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Quasiforbidden two-body Förster resonances in a cold Cs Rydberg gas
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Cold Rydberg atoms are known to display dipole-dipole interaction-allowed resonances, also called Förster
resonances, which lead to an efficient energy transfer when the proper electric field is used. This electric field
also enables resonances, which do not respect the dipole-dipole selection rules under zero field. A few of
these quasiforbidden resonances have been observed but they are often overlooked. Here we show that in cold
133Cs atoms there is a large number of these resonances that display a significant transfer efficiency due to
their strong interactions, even at low electric field. We also develop a graphical method enabling us to find all
possible resonances simultaneously. The resulting dramatic increase in the total number of addressable resonant
energy transfers at different electric fields could have implications in the search for few-body interactions or
macromolecules built from Rydberg atoms.
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I. INTRODUCTION

Resonant energy transfer in Rydberg atoms is well known
to enhance two-body interactions between adjacent atoms [1],
and is also called Förster resonance in analogy with the
biological process known as fluorescence resonance energy
transfer (FRET). These kinds of resonances have been studied
to a great extent in Rydberg atoms originally in Refs. [1,2]
and for different species in high electric fields [3,4]. They
continue to be of interest [5–11] in the study of dipole
blockade [12–16] and its induced entanglement [17,18], but
also in studies on many-body [19] or more recently few-
body [20,21] interactions, or even in an atom interferom-
eter [22]. The dipole-dipole interactions between Rydberg
atoms are also the basis of proposed approaches to realize
quantum gates [23–26] or for the formation of novel long-range
molecules [27–30].

While dipole-allowed Förster resonances have been studied
in many different species, only a few quasiforbidden reso-
nances have been observed in sodium and potassium [3,4].
These resonances exist in presence of an external static electric
field leading to some coupling between Rydberg states in
the transition dipole matrix, and where the eigenstates of the
dipole-dipole Hamiltonian are no longer the pure eigenstates
of the system. Then the dipole-dipole selection rules apply
only partially, allowing the presence of several quasiforbidden
two-body Förster resonances in addition to the dipole-allowed
two-body Förster resonance(s). For instance, one specific
resonance has been used in cesium to observe a four-body
interaction [20]. These additional resonances could be of
interest to increase the number of addressable resonances for
possible quantum gates, for the creation of molecules from
Rydberg atoms or for all applications based on few-body
interactions. Moreover, these resonances, if not properly taken
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into account, could modify the results of the previously
described processes based on the dipole-allowed resonances.
In addition, these resonances could introduce addressable
resonances whenever no dipole-allowed resonance exists, for
instance in cesium for n > 42 or when starting from an initial
ns state.

Within the present work, using cold 133Cs atoms excited
to Rydberg states, we show the presence of a large number
of quasiforbidden resonant energy transfers at low electric
field, where we can identify each resonance and compute their
dipole-dipole couplings. To determine their resonant Stark
field, we apply a graphical method, which is well suited to
predict resonances in the vicinity of the multiplicity and which
is based on a combination of two Stark diagrams to solve the
resonance condition.

II. DIPOLE-DIPOLE INTERACTIONS

We consider two atoms A and B, separated by a distance
Ru, with u a unit vector, and originally both in a given
Rydberg state |r2〉. We also take into account two other
Rydberg states |r1〉 and |r3〉, almost equally separated from
the initial state. We then define the two-atom state basis
as |r1r3〉 = 1/

√
2(|r1〉A|r3〉B + |r3〉A|r1〉B), sketched in Fig. 1.

The dipole-dipole interaction can couple the starting two-atom
state |r2r2〉 with other states, for instance |r1r3〉, and is then
described by [31]:

V̂dd = 〈r2r2|Ĥdd|r1r3〉

= 1

4πε0

μ̂r1r2 · μ̂r2r3 − 3
(
μ̂r1r2 · u

)(
μ̂r2r3 · u

)

R3
, (1)

where V̂dd is the dipole-dipole interaction, Ĥdd the associated
Hamiltonian, ε0 the electric vacuum permittivity, μ̂r1r2 =
〈r1|μ̂|r2〉, and μ̂r2r3 = 〈r2|μ̂|r3〉 the transition dipole matrices
between the involved atomic states with μ̂ the electric dipole
moment operator. Due to selection rules on the angular
part of the zero-field Rydberg wave functions and on parity
conservation, the dipole moment operator introduces the
selection rules �l = ±1 and �mj = 0, ± 1 in the zero-field
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FIG. 1. Single-atom basis (left) and two-atom basis (right) for
the description of interactions between atoms A and B having three
Rydberg states |r1〉, |r2〉, and |r3〉.

Rydberg states basis, with l the orbital quantum number and
mj the second total angular momentum quantum number.

In general, |r2r2〉 and |r1r3〉 present an energy mismatch
of 2� and the dipole-dipole interaction turns into an effective
van der Walls interaction. The energy mismatch �, also called
Förster defect, is defined by � = E12 − E23 with Eij the
energy difference between the involved Rydberg levels (see
Fig. 1). In the rare degenerate case or when an electric field
is used to Stark shift the levels into resonance, a strong
dipole-dipole interaction is restored between the two atoms
and a resonant energy transfer occurs from |r2r2〉 to |r1r3〉. It
can also be seen as a mutual exchange of excitation between
the two atoms. The resonance condition is then expressed as
follows, with Ei the energy of the state i:

(
Er3 − Er2

) − (
Er2 − Er1

) = 0 ⇔ � = 0. (2)

A well-known set of allowed two-body Stark-tuned Förster
resonances in 133Cs is between np and ns states, as shown on
the Fig. 2 and expressed as:

2 × np ↔ ns + (n + 1)s, (3)

where n is the principal quantum number and s, p denote the
orbital quantum numbers. Those allowed resonances give for
instance a dipole-dipole coupling of 112 MHz at 1 μm for the

FIG. 2. Energy levels involved in the allowed two-body Förster
resonance, 2 × np ↔ ns + (n + 1)s, with its population transfer
during the Förster resonance from the initial states (in red) to the
final states (in green).

process of Eq. (3) with 28p3/2mj = 3/2 as the initial state,
and 210 MHz at 1 μm with 32p3/2mj = 3/2.

In presence of a static electric field, the orbital quantum
number l is no longer a good quantum number even if we will
still use it as a convenient and unique way to label states. With
a classical field F, each pair of states |r1〉 and |r2〉 satisfying
�l = ±1 is coupled due to the Stark effect [32]:

〈r1|ĤF|r2〉 = −μ̂r1r2 · F (4)

with ĤF the Stark Hamiltonian. The new eigenstates then
contain a combination of l states instead of pure states.
Then the selection rule on the orbital quantum number is
relaxed and transitions for any �l can be addressed with a
strength depending on the l-mixing coupling. As an example to
compare with the allowed Förster resonances, a quasiforbidden
resonance such as

2 × 28p3/2mj = 3/2 ↔ 28s1/2mj = 1/2 + 25f7/2mj = 1/2

reaches a dipole-dipole coupling of 6.65 MHz at 1 μm.
The eigenstate energies Ei can be computed as a function

of the applied electric field F in a so-called Stark map, as
shown in solid black in Fig. 3 in the upper vicinity of the
28p3/2mj = 3/2 state and where we only plot the absolute val-
ues |mj |. The l � 5 states in cesium are not degenerated with
the other states because of the so-called quantum defect [31,32]
originating from the interaction between the Rydberg electron
and the ionic core. Then at low values of the electric field, those
Rydberg states experience a quadratic Stark effect. On the
contrary, states with higher l are degenerated in the multiplicity
at low electric field and show a strong linear Stark effect. As
we will use this Stark map to identify our quasiforbidden
resonances, our numerical solution of the time-independent
Schrödinger equation takes into account only the second total
angular momentum quantum numbers |mj | � 5/2. In the
following, we will examine quasiforbidden resonances from
initial states with mj = 1/2 or 3/2 while the selection rule
�mj = 0, ± 1 is still preserved for dipole-dipole transitions.

In Fig. 3, we plot a graphical solution of the res-
onance condition occurring in a Förster resonance [see
Eqs. (2) and (3)]. We transform the resonance condition
2 × Er2 = Er1 + Er3 in Er1 = 2 × Er2 − Er3 and for the initial
state |r2〉 = |28p3/2mj = 3/2〉 we plot in dashed red the en-
ergy corresponding to 2 × Er2 − Er3 . The resonance condition
is then fulfilled at any energy crossing of solid black and dashed
red states. The resulting plot will be denoted as a resonance
map. The advantage of this graphical solution compared to
the usual pair state energy plots [33] lies in the simplicity
to locate the quasiforbidden resonances in the vicinity of
the multiplicity. Indeed when the energies of N states are
calculated, for a pair state energy plot a priori N2 curves are
necessary to verify all the possible resonances, while in our
graphical method only 2N curves are required. The basic idea
of the usual pair state energy plot is that only a small number
of resonances are present and only the authorized ones are
plotted. We also acknowledge the work in Ref. [34] where
a similar plot was used as we discovered during this paper
redaction.

At moderate electric fields, the strongest quasiforbidden
resonances appear when the initial state and one of the final
one fulfill the �l = ±1 selection rule. Therefore we will focus
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FIG. 3. Resonance map for the |r2〉 = |28p3/2mj =3/2〉 initial state. In solid black are plotted the eigenenergies Er1 vs the applied external
electric field F . In dashed red, we plot the energy corresponding to 2 × Er2 − Er3 to obtain a graphical solution of the resonance condition
occurring in a Förster resonance. Only the absolute values of |mj | are plotted. We emphasize the fact that the |r2〉 initial state curves in solid
black and in dashed red are superimposed. In green, we explicit the areas represented in Figs. 4 and 5.

on resonances from the initial p state with at least one s or d

final state as shown with light green triangles and blue circles
on Fig. 4 and with purple diamonds on Fig. 5. Those symbols
denote the multiple quasiforbidden Förster resonances, while
a thick orange cross indicates an allowed Förster resonance.

To get the Stark field of the allowed Förster res-
onance starting from the 28p3/2mj = 3/2 initial state,
we follow on Fig. 4 the dashed red curve la-
beled 28s1/2mj = 1/2 [corresponding to the energy
of 2 × E(28p3/2mj = 3/2) − E(28s1/2mj = 1/2)] until it
crosses the solid black curve representing the 29s1/2mj = 1/2
state at F = 20.91 V/cm. In the same way, we can identify
the three main groups of quasiforbidden Förster resonances
fulfilling the �l = ±1 condition for one of both final states.
For the first group of resonances, we follow on Fig. 4 the dashed
red curve labeled 28s1/2mj = 1/2 until it crosses the 25f7/2

manifold in solid black at F = 11.04; 11.60; 14.00 V/cm
for the mj = 1/2; 3/2; 5/2 states, respectively. Here only
states with a �mj = 0, ± 1 will be coupled in a dipole-
dipole transition, eliminating the transition to the mj = 7/2

state. In the same group of resonances, the dashed red
curve labeled 28s1/2mj = 1/2 crosses also the 25f5/2 man-
ifold in solid black at F = 11.64; 14.04; 20.38 V/cm for
the mj = 1/2; 3/2; 5/2 states respectively. If we continue
along the dashed red curve labeled 28s1/2mj = 1/2, we
encounter quasiforbidden Förster resonances crossing the
solid black 25g9/2, 25g7/2, 25h11/2, and 25h9/2 manifolds
around F ∼ 20 − 21; 20 − 24; 25 − 27; 26 − 27 V/cm re-
spectively. For the second group of resonances, we follow
on Fig. 4 the solid black curve labeled 29s1/2mj = 1/2
until it crosses the 24f7/2 manifold in dashed red at
F = 17.85; 19.03; 23.97 V/cm for the mj = 1/2; 3/2; 5/2
states respectively, and the 24f5/2 manifold in dashed red
at F = 19.06; 24.01; 32.58 V/cm for the mj = 1/2; 3/2; 5/2
states respectively. Then the solid black 29s1/2mj = 1/2 curve
also crosses the dashed red 24g9/2 and 24g7/2 manifolds
around F ∼ 31; 31.5 V/cm respectively. For the third group
of resonances, we follow on Fig. 5 the dashed red curve
labeled 26d5/2mj = 1/2 (the lowest state in the 26d5/2

manifold) until it crosses the 29p3/2 states in solid black at
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FIG. 4. Resonance map for the |r2〉 = |28p3/2mj = 3/2〉 initial
state in the vicinity of the 29s and 28s states. In solid black are
plotted the eigenenergies Er1 vs the applied external electric field F .
In dashed red, we plot the energy corresponding to 2 × Er2 − Er3 to
obtain a graphical solution of the resonance condition occurring in a
Förster resonance. Here the thick orange cross indicates the allowed
Förster resonance, the light green triangles and the blue circles show
the multiple quasiforbidden Förster resonances transferring atoms to
the 29s and 28s states respectively. Only the absolute values of |mj |
are plotted.

F = 30.42; 31.99 V/cm for mj = 3/2; 1/2 respectively. Sim-
ilarly, the labeled 26d5/2mj = 3/2 dashed red curve crosses
the 29p3/2mj = 3/2 state at F = 32.05 V/cm.

To sum up, the first quasiforbidden Förster resonances of the
groups detailed previously lead, for instance, to the population

FIG. 5. Resonance map for the |r2〉 = |28p3/2mj = 3/2〉 initial
state in the vicinity of the 28d and 26d states. In solid black are
plotted the eigenenergies Er1 vs the applied external electric field F .
In dashed red, we plot the energy corresponding to 2 × Er2 − Er3

to obtain a graphical solution of the resonance condition occurring
in a Förster resonance. Here the purple diamonds show the few
quasiforbidden Förster resonances transferring atoms to the 29p and
26d states. Only the absolute values of |mj | are plotted.

FIG. 6. (a) Experimental setup with a MOT in the center of four
metallic wire mesh grids used to apply electric fields with voltages up
to ±5 kV. Rydberg atoms are excited at the cross section of the three-
photon excitation lasers. The black dashed line defines the trajectory
taken by the ionized Rydberg atoms toward the MCP detector. (b)
Zoom on the excitation region at the laser cross section. (c) 133Cs
energy levels used for the Rydberg excitation.

transfers:

2×28p3/2mj = 3/2 ↔ 28s1/2mj = 1/2 + 25f7/2mj = 1/2

2×28p3/2mj = 3/2 ↔ 29p3/2mj = 3/2 + 26d5/2mj = 1/2.

In those resonance equations, shown as an example, we see a
transfer from a labeled p state to an f state (though transfers to
higher orbital quantum number are possible) or with a transfer
involving no change of the l state between the initial and final
states. Those resonances correspond to quasiforbidden Förster
resonances, which do not fulfill the �l = ±1 selection rule in
presence of a low electric field.

We also calculate the strength of the dipole-dipole coupling
for all the different quasiforbidden resonances found with the
graphical resolution. The calculation is realized in the frozen
gas regime (fixed atoms) [35], within the Born-Oppenheimer
approximation, and considering a possible fixed angle θ be-
tween the electric field axis and the interatomic axis. The total
angular momentum of the system must be conserved but as the
molecular rotational angular momentum can change, the sum
of the mj of the two atoms is not necessarily conserved [36].

FIG. 7. Time-of-flight signal from selective field ionization (at
Vioniz = 2630 V) to detect the np, ns and (n + 1)s signals on the
MCP where each state has been directly excited at an electric field
far from any Förster resonances.
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TABLE I. Summary of dipole-dipole coupling strength for quasiforbidden resonances starting from the 28p3/2mj = 1/2 state.

Final states 28s + 25f7/2m
′
j 28s + 25f5/2m

′
j 29s + 24f7/2m

′
j 29s + 24f5/2m

′
j

m′
j 1/2 3/2 1/2 3/2 1/2 3/2 1/2 3/2

Coupling at 1 μm (MHz) 12.25 8.95 10.4 7.7 15.5 9.98 12.45 7.05
Resonance (V/cm) 11.95 12.68 12.72 15.86 20.92 22.75 22.77 30.35

Final states 28s + 25g9/2m
′
j 28s + 25g7/2m

′
j 29p3/2m

′
j + 26d5/2m

′′
j

m′
j or (m′

j , m′′
j ) 1/2 3/2 1/2 3/2 (3/2, 1/2) (1/2, 1/2) (3/2, 3/2)

Coupling at 1 μm (MHz) 6.93 4.65 5.93 4.8 1.2 6.78 1.05
Resonance (V/cm) 21.55 21.9 21.9 23.18 27.37 29.09 29.34

TABLE II. Summary of dipole-dipole coupling strength for quasiforbidden resonances starting from the 28p3/2mj = 3/2 state.

Final states 28s + 25f7/2m
′
j 28s + 25f5/2m

′
j 28s + 25g9/2m

′
j

m′
j 1/2 3/2 5/2 1/2 3/2 5/2 1/2 3/2 5/2

Coupling at 1 μm (MHz) 6.65 10.3 14.05 0.81 0.7 0.55 5.15 5.15 7.35
Resonance (V/cm) 11.04 11.60 14.0 11.64 14.04 20.38 19.75 19.98 20.80

Final states 28s + 25g7/2m
′
j 28s + 25h11/2m

′
j 28s + 25h9/2m

′
j 29p3/2m

′
j + 26d5/2m

′′
j

m′
j or (m′

j , m′′
j ) 1/2 3/2 5/2 1/2 3/2 5/2 1/2 3/2 (3/2, 1/2)

Coupling at 1 μm (MHz) 0.11 0.29 0.7 3.05 6.45 8.95 0.17 0.33 2.6
Resonance (V/cm) 19.98 20.8 24.0 25.54 25.93 27.35 25.93 27.35 30.42

Final states 29s + 24f7/2m
′
j 29s + 24f5/2m

′
j 29s + 24g9/2m

′
j 29s + 24g7/2m

′
j

m′
j 1/2 3/2 5/2 1/2 3/2 5/2 1/2 3/2 1/2

Coupling at 1 μm (MHz) 9.0 12.45 15.05 0.64 0.59 0.26 3.9 7.25 0.17
Resonance (V/cm) 17.85 19.03 23.97 19.06 24.01 32.58 30.86 31.62 31.62

TABLE III. Summary of dipole-dipole coupling strength for quasiforbidden resonances starting from the 32p3/2mj = 1/2 state.

Final states 32s + 29f7/2m
′
j 32s + 29f5/2m

′
j 33p3/2m

′
j + 30d5/2m

′′
j

m′
j or (m′

j , m′′
j ) 1/2 3/2 1/2 3/2 (3/2, 1/2) (1/2, 1/2) (3/2, 3/2) (1/2, 3/2)

Coupling at 1 μm (MHz) 27.1 18.05 22.45 13.35 0.98 6.0 0.9 4.83
Resonance (V/cm) 8.2 8.7 8.7 10.4 4.45 4.78 4.83 5.22

TABLE IV. Summary of dipole-dipole coupling strength for quasiforbidden resonances starting from the 32p3/2mj = 3/2 state.

Final states 32s + 29f7/2m
′
j 32s + 29f5/2m

′
j

m′
j 1/2 3/2 5/2 1/2 3/2

Coupling at 1 μm (MHz) 29.0 22.5 26.8 0.8 1.03
Resonance (V/cm) 7.5 (or 7.44) [37] 7.86 9.25 7.87 9.26

Final states 33p3/2m
′
j + 30d5/2m

′′
j

(m′
j , m′′

j ) (3/2, 1/2) (1/2, 1/2) (3/2, 3/2) (1/2, 3/2) (3/2, 5/2) (1/2, 5/2)
Coupling at 1 μm (MHz) 1.73 0.05 4.18 0.08 7.55 0.16
Resonance (V/cm) 4.98 5.4 5.5 6.08 7.55 9.15
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We can thus compute the dipole-dipole interaction for all
the observed resonances. We then average the dipole-dipole
coupling strength over this angle θ and over the possible signs
of all initial mj while we sum the contribution of the possible
signs of all final mj , as they are degenerate in the electric field
and the corresponding resonances will perfectly overlap. To
compute this average, we assume a weak coupling regime for
which the observed transfer is proportional to the square of the
interaction strength. Tables I and II summarize the coupling
for resonances starting from the 28p3/2mj = 1/2 state and
28p3/2mj = 3/2 state respectively. Tables III and IV display
the same calculations for n = 32.

III. EXPERIMENTAL SETUP

We realize a magneto-optical trap (MOT), which is located
at the center of four parallel 60 mm by 130 mm wire mesh grids
of 80 μm thickness and 1 mm grid spacing [see Fig. 6(a)] [20].
In this MOT, cesium atoms are cooled down to 100 μK and
can be considered as frozen compared to the lifetime of the
Rydberg state (τrad ∼ 60 μs for 30p3/2 and τrad ∼ 21 μs for
30s1/2 [38]). The inner pair of grids is spaced by 1.88 ± 0.02
cm while the outer grids are 1.5 cm apart from the inner grids.
At the beginning of the experiment sequence, a small electric
field of several V/cm is applied on the inner grids.

We excite the atoms to Stark-shifted Rydberg states, nl,
using a three-photon transition [see Fig. 6(c)]. We start from
the MOT lasers and use two additional lasers to couple the
states: 6s → 6p → 7s → nl. The 6p → 7s step uses 10 mW
of a 1470 nm diode laser. A cw Ti:sapphire ring laser, providing
roughly 600 mW on the atoms at 785 nm and locked on an
ultrastable cavity, drives the 7s → nl transition. Those two
lasers are focused to 300 μm and 200 μm spot diameters
respectively and are perpendicularly overlapped in the atomic
sample [see Fig. 6(b)]. Those beams are switched on for
τimp ∼ 200 ns, at a 10 Hz repetition rate, by two different
acousto-optic modulators. We thus excite up to 105 atoms in
the nl state within a 200 μm diameter cloud having a typical
density of 1010 cm−3. We let the atoms interact via dipole-
dipole interaction during a delay of τdelay ∼ 1 μs after the
Rydberg excitation and realize a selective field ionization (SFI)
of the Rydberg atoms. We choose a short enough delay to avoid
resonance broadening due to electric field inhomogeneities
induced by ions created by Penning ionization and black-body
radiations. A high-voltage ramp is then applied on the inner
back grid, rising to Vioniz = 2.6; 1.35 kV for n = 28; 32 in
4 μs and ionizing the various Rydberg levels at different times.
After a flight of 210 mm from the center of the trapped cloud,
ions are detected by a microchannel plate (MCP) detector. The
amplitude of the field ionization pulse is chosen to optimally
isolate the np time-of-flight (TOF) signal from the other ns and
(n + 1)s signals [from Eq. (3)]. A typical TOF for all involved
states in the allowed Förster resonance at n = 28 is displayed
on Fig. 7 where each state has been excited independently
at an electric field far from any Förster resonance to avoid
any transfer. We use these TOF references to define temporal
gates corresponding to each state and compute the cross
talks between the different gates. During a measurement,
we only excite the atoms to the np3/2 states and extract the
state population from their temporal gates to determine the

fraction of total population in different channels (corrected
from their cross talks): ns, np3/2mj = 1/2, np3/2mj = 3/2,
and (n + 1)s. This analysis gives very accurate results on the
population transfer for dipole-allowed Förster resonances [20].
For quasiforbidden resonances, other states are created and
this analysis is no longer valid. An additional channel, the ion
gate, was initially used to quantify the number of ions created
before the field ionization, but it is used here to show atoms
that are in an upper level than the (n + 1)s. When atoms with
higher-energy states are created, they add up in the ion gate.
Their transfer is then generally underestimated. To get a more
precise transfer efficiency, we would need to record a specific
set of TOF references for each resonance. Nonetheless using
our state population analysis, we can identify the resonances
and estimate their relative amplitudes.

IV. QUASIFORBIDDEN FÖRSTER RESONANCES

Tuning the static electric field, two-body Förster resonances
can be scanned due to the Stark shift of Rydberg levels [3,4].
Those resonances are then detected by SFI since they produce
changes in the population of the different states monitored on
the TOF signals.

We plot in Fig. 8(a) the relative population of atoms
transferred into various gates: the 28s1/2mj = 1/2 gate (in
red), the 29s1/2mj = 1/2 gate (in blue), and in the ion
gate (in black) depending on the applied electric field, F ,
from atoms initially prepared in the 28p3/2mj = 1/2 state.
In order to determine the baselines, we take a reference
measurement at an electric field where no resonance is
expected, here at F = 19.8 V/cm. On this graph, the allowed
Förster resonance described below is expected and observed at
F = 19.05 V/cm:

2 × 28p3/2mj = 1/2 ↔ 28s1/2mj = 1/2 + 29s1/2mj = 1/2.

Another expected resonance at F = 18.3 V/cm is a three-
body process described in Ref. [21]. All other resonances are
quasiforbidden Förster resonances. Some of them concern a
transfer to 28s and another state with �l > 1:

2 × 28p3/2mj = 1/2 ↔ 28s1/2mj = 1/2 + 25fjm
′
j

2 × 28p3/2mj = 1/2 ↔ 28s1/2mj = 1/2 + 25gjm
′
j .

Other ones correspond to a transfer to 29s and 24f :

2 × 28p3/2mj = 1/2 ↔ 29s1/2mj = 1/2 + 24fjm
′
j .

For the resonances on Fig. 8, fj takes the values f7/2 and f5/2,
while gj is g9/2 or g7/2, and m′

j is 1/2 or 3/2.
In Fig. 9(a), we realize a similar measurement from atoms

initially excited in the 28p3/2mj = 3/2 state, with a reference
at F = 21.7 V/cm. We find most of the formerly described
resonances shifted in electric field. Indeed the 28p3/2mj = 3/2
state, higher in energy, requires a higher electric field to be
Stark shifted down to the allowed resonance. On this graph, the
following allowed Förster resonance is expected and observed
at F = 20.91 V/cm:

2 × 28p3/2mj = 3/2 ↔ 28s1/2mj = 1/2 + 29s1/2mj = 1/2,

while the three-body process is expected at F = 22.05 V/cm.
Among the formerly described quasiforbidden Förster
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FIG. 8. Quasiforbidden Förster resonances around the allowed Förster resonance 2 × 28p3/2mj = 1/2 ↔ 28s1/2mj = 1/2 + 29s1/2mj =
1/2 located at F = 19.05 V/cm. (a) Experimental measurement where all final states of the different resonances are tagged. Ion gate is not
included in the cross-talk correction so the mean baseline is not accurate. (b) Bar diagram representing the theoretical electric field resonance
positions. We emphasize that the bar amplitude codes the projection mj of the total angular momentum of the final state having J > 1/2.
Moreover we distinguish the ll+1/2 and ll−1/2 final states adding a frame.

resonances, an additional group of resonances toward the
labeled h states is also present

2 × 28p3/2mj = 3/2 ↔ 28s1/2mj = 1/2 + 25hjm
′
j .

For the different resonances on Fig. 9, fj takes the values f7/2

and f5/2, while gj is g9/2 or g7/2, hj is h11/2 or h9/2, and m′
j

ranges from 1/2–5/2.
All theoretical predictions of those resonances are repre-

sented on Figs. 8(b) and 9(b) as bar diagrams. They define
the locations in Stark field of Förster resonances thanks to
the graphical method presented in Sec. II (see Figs. 4, 5 and
Tables I–IV). Due to the large number of close resonances, we
choose to code the projection of the total angular momentum
quantum number mj in the height of the bars (for the final
states having a first total angular momentum quantum number
J > 1/2), i.e., in Fig. 8 the lower level represents mj = 1/2
and the higher level mj = 3/2, while in Fig. 9 the lower level
represents mj = 1/2, the intermediate level mj = 3/2, and the
higher level mj = 5/2.

From Figs. 8 and 9, we can see both allowed two-body
Förster resonances, which are saturated close to 25% on
each state ns and (n + 1)s, giving a total transfer of 50%.
This value is the expected saturation due to the random
distribution in distances between Rydberg atoms, leading
to a statistical average between pairs of atoms in np and
pairs in ns + (n + 1)s. The quasiforbidden Förster resonances
appear clearly on this spectrum with a maximum change
in the orbital quantum number from labeled p states to
h states. They show for a single resonance an estimated
non-negligible total transfer up to 30% with a large uncertainty

(see Sec. V), as only one of the two final states is correctly
detected with a transfer of 15%. We also note that while
this coupling is mainly due to dipole-dipole interactions
allowed by the electric-field-induced l mixing, the resonances
might contain additional dipole-multipole contributions [36],
which cannot be distinguished experimentally here. We find
those resonances close to the theoretical predictions, with a
discrepancy compatible with the uncertainty in the quantum
defects and in our field calibration (see Sec. V). In order
to identify some of them, the analysis of the TOF signal
shape was necessary to determine the resonance as discussed
in Sec. V.

Moreover, quasiforbidden Förster resonances are expected
in the vicinity of the allowed Förster resonance up to n = 32,
as shown on Figs. 10 and 11 where references are taken
at F = 5.6 V/cm and F = 6.8 V/cm. For higher n, the
quasiforbidden resonances are expected further apart from the
allowed resonance. At n = 32, the involved allowed Förster
resonances are described by:

2×32p3/2mj = 1/2 ↔ 32s1/2mj = 1/2 + 33s1/2mj = 1/2

2×32p3/2mj = 3/2 ↔ 32s1/2mj = 1/2 + 33s1/2mj = 1/2.

They are expected and observed at F = 6.89 V/cm and
F = 7.55 V/cm respectively, while forbidden resonances
from labeled p states to f states show a resonant coupling
up to roughly 8% in the 32s gate. We also see quasiforbidden
resonances similar to those seen on Fig. 5 which are described
by the population transfer:

2 × 32p3/2mj = 1/2 ↔ 33p3/2m
′
j + 30d5/2m

′′
j

023417-7



PELLE, FAORO, BILLY, ARIMONDO, PILLET, AND CHEINET PHYSICAL REVIEW A 93, 023417 (2016)

FIG. 9. Quasiforbidden Förster resonances around the allowed Förster resonance 2 × 28p3/2mj = 3/2 ↔ 28s1/2mj = 1/2 + 29s1/2mj =
1/2 located at F = 20.91 V/cm. (a) Experimental measurement where all final states of the different resonances are tagged. Ion gate is not
included in the cross-talk correction so the mean baseline is not accurate. (b) Bar diagram representing the theoretical electric field resonance
positions. We emphasize that the bar amplitude codes the projection mj of the total angular momentum of the final state having J > 1/2.
Moreover we distinguish the ll+1/2 and ll−1/2 final states adding a frame.

where m′
j and m′′

j take the values 1/2 and 3/2 in Fig. 10,
while in Fig. 11 m′′

j ranges from 1/2–5/2. Those resonances
experiencing no change in their l state show also a maximum
transfer efficiency of about 8% in the ion gate, corresponding
to atoms transferred in the d state.

FIG. 10. Quasiforbidden Förster resonances around the al-
lowed Förster resonance 2 × 32p3/2mj = 1/2 ↔ 32s1/2mj = 1/2 +
33s1/2mj = 1/2 located at F = 6.89 V/cm. Here is shown the
experimental measurement where all final states of the different
resonances are tagged. Ion gate is not included in the cross-talk
correction so the mean baseline is not accurate.

V. DISCUSSION ON THE INTERPRETATION
OF EACH RESONANCE

In order to identify the process involved in each resonance,
we examine very carefully the TOF signal in order to identify
each of the appearing Rydberg atom populations. In most

FIG. 11. Quasiforbidden Förster resonances around the al-
lowed Förster resonance 2 × 32p3/2mj = 3/2 ↔ 32s1/2mj = 1/2 +
33s1/2mj = 1/2 located at F = 7.55 V/cm. Here is shown the
experimental measurement where all final states of the different
resonances are tagged. Ion gate is not included in the cross-talk
correction so the mean baseline is not accurate.
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FIG. 12. TOF signal from SFI (at Vioniz = 2630 V) to detect the
np, ns and (n + 1)s signals where only the np states have been excited
at a quasiforbidden resonant electric field F = 23.1 V/cm (in green).
We compare it to the reference signal (in red) shown on Fig. 7 and
see some transfer into the ions, the (n + 1)s and ns gates. A lower
state seems also to be present in the latter gate.

cases, this information combined with the expected patterns of
the resonances enables their interpretation with no ambiguity,
although the (n − 3)f states mainly overlap with the initial
np state in the TOF signal. However, some situations are
more complex when they involve none of the expected s

state or when the resonances are very close. For instance, we
will discuss the case of the quasiforbidden Förster resonance
located at F = 23.1 V/cm on Fig. 9 where the following
energy exchange processes have been identified:

2 × 28p3/2mj = 3/2 ↔ 29s1/2mj = 1/2 + 24f7/2mj = 5/2

2 × 28p3/2mj = 3/2 ↔ 29s1/2mj = 1/2 + 24f5/2mj = 3/2.

Looking at the TOF signal on this resonance presented in
Fig. 12, we can recognize the main 28p state that has been
excited (in both red and green traces). On the green trace taken
at F = 23.1 V/cm, we identify the presence of transferred
atoms due to Förster resonance: in the 29s gate we see the
transferred 29s atoms, whereas in the 28s gate the atoms should
correspond to the 24f state [being the (n − 4)f state], which
ionizes partially in this gate. In addition, we clearly observe a
higher state in the ion gate, in comparison with the reference
states on Fig. 7. As we do not know precisely the TOF of
the 24f , not observable with our excitation from the 7s state,
there might also be an even lower-energy state than the 24f

state in the 28s gate in Fig. 12. It thus seems that a third process
occurs at this field, which was not anticipated in Figs. 4 and 5.
It could then involve states further in energy from the starting
28p state, such as in the following resonance, which occurs at
the same Stark field:

2×28p3/2mj = 3/2 ↔ 27f7/2mj = 1/2 + 25d5/2mj = 3/2.

However, if we assume this resonance to be strong enough to
be observed, we then expect to see other resonances involving
all the different mj but we do not observe them.

Another peculiar feature appearing on the Fig. 9 is the
presence of some signal in the ion gate at F = 19.4 V/cm
although no resonance is expected. When trying to identify

the resonance in a TOF measurement, no transfer was
observed. On other measurements not shown here, this signal
is not present. Moreover, this signal corresponds to a single
measurement point while resonances are generally broader. We
thus interpret this data as an unexplained noisy measurement.

As we see on Figs. 8 and 9, there is a discrepancy
between theory and measurements for some resonances. The
two main uncertainties in this comparison between theory
and experiment come from the quantum defect uncertainty
used for the calculation and the uncertainty of the applied
electric field in the experiment. The later is known at 1 or 2%,
depending on the electric field, which corresponds to 0.6 V/cm
at maximum in our measurements. Concerning the former,
some resonances (to the final states s + f and s + g) are
systematically observed at a lower electric field than expected,
which is coherent with the uncertainty of the quantum defects
used in the calculation.

On Figs. 8–11, we observe a residual baseline drift probably
due to slowly varying ionization path and residual black-body
radiation transfer. One of the limitations of our state population
analysis based on a cross-talk estimation lies in the fact that
it is realized at one specific electric field (where there is no
Förster resonance). Then when we change the electric field as
plotted in Figs. 8–11, the cross talks might be a bit different.
The first reason is that we are starting from a different initial
voltage for the ionization ramp, which might lead to a different
ionization path and then a different TOF shape for each of the
state. We try to avoid this problem by setting the voltage to
0 V before the start of the ionization ramp but there might be a
residual voltage. Then the second possible reason concerns the
black-body radiation ionization, which might have a different
efficiency depending of the applied electric field. Indeed by
changing the applied electric field, we change the l mixing
and allow then more transitions for the black-body radiations.
This leads to a slightly different state population depending
on the applied electric field, which translates to different cross
talks as we change the applied electric field.

In the comparison between the observed transfer efficien-
cies of the quasiforbidden resonances and their calculated
interaction strengths, most features are well reproduced. The
small differences should be ascribed to few experimental and
theoretical issues. First of all, because the gate analysis is
not precisely adapted to each state produced by the various
resonances, the measured transfers have an indetermination
very hard to evaluate. Indeed for most of the resonances, we
only detect correctly half of the final states (the s or the d

states) with an uncertainty coming mainly from the imperfect
cross-talk compensation between temporal gates. Then we
assume that the quasiforbidden resonances transfer the same
atom number in the second final states (the f,g,h, or the
p states respectively), leading to a quite large total transfer
efficiency uncertainty. A good example of this issue is shown
in Fig. 7 where even a mj state change modifies significantly
the TOF output. This issue is particularly important for states
as the (n − 3)f ones, which ionize mainly within the p gates.
The second issue playing a role within the calculated strengths
is the weak coupling assumption certainly not valid for the
strongest resonances. In addition, the average over all signs
of initial mj with equal weights might not be valid as the
experiment might generate an imbalance. Finally, we have not
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considered the role of the small but finite MOT magnetic field,
splitting the resonances by at most 10 mV/cm [11]. Within
our setup, such a splitting cannot be observed directly and its
role on the final transfer efficiency is not at all clear.

VI. CONCLUSION

To conclude, we have seen that in the vicinity of the
allowed two-body Förster resonance many quasiforbidden
two-body Förster resonances are also present. They show an
estimated total transfer up to 30% (taking into account both
final states), with a calculated dipole-dipole coupling around
10% of the dipole allowed resonance coupling. In presence
of a low electric field, the dipole-dipole coupling in those
quasiforbidden Förster resonances allow population transfer
with a change in the orbital quantum number from a labeled
p state to a labeled h state or allow transfer involving no
change of the l state between the initial and final states. We
can assume that at a higher field �l > 4 resonances due
to l mixing would appear as presented in Refs. [3,4]. We
have also elaborated a graphical resolution of the resonance
condition of Förster resonances, allowing to identify clearly
the position of the different quasiforbidden Förster resonances.
Then we calculated the dipole-dipole coupling strength for all
of the observed quasiforbidden resonances, which correspond
to their measured relative amplitudes.

When using the dipole-allowed Förster resonances for
quantum computation, those quasiforbidden resonances could
perturb the allowed resonance and should be taken into account
to determine the total interaction strength in presence of
an electric field. Moreover, those quasiforbidden two-body
Förster resonances could be of interest in the case of potential
processes requiring tunable interactions over a broad band of
electric field, such as in the search for few-body interactions
or to realize macromolecules built from Rydberg atoms.
Indeed, they increase dramatically the number of addressable
resonant energy transfers in the cesium atom with an efficiency
about 10% of the well-known dipole-allowed resonances. For
instance, it could increase the number of few-body transfer
cascades as demonstrated in Ref. [20].
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[18] A. Gaëtan, C. Evellin, J. Wolters, P. Grangier, T. Wilk, and A.
Browaeys, Analysis of the entanglement between two individual
atoms using global Raman rotations, New J. Phys. 12, 065040
(2010).

[19] I. Mourachko, Wenhui Li, and T. F. Gallagher, Controlled many-
body interactions in a frozen Rydberg gas, Phys. Rev. A 70,
031401 (2004).

[20] J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L.
Gould, D. Comparat, and P. Pillet, Observation of a Resonant
Four-Body Interaction in Cold Cesium Rydberg Atoms, Phys.
Rev. Lett. 108, 023005 (2012).

[21] R. Faoro, B. Pelle, A. Zuliani, P. Cheinet, E. Arimondo, and P.
Pillet, Borromean three-body FRET in frozen Rydberg gases,
Nat. Commun. 6, 8173 (2015).

[22] J. Nipper, J. B. Balewski, A. T. Krupp, S. Hofferberth, R. Löw,
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