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1 Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse, France
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Abstract. We investigate experimentally a Bose Einstein condensate placed in a 1D optical lattice whose
phase or amplitude is modulated in a frequency range resonant with the first bands of the band structure.
More precisely, we study the effect of the strength of a weak extra external confinement superimposed to
the lattice on the 1 and 2-phonon transitions. We identify lines immune or very sensitive to the exter-
nal confinement despite many orders of magnitude of difference in strength compared to the lattice. We
interpret those features and present 1D numerical simulations including atom-atom interactions consistent
with the experimental observations. Using the band mapping technique, we also get a direct access to
the populations that have undergone n-phonon transitions for each modulation frequency including for
non-zero quasi-momentum.

1 Introduction

The physics of cold atoms placed in time-dependent opti-
cal lattices enables one to address an incredibly wide vari-
ety of phenomena. Many recent cold atom experiments in
optical lattices have demonstrated the usefulness of time-
dependent modulation to probe or engineer single and
many-body states [1–23]. Modulation with frequencies in
a range of values different from interband resonances has
been used to renormalize the tunneling rate [1–5], to probe
the Mott insulator – superfluid transition [6–9], to excite
collective modes [10], to drive quantum transport [11,12],
to endow a system with new properties including artifi-
cial gauge fields [13,14], or to create nontrivial topological
band structures [5,15–23] to name a few.

Resonant modulation favors interband transitions
[24–28] and band hybridization [29–32]. It has been used as
a spectroscopic calibration [25,33,40] and for the manip-
ulation of wave packets [24,26,34,35] using either phase
or amplitude modulation. Polychromatic resonant mod-
ulation has also been investigated revealing the possible
interference between separated excitation paths [36,37].
However, such resonant modulation may cause heat-
ing through intra- or interband transitions generated by
2-particle processes [5,38–42]. A detailed understanding of
resonant excitations therefore appears essential to exploit
the full potentialities of Floquet engineering [5].
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For a large amplitude of modulation and a sufficiently
deep optical lattice, the classical phase space becomes
mixed. This regime has been investigated in the early
2000 to set up experiments dedicated to the observation
of dynamical tunneling between stable islands [43–45].

Furthermore, the band structure of a quantum gas in an
optical lattice can be modified by atom-atom interactions.
When the interaction energy is on the order of the lattice
depth, the band structure exhibits a loop structure about
the center of the Brillouin zone allowing for dynamical
instabilities and possible hysteretic behaviors [46–49].

In this article, we investigate experimentally and numer-
ically resonant interband excitations in a Bose-condensed
atomic cloud confined by a 1D modulated optical lattice
in the presence of weak interactions. By weak interactions
we mean that the interaction energy is much lower than
the lattice depth, and that the band structure is not signif-
icantly modified by interactions. In addition to the lattice
potential, we consider an external weak harmonic confine-
ment. We report here a noticeable sensitivity of the width
of the experimental lines of the spectrum to the effect of
this extra confinement: the linewidths can strongly vary
when the strength of the external confinement varies typ-
ically from 10−5 to 10−7 compared to that of the lattice.
We put the emphasis on 1 and 2-phonon transitions and
provide detailed studies for the excitations of the first five
bands both by phase and amplitude modulation.

The paper is organized as follows. In Section 2, we
provide an overview of the relevant features of our
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experimental setup. The experimental spectra along with
their comparison with the numerics are presented in
Section 3. In Section 4, we detail our experimental
approach and analysis of excitations at non-zero quasi-
momentum that may involve multiphonon processes. Two
appendices complement the main text, the first one dedi-
cated to the selection rules for interband excitations and
the other one to numerical simulations.

2 Overview of the setup

We produce pure rubidium-87 Bose Einstein condensates
(BECs) in a hybrid trap, which is the combination of two
optical dipole beams and a magnetic trap [50,51]. Along
the horizontal optical dipole beam (x-axis), we superim-
pose the 1D optical lattice which results from the interfer-
ence of two counter propagating laser beams originating
from the same single mode laser (wavelength 1064 nm).
All experiments are performed with pure BECs containing
typically 105 atoms1. The excitation is carried out either
by phase or amplitude modulation. The lattice potential
experienced by the rubidium-87 atoms (of mass m) thus
reads

Vε,θ(x, t) = −V0(1 + ε(t)) cos2
(πx
d

+ θ(t)
)
, (1)

where d = 532 nm is the lattice spacing. The lattice
potential is made time-dependent through the modula-
tion amplitude ε(t) and the phase θ(t). The lattice depth
is measured in units of the characteristic energy of the lat-
tice through the dimensionless parameter s0: V0 = s0EL

with EL = h2/(2md2)2. The depth of the optical lattice is
determined in situ by exciting the intrasite dipole mode
as explained in reference [51].

The atoms also experience an external harmonic con-
finement m(2πνE1,2)2x2/2 along the lattice axis, provided
by the hybrid trap. Using one or two dipole beams for
the hybrid trap, we have the possibility to change the fre-
quency of this extra confinement by slightly more than an
order of magnitude. We perform experiments in two differ-
ent configurations: one with a frequency νE1 = 4 Hz (sin-
gle dipole beam configuration) and one with a frequency
νE2 = 50 Hz (crossed dipole beam configuration). There is
an extra frequency scale originating from the optical lat-
tice. We evaluate it through the harmonic expansion of the
lattice potential about its minima: νcl = hs

1/2
0 /(2md2) '

14 kHz for s0 = 3. The ratio of the strength of the external
confinement to that of the lattice therefore varies in our
experiment from (νE/νcl)2 = 8× 10−8 to 1.3× 10−5.

To engineer the phase and amplitude of the lattice,
we use a cascade of Acousto-Optic Modulators. The
15 Watts single mode laser used for the optical lattice is
first diffracted by an Acousto-Optic Modulator (AOM0),
and then split into two beams having the same power.

1 In practice, it means that we can set an upper bound on the
temperature on the order of 10 nK.

2 EL = 4ER where ER = h2/(2mλ2) with λ = 2d is the recoil
energy associated to the absorption of a single photon from the laser
producing the lattice.

Each beam is subsequently diffracted by an AOM before
entering into the cell chamber. Those two latter AOMs
(AOMs1,2) are driven by two phase-locked synthesizers
that imprint their relative phase on the laser light. The
modulation amplitude, ε(t), is realized by tuning the RF
power of the AOM0 while the phase control on θ(t) is
achieved by an appropriate pre-programming of the syn-
thesizers that drive AOMs1,2.

3 Experimental spectra

For a BEC adiabatically loaded into a static optical lat-
tice V0,0(x), the wave function lies in the ground state
band. Once the modulation is switched on, interband tran-
sitions can occur. Phase and amplitude modulations do
not obey the same selection rules for the transfer from
a band of index n to n′ [25,52] (see Appendix A). For
phase modulation (θ(t) = θ0 sin(ωt)), the allowed tran-
sitions at the center of the Brillouin zone (k = 0) are
the following: transition between bands with opposite par-
ity (n = 1 → n = 2, n = 1 → n = 4, . . .) through
1-phonon transitions, and transition between bands with
the same parity through a 2-phonon process. For ampli-
tude modulation (ε(t) = ε0 sin(ωt)), only 1-phonon tran-
sitions between bands of identical parity are allowed. We
stress that those selection rules are only valid for k = 0
and for a potential having a discrete translational sym-
metry. In Section 4, we provide a direct measurement
of the promotion of atoms to excited bands for non-zero
quasi-momenta despite a vanishing coupling at k = 0 (see
Appendix A).

As illustrated in Figure 1, the selection rules can be
observed directly on the experimental results. In such an
experiment, we load the BEC into an optical lattice of
depth s0 by ramping up progressively the laser intensity
in 30 ms [50,51]. The modulation is switched on 2 ms after
this adiabatic loading and lasts 1–5 ms for phase mod-
ulation and 3–15 ms for amplitude modulation. All con-
finements are subsequently turned off and an absorption
image is taken after a 25 ms time-of-flight. For the modula-
tions, the lattice depth modulation is ε0 = 0.06 for ampli-
tude modulation and the maximum shift of the position of
the lattice is 0.03 d for phase modulation, i.e. θ0 = 0.03π
(θ0 = π corresponds to a maximum shift of d). The exper-
iment is repeated for many modulation frequencies in the
range of interest for a given lattice depth, thus realizing a
scan in frequency around the expected interband transi-
tions. The concatenation of those pictures is represented
in Figures 1b and 1c for amplitude and phase modulation
respectively. Note that all the experiments whose results
are shown in Figure 1 have been performed in the presence
of an external confinement of frequency νE2 = 50 Hz.

The images taken after the time-of-flight reveal the
Fourier space components of the wave function. In the
absence of excitation, we simply recover the well-known
diffraction pattern of a BEC associated to a periodic struc-
ture of lattice spacing d and that exhibits peaks separated
by h/d [53]. Even for the deepest lattice depth investigated
in this article (∼10EL), the diffraction peaks of the inter-
ference figure obtained after a long time-of-flight remain
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Fig. 1. (a) Summary of the resonances observed experimen-
tally as a function of the lattice depth s0 (normalized to
the lattice characteristic energy EL) for phase (blue squares)
and amplitude (black triangles) modulations. The blue solid
(resp. black dashed) line corresponds to the allowed transitions
with 1 or 2 phonons for phase (resp. amplitude) modulation.
These lines are directly inferred from the band structure of
the bare lattice at zero quasi-momentum k = 0. The two open
red squares correspond to observed excitations through phase
modulation, but at frequencies corresponding to an a priori
forbidden line for phase modulation. All experiments have
been performed in the presence of an external confinement
νE2 = 50 Hz. (b) Sample set of experimental data for ampli-
tude modulation (ε0 = 0.06) for a lattice of normalized depth
s0 = 2.1. Left panel: each line of the image corresponds to
an experiment performed for a given modulation frequency
applied during 15 ms and subsequently imaged after a 25 ms
time-of-flight. The experiment is repeated for a modulation
frequency ranging from 2 to 40 kHz. Right panel: evolution of
the zeroth order diffraction population as a function of the
modulation frequency. (c) Similar experimental set of data for
phase modulation (θ0 = 0.03π, modulation duration 5 ms) in
a lattice of depth s0 = 1.7. The small peak at ∼13 kHz corre-
sponds to an a priori forbidden line; the two other peaks are
accounted for with a 1-phonon line.

very well separated [54]. For resonant excitations, atoms
acquire a larger energy which results in a depletion of the
zeroth order of the diffraction pattern and a concomitant
increase of the populations of the higher orders.

To process those images, we extract line by line the popu-
lation in each diffraction order and infer from the depletion
of the zeroth order the resonance frequencies: we determine
the center of each zeroth order depletion structure (around

14 and 35 kHz in Fig. 1b for instance) using a Gaussian fit.
We find a good agreement between the experimental values
and the ones calculated from the band structure spectrum
for zeroquasi-momentum(k = 0)as illustrated inFigure1a.
We also observe directly the selection rules. Indeed, only
1-phonon lines are observed for amplitude modulation while
one and two phonon lines can be excited by phase modula-
tion. Note that, at low depth (1.5 and 1.7EL), we get an exci-
tation for the phase modulation whose frequency coincides
with an a priori forbidden line for phase modulation (see
open red squares). This result arises from a first effect of the
external confining potential on the excitations: by breaking
the translational symmetry, the external confinement weak-
ens the selection rules for phase modulation at low depth.

To investigate in detail the effect of the external con-
finement, we focus on specific interband transitions. In
Figure 2, we have represented two different sets of spec-
trum data. The lattice depth and amplitude modulation
have been chosen to isolate a single line in the consid-
ered range of frequencies. Figures 2a and 2b focus on
the 1-phonon line from band 1 to 2 for phase modula-
tion (s0 = 3.1, θ0 = 0.03π, duration of the modulation
1 ms, ν12 = 12.6 kHz) and Figures 2c and 2d on the second
1-phonon line from band 1 to 5 for amplitude modulation
(s0 = 3, ε0 = 0.06, duration of the modulation 10 ms,
ν15 = 38.9 kHz). The experimental results are compared
to numerical simulations of the 1D Gross-Pitaevskii equa-
tion (see Appendix B). The simulations, performed under
the same conditions than the experiment, give access to
the total energy, plotted as a function of the modulation
frequency for the same amplitude of modulation as the
one used in experiments. We therefore do not compare
strictly speaking the same quantities. However, those two
quantities are expected to be closely related.

For phase modulation (Figs. 2a and 2b) the 1-phonon
line (1→ 2, 12.6 kHz) is excited and appears to be essen-
tially immune to the variation of the external confine-
ment equal to νE1 = 4 Hz in Figure 2a and νE2 = 50 Hz
in Figure 2b. This result was expected since this line is
associated to the excitation of the intrasite dipole mode.
Indeed, phase modulation amounts to moving back and
forth the position of the sites, it is therefore expected that,
for the appropriate frequency, such an excitation drives
an oscillatory motion of the center of mass of the wave
function inside each site. This interpretation, confirmed
by the numerics, provides an explanation for the robust-
ness of this 1-phonon line against both interactions and
confinement.

In contrast, the second 1-phonon line for amplitude
modulation is spectrally broadened when the external con-
finement is stronger (compare Figs. 2c and 2d). When the
external longitudinal confinement is increased, the wave
function tends to localize over a smaller number of sites.
The atomic density in each site is consequently increased,
and the wave function inside each site departs more and
more from the single Bloch state k = 0. The condensate
therefore spreads over a larger domain of k 6= 0 quasi-
momentum components [55]. This spreading is directly
probed by the resonant modulation and explains the
observed increase of the linewidth. In the numerics, the
strength of the interactions is accounted for through a
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Fig. 2. Spectra. Experimental data corresponding to the nor-
malized populations in high momentum orders (left) and total
energy obtained from numerical simulations (right) as a func-
tion of the modulation frequency. Simulations performed with
a realistic interaction strength (β ' 0.4) are represented by
a solid line. Numerical simulations performed in the absence
of interactions are represented by the dashed line. (a) and
(b) reveal the 1-phonon line from band 1 to 2 obtained for
phase modulation; the experimental parameters are s0 = 3.1,
θ0 = 0.03π, and the duration of the modulation is 1 ms.
(c) and (d) reveal the 1-phonon line from band 1 to 5 observed
for amplitude modulation; the experimental parameters are
s0 = 3, ε0 = 0.06, and the duration of the modulation is 10 ms.
(a) and (c) ((b) and (d)) correspond to an external confinement
of frequency νE1 = 4 Hz (νE2 = 50 Hz).

dimensionless parameter β. For our experimental parame-
ters, β ' 0.4 is chosen to match the size of the condensate

measured in the experiment. To distinguish the contribu-
tion due to interactions and confinement, we have added
in Figure 2 the results of numerical simulations performed
on a wave function in the presence (solid line) and in
the absence (dashed line) of interactions. By including
both interactions and confinement in the numerics, we get
numerical results that are consistent with the experimen-
tal observations.

4 Non-zero quasi-momentum excitations
and multiphonon processes

We now focus on a more detailed excitation spectroscopy,
including non-zero quasi-momentum transitions through
one and two phonon processes. After such an excitation,
the semiclassical local velocity is finite and given by the
slope of the energy band:

v = vL
∂E

∂k
, (2)

where vL = h/md is the characteristic velocity associ-
ated to the lattice, E is the energy normalized to EL

and k the wave vector normalized to kL/2 = mvL/2~.
For instance, the transition from band 1 (ground state) to
band 3 (point A1 of Fig. 3c) yields a maximum velocity on
the order of a few hundreds of µm s−1. Interestingly, those
velocities remain below the sound velocity (estimated to
3 mm/s for our parameters [56,57]) and therefore do not
deposit energy into the condensate because of the Lan-
dau superfluidity criterium. The size of the condensate
being on the order of 150µm for an external confinement
of frequency νE2 = 4 Hz, one shall wait for a very long
time, a fraction of a second, to see in position space the
excited atoms going out from the condensate. To over-
come this limitation, we use the band mapping technique
which amounts to accelerate the excited atoms. It con-
sists in decreasing adiabatically the lattice intensity after
the modulation [58–60]. As a result, atoms lying on the
first band (ground state) have a velocity ranging from 0
to vL/2, those on the second band a velocity ranging from
vL/2 to vL, and on the nth band a velocity ranging from
(n − 1)vL/2 to nvL/2 [26]. With this mapping between
velocity and band number, we can identify the different
kinds of excitation including the excitation through the
absorption of two phonons. As a result of this adiabatic
transformation, the atoms promoted by the modulation to
higher bands are accelerated and can collide in a dissipa-
tive manner with the BEC. However, we do not see heating
on the timescale over which the experiment is performed,
and thus no evidence for the decay mechanism discussed
in references [38–42].

We have carried out such an experiment with an optical
lattice of depth s0 = 9 under an amplitude modulation,
in the presence of an external confinement of frequency
νE2 = 4 Hz. In this experiment, the modulation time is
15 ms and the amplitude of modulation is large: ε0 = 0.23.
As a result, we observe not only the allowed band tran-
sition at k = 0 but also the ones at k 6= 0 that occur

https://www.epjd.epj.org
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Fig. 3. (a) Sketch of the experimental procedure including the
band mapping technique after the amplitude modulation of
the optical lattice. (b) In situ experimental images taken after
applying the procedure (a) for different values of the frequency
of modulation. The amplitude modulation experiment has been
here carried out for a lattice of depth s0 = 9 in the presence
of an external confinement of frequency νE1 = 4 Hz (c) Band
structure associated with this lattice depth. The letters refer
to the transitions between the ground state and the excited
bands. The number indicates the number of phonons absorbed
in the corresponding excitation process. (d) Populations of the
excited atoms corresponding to a transfer to bands 3 (A), 4
(B), 5 (C) and 6 (D) as a function of the modulation frequency.
The colored areas indicate the 1 and 2-phonon transitions on
the whole Brillouin zone.

through 2-phonon transitions. Once the excitation is per-
formed, we decrease the lattice and let the atoms evolve
in the presence of the external confinement for 30 ms (see
Fig. 3a). This holding time in the guide is smaller than
the quarter of period (∼65 ms) associated to the underly-
ing confinement. To directly access the mapping between
band number and position, the images are taken without
any time-of-flight. Results for each modulation frequency
are summarized in Figure 3b.

We have identified the excited bands using letters A, B,
C and D followed by a number 1 or 2 denoting the number
of phonons involved in the excitation process (see Fig. 3c).
For instance, A1 corresponds to the 1-phonon transition
from band 1 to 3, whileA2 refers to the 2-phonon transition
between the same bands. We indeed observe that A1 and
A2 packets belong to the same range of velocities. The same

conclusion holds for C1 and C2 between bands 1 and 5.
The distance over which the packets propagate follows the
expected hierarchy: atoms from packet A (band 3) have
traveled over a shorter distance than atoms from packet B
(band 4), and those of B over a shorter distance than those
of packetC (band 5) andD (band 6). This confirms the effi-
ciency of the mapping procedure.

Figure 3d provides the populations ΠA, ΠB and ΠC/D

in the excited bands as a function of the modulation fre-
quency extracted from the image Figure 3b. In practice,
the populations Πi pertain to different velocity classes.
To determine them as a function of the modulation fre-
quency, we process each image in the following manner: we
extract the maxima of all visible atomic clouds, and inte-
grate the image on areas of width 60 pixels about them.
This procedure allows us to take into account the dis-
placement of the atoms due to their velocity. The colored
areas indicate the transition frequencies associated to the
1 and 2-phonon lines from the ground state band to the
excited bands over the whole Brillouin zone. Interestingly,
we recover that the 2-phonon lines (for A, C and D) have
a width twice smaller than the 1-phonon line3. We get
a good understanding of the spectra of Figure 3d based
on the 1 and 2-phonon lines. However, the experimental
widths for the 1 and 2 phonon A transition turn out to be
larger than expected. We attribute this specificity to the
large amplitude modulation which tends to enlarge the
lines. The method used to extract the populations is not
very precise due to non-adiabatic effects near the edges of
Brillouin zone, an effect all the more important that the
gap is small (for instance between bands 5 and 6). This
is a well known limitation of the band mapping technique
[61]. It is also delicate to extract the exact velocity with
a reasonable accuracy since we do not know exactly at
which moment atoms are promoted to the excited band
during the 15 ms modulation time.

In conclusion, we have investigated both experimentally
and numerically the excitation of atoms in an optical lat-
tice whose phase or amplitude is modulated. We have
observed the selection rules and discussed their validity
domain. Our study highlights the role of both the confine-
ment and the interactions in the linewidths of the spectra.
The band mapping technique has been used to identify
non-zero quasi-momentum excitations, and revealed one
and two phonon transitions.

This work was supported by Programme Investissements
d’Avenir under the program ANR-11-IDEX-0002-02, reference
ANR-10-LABX-0037-NEXT, and the research funding grant
ANR-17-CE30-0024-01. M.A. acknowledges support from the
DGA (Direction Générale de l’Armement).

3 The width of a given excitation line when it spans a band
depends on the number of phonons used to excite it. Indeed, let’s
assume that with a 1-phonon line we span an interval in frequency
ranging for instance from ν1 to ν2, so of width ∆ν1ph = |ν2 − ν1|.
When we span the same interval with 2 identical phonons each
phonon has a frequency that varies from ν1/2 to ν2/2. As a result,
the width of the corresponding 2-phonon line is ∆ν2ph = |ν2−ν1|/2.
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Appendix A: Selection rules

The interband transition probability is proportional to the
square modulus of the matrix element

δVnn′kk′(t) = 〈ψn′,k′ | (Vε,θ(x, t)− V0,0(x)) |ψn,k〉, (A.1)

where {|ψn,k〉} are the Bloch states, n is the band index
(n = 1, 2, . . .) and k the quasi-momentum. Bloch states
are usually rewritten in terms of the periodic Bloch func-
tions, un,k(x), as ψn,k(x) = eikxun,k(x) with un,k(x+d) =
un,k(x). The matrix element (A.1) vanishes as soon as
k 6= k′, because of the symmetries of the modulation
potential and the properties of the Bloch functions.

At the center of the Brillouin zone (k = 0), phase and
amplitude modulations do not obey the same selection rules
for the transfer between bands of index n and n′ [25,52].

Consider a phase-modulated optical lattice (ε(t) = 0
and θ(t) = θ0 sin(ωt)), the lattice potential reads

V0,θ(x, t) = − V0

2
− V0

2

{
cos
(

2πx
d

)
J0(2θ0)

+ 2 cos
(

2πx
d

) ∞∑
p=1

J2p(2θ0) cos(2pωt)

− 2 sin
(

2πx
d

) ∞∑
p=0

J2p+1(2θ0)

× sin((2p+ 1)ωt)
}
, (A.2)

where Jp(x) is the first kind Bessel function of order p.
We first notice that the phase modulation renormalizes
the depth of the lattice from V0 to V0J0(2θ0). However,
for the amplitude of the phase modulation, θ0, consid-
ered in this article, J0(2θ0) ' 1, and this renormalization
is negligible4. As a result, the reasoning for the transition
between bands can be performed on the bare lattice (with-
out modulation). In practice, only the first orders play a
role since Jp(x) ∼ xp when x is about zero.

For a homogeneous lattice, the Bloch functions un,0(x)
and un+1,0(x) of two successive bands at k = 0 have oppo-
site parities. The last term of equation (A.2) is responsible
for a non-zero matrix element between those two succes-
sive Bloch functions:

〈un,k=0|V0,θ(x, t)|un+1,k=0〉 6= 0. (A.3)

The corresponding interband transition is therefore
allowed as a 1-phonon process. Interestingly, the matrix
element between bands having the same parity (still at
k = 0) does not vanish:

〈un,k=0|V0,θ(x, t)|un+2,k=0〉 6= 0.

4 The expansion of the zeroth order Bessel function about zero
reads J0(x) = 1 − x2/4 + O(x4). For θ0 = 0.03π, we get J0(2θ0) '
0.9911.

Fig. 4. Coupling strengths |δV12kk|2 (solid lines) from band
1 to 2 and |δV13kk|2 (dashed lines) from band 1 to 3 for
(a) phase modulation and (b) amplitude modulation (lattice
depth s0 = 3 in units of EL (see text and for amplitude
modulation, we define the coupling strength between bands
n and p as the matrix element Vnp = |〈n, k| cos2(πx/d)|p, k〉|2
where |n, k〉 are the Bloch state, and for phase modulation as
Vnp = |〈n, k| sin(2πx/d)|p, k〉|2 where |n, k〉).

The first contributing term scales as cos(2ωt) revealing
the underlying 2-phonon process.

As a result, the phase modulation enables 1-phonon
transitions to bands with opposite parity (n = 1→ n = 2,
n = 1 → n = 4, . . .), while the transition to bands with
the same parity is allowed through a 2-phonon process.

For amplitude modulation (ε(t) = ε0 sin(ωt)) the tran-
sition strength is given by the matrix element of the mod-
ulating term ε0 cos2(πx/d) between the Bloch functions.
Only 1-phonon transitions between bands of identical par-
ity are therefore allowed. It is important to note that those
selection rules are only valid for k = 0 and for a potential
having a discrete translational symmetry. In Figure 4, we
represent the coupling strengths for phase and amplitude
modulation that connects the ground state to the first two
excited states as a function of the quasi-momentum k5.
The 1-phonon selection rules with a vanishing coupling at
k = 0 are clearly visible: the excitation of the first excited
band is prohibited for amplitude modulation but allowed
for phase modulation, and vice versa for the second excited
band. However, they break down for k 6= 0. In practice,
when a Bose Einstein condensate is loaded into the low-
est band it is not uniquely projected on k = 0, but has
also components with the same weight on −k and k with
k 6= 0.

Appendix B: Numerical simulations

The numerical simulations of the 1D time-dependent
Gross-Pitaevskii equation are performed using the
GPELab Toolbox [62,63]. In practice, we solve the dimen-
sionless equation

i
∂ψ

∂t̃
=
[
−∆ + ω̃2

EX
2

2
− s̃(t̃) cos2

(
πX

4
+ θ̃(t̃)

)
+ β|ψ|2

]
ψ (A.4)

with X = 4x/d the dimensionless position and β a dimen-
sionless parameter which characterizes the strength of the

5 For amplitude modulation, we define the coupling strength
between bands n and p as the matrix element Vnp =
|〈n, k| cos2(πx/d)|p, k〉|2 where |n, k〉 are the Bloch state, and for
phase modulation as Vnp = |〈n, k| sin(2πx/d)|p, k〉|2 where |n, k〉.
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Fig. 5. Numerical results. The total energy associated with the
Gross-Pitaevskii equation after the modulation is plotted as a
function of the frequency of modulation. The numerics have been
performed for an optical lattice of depth s0 = 4.86 for phase
(a) and amplitude (b) modulations (ω̃ = 2π × 6.55 kHz, ampli-
tudes of the modulations θ0 = 0.03π and ε0 = 0.04), in the pres-
ence of an external confinement of frequency νE = 13.8 Hz. The
solid line corresponds to simulations performed in the presence
of repulsive interactions of strength β = 0.8, and the red dashed
line refers to similar simulations but in the absence of interac-
tions (β = 0). The 1 and 2-phonon transitions inferred from the
band structure are represented by black disks.

atomic interactions [50]. The dimensionless time is nor-
malized to t̃ = ω̃t with ω̃−1 = md2/(16~) = 24.3µs for our
parameters, ω̃E = 2πνE/ω̃, and s̃0 = π2s0/8. In practice,
we first determine the ground state through an imaginary
time evolution for the static lattice potential of depth s0.
We then use this state as an initial condition to run the
evolution of the wave function under the time-dependent
lattice potential (Eq. (A.4)).

The numerical simulations discussed in this appendix
have been carried out for both phase and amplitude mod-
ulation with amplitudes of modulation close to that used
in experiments (ε0 = 0.04 and θ0 = 0.03π), in the presence
of an external confinement of frequency νE = 13.8 Hz. In
the main text, we have shown the influence of the confine-
ment on the spectral lines. In the following, we investigate,
for a fixed external confinement, the influence of the inter-
action strength β (see Fig. 5).

For phase modulation (see Fig. 5a), comparing the
β = 0 and β = 0.8 energy spectra, we find that both the
2-phonon transition at ω/ω̃ ' 2 and the 1-phonon

transition at ω/ω̃ ' 2.4 are unaffected by interactions.
The interactions modify the other lines. For instance, the
1-phonon transition on the forbidden line at ω/ω̃ ' 4 is
washed out, or the 1-phonon transition on the 1–4 line
(ω/ω̃ ' 6.8) increases significantly and acquires a reduced
width. At first sight, it may appear surprising that inter-
actions yield a narrowing effect on some lines. The reason
lies in the homogeneity of the population in each site.
Indeed, in the absence of interactions, the BEC occu-
pies only ten sites approximately while with a sufficient
amount of repulsive interactions (Thomas Fermi regime),
it spreads over a few hundreds of sites. As a result, in the
presence of interactions, the BEC is more delocalized and
thus closer to a translational invariant system with well
defined bands. Excitation lines are consequently much bet-
ter defined.

As expected from the parity argument, the energy spec-
trum for amplitude modulation (see Fig. 5b) exhibits
lines with opposite selection rules for 1-phonon lines as
compared to phase modulation. Similarly to the phase
modulation results, we get a transition whose strength
is strongly affected by interactions (1-phonon transition
from band 1 to 5).
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Phys. Rev. Lett. 92, 130403 (2004)
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