. (2)

For our parameter (ε = 0.268), this bifurcation occurs at γ = 0.22. In the range 0.22 < γ < 0.29, the (x , p) = (0, 0) orbit
becomes unstable. For γ > 0.29, the stability of this orbit is restored (see Fig. 2 of the main text).

Rotation in phase space and 2T formalism - Equation (2) actually describes the forced motion of a pair of stable points in
the (x , p) plane. They rotate with a 2T period on an ellipse centered on (x , p) = (0, 0) (see Fig. 3 of SI). This is the reason
why (i) we probe the system stroboscopically every 2T and (ii) we wait for an extra T/2 period to transfer the information
from the x-axis to the p-axis.

0 0.25 0.5 0.75 1 t/T
Fig. 3 | Rotation of the stable orbits in phase space. Stroboscopic phase spaces are plotted for different values of the modulation
time showing the rotation of the two symmetric islands. Parameters: ε = 0.15, γ = 0.25.

2. Additional experimental CAT resonances

CAT resonances are a very generic feature of mixed sys-
tems. We report hereafter two other observations performed
with different parameters showing three additional resonances
(see Figs. 4 and 5 of SI). The experimental data are in very
good agreement with the numerical simulations.

3. Spectrum and eigenstates analysis of the

experimental CAT resonances

The theoretical description of chaos-assisted tunneling res-
onances involves an avoided crossing scenario between reg-
ular and chaotic states. This description rests on the semi-
classical approximation (~eff small enough compared to the
size of the classical structures of the phase space) that guar-
antees to be able to label chaotic and regular states. For
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Fig. 4 | Second experimental CAT resonance. a-b, Examples
of experimental tunneling oscillations. c, Experimentally
measured tunneling frequencies (red dots) as a function of ~−1

eff

compared to the theoretical/numerical predictions corresponding
to γ = 0.315 ± 0.005 and ε = 0.39. The vertical red line
indicates a dataset right at resonance for which we couldn’t
extract a frequency. The blue shaded area corresponds to the
experimental uncertainty on γ. The corresponding classical phase
space is plotted in (d).
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Fig. 5 | Third and fourth experimental CAT resonances. a-b,
Examples of experimental tunneling oscillations. c,
Experimentally measured tunneling frequencies (red dots) as a
function of ~−1

eff compared to the theoretical/numerical
predictions corresponding to γ = 0.229 ± 0.001 and ε = 0.60.
The blue shaded area corresponds to the experimental
uncertainty on γ. The corresponding classical phase space is
plotted in (d).

the three experimental configurations we probed, the quasi-
energy spectra show avoided crossings associated with the
observed resonances (see Figs. 6a, 7a, 8a of SI) and the
states involved can be labelled in two classes: regular (see
Figs. 6b-c, 7b-c, 8b-c of SI) and chaotic (see Figs. 6d-e,
7d-e, 8d-e of SI).

4. Oscillation damping

As stated in the main article, the number of atoms in
the condensate drastically affects the damping of the chaos-
assisted tunneling oscillations (see Fig. 9 of SI). We attribute
this effect to the dephasing of BECs in each lattice site due
to interatomic interactions. As the strength of the interac-
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Fig. 6 | Eigenstates analysis of the first experimental CAT
resonance (see Fig. 4 of main text). a, quasi-energy spectrum of
the quantum states involved in the CAT resonance. To identify
the relevant eigenstates, we compute their overlap with a
Gaussian state placed at the center of one of the lateral islands.
In blue: regular eigenstate having a given parity. In red: regular
eigenstate with the opposite parity. In green: chaotic states. Red
(regular state) to green (chaotic state) curves reveal the mixing
between regular and chaotic states having the same parity
(avoided crossing). (b, c, d, e) Husimis distribution of the
relevant eigenstates superimposed to the classical phase space.
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Fig. 7 | Eigenstates analysis of second experimental CAT
resonance (see Fig. 4 of SI). Same convention as Fig. 6.
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Fig. 8 | Eigenstates analysis of the third and fourth
experimental CAT resonances (see Fig. 5 of SI). Same
convention as Fig. 6.

tion depends on the density, reducing the number of atoms
decreases the damping rate.
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Fig. 9 | Damping of oscillations with the number of atoms.
Comparison of the chaos-assisted tunneling oscillations for two
different atom numbers: a N = 1.2 ± 0.2 × 105 and b
N = 4 ± 0.2 × 104. The phase space parameters are
γ = 0.225 ± 0.005 and ε = 0.59 ± 0.01.
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