
Shortcut to stationary regimes: A simple experimental demonstration

S. Faure
Laboratoire de Collisions Agr�egats R�eactivit�e, CNRS UMR 5589, IRSAMC, Universit�e Paul Sabatier,
118 Route de Narbonne, 31062 Toulouse CEDEX 4, France

S. Ciliberto
Universit�e de Lyon, CNRS, Laboratoire de Physique de l’ �Ecole Normale Sup�erieure, UMR5672, 46 All�ee
d’Italie, 69364 Lyon, France

E. Trizac
LPTMS, CNRS, Univ. Paris Sud, Universit�e Paris-Saclay, 91405 Orsay, France

D. Gu�ery-Odelina)

Laboratoire de Collisions Agr�egats R�eactivit�e, Universit�e Paul Sabatier, 118 Route de Narbonne,
31062 Toulouse CEDEX 4, France

(Received 11 June 2018; accepted 22 November 2018)

We introduce an inverse engineering approach to drive an RC circuit. This technique is

implemented experimentally (1) to reach a stationary regime associated with a sinusoidal driving

voltage in a very short amount of time, (2) to ensure a fast discharge of the capacitor, and (3) to

guarantee a fast change from one stationary regime to another driven at different frequencies. This

work can be used as a simple experimental project dedicated to the computer control of a voltage

source. Besides the specific example addressed here, the proposed method provides an original use

of simple linear differential equations to control the dynamical quantities of a physical system and

has therefore a certain pedagogical value. VC 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5082933

I. INTRODUCTION

In most basic textbooks on electricity, the use of a time-
dependent voltage source to drive a circuit is reduced to
sinusoidal driving.1 This is of paramount importance to
introduce the concept of filtering in Fourier space,2 a tech-
nique that appears in many other fields of physics3 including
wave optics.4 Such time-dependent circuits also provide an
opportunity to train the students in solving linear differential
equations and give the opportunity to discuss the mechanical
equivalent of an inductor, a capacitor, or a resistor.

In this article, we propose to revisit the standard RC series
circuit subjected to sinusoidal driving in order to present an
inverse use of the differential equation that governs the time
evolution of the capacitor charge. More precisely, we show
explicitly how the proper shaping of the voltage enables one
to reach the stationary regime associated with sinusoidal
driving in a time much shorter than the characteristic time of
the circuit. Similarly, we explain how this technique can be
extended to the fast discharge of a capacitor or to the sudden
change in the driving frequency. Here, fast refers to a time
scale small compared to the RC time constant. We detail the
experimental implementation of those ideas that are well
adapted to experimental classes involving computer control
of an instrument, a voltage source in this case.

The method is generic and is directly inspired by the
inverse engineering technique developed in the growing field
of Shortcuts To Adiabaticity5,6 with applications in classical
mechanics,7–9 optical devices,10 quantum,11–18 and statistical
physics.19,20

II. DESCRIPTION OF THE SETUP

We consider a simple electric circuit made of a resistor
placed in series with a capacitor21 driven by a time

dependent voltage source (see Fig. 1(a)). The charge obeys
the first order differential equation

_qðtÞ þ q tð Þ
s
¼ V tð Þ

R
; (1)

with s¼RC. For sinusoidal driving

VðtÞ ¼ V0 sinðxtÞ; (2)

the solution of Eq. (1) is given by the superposition of the
response with the source V set to zero and the forced response:
q(t)¼ q0(t) þ qf(t). In mathematical language, we call these
two responses the homogeneous and the particular solutions.
The homogeneous solution reads q0ðtÞ ¼ A0 expð�t=sÞ, while
the particular inhomogeneous solution is of the following
form:

qf ðtÞ ¼ Ax
1 sinðxtÞ þ Ax

2 cosðxtÞ: (3)

We readily find Ax
1 ¼ðV0s=RÞ=ð1þx2s2Þ and Ax

2 ¼�xsA1.
Using the amplitude phase notation qf ðtÞ¼Asinðxt�uÞ with
u¼arctan(xs) and A¼ðV0s=RÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2s2
p

. With this nota-
tion, we clearly see the existence of a time delay, u/x, between
the driving and the response obtained through the time evolu-
tion of the charge. It is worth noting that the forced solution is
a particular solution of the second order differential equation
without dissipation

€qf þ x2qf ¼ 0: (4)

The constant A0 is determined by the initial condition on
the full solution. Assuming that the charge is zero initially,
q(0)¼ 0, we find

qðtÞ ¼ V0s=R

1þx2s2
sin xtð Þ �xs cos xtð Þ � e�t=s

� �� �
: (5)
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The transient regime lasts over the time interval for which
the term e�t=s is not negligible with respect to one. The time
t1 required to reach the stationary regime should be such
that22 xse�t1=s � 1. In the limit xs � 1, the charge and
therefore the current undergo a large number of oscillations
before reaching the stationary regime. This transient towards
the stationary regime is most conveniently observed in the
so-called phase space (q, _q):23 the system converges towards
an elliptical attractor24 whose size is dictated by the driving
voltage amplitude and the characteristics of the circuit

q2ðtÞ þ 1

x2

dq

dt

� �2
 !

!
t�s

V0s=Rð Þ2

1þ x2s2
: (6)

In Fig. 1(b), we have constructed such a phase space rep-
resentation by plotting the voltage V2(t) (proportional to dq/
dt) as a function of V1(t) (proportional to q(t)) for the follow-
ing experimental parameters: V0¼ 10 V, R¼ 9.9863� 103

6 1.1 X, C¼ 32.8 6 0.49 nF (measured with a multimeter
Agilent 34405A), s¼RC¼ 327.5 ls, x¼ 2p� 10 000 Hz,
and an acquisition time of 35� 2p/x.

The dimensionless parameter xs¼ 20.5 has been chosen
sufficiently large to ensure that the system undergoes a signifi-
cant number of oscillations before reaching the stationary
regime. The voltage V1(t) has been recorded using a LeCroy
Wavesurfer44Xs oscilloscope (10 000 data points are acquired)
and averaged over 20 repetitions of the protocol. The voltage
V2(t) cannot be obtained directly since both the voltage source
and the oscilloscope that reads the V1(t) voltage are connected

to ground. We therefore inferred the voltage V2(t) by numeri-
cally performing the subtraction: V2(t)¼V(t) – V1(t). We
observe on the phase plot the well-known clockwise rotation of
the trajectory together with the limit cycle (visible as the thick
ellipse), which sets in after a long time.

III. OUR APPROACH

In the following, we propose to engineer the voltage
source to reach the stationary regime on a much shorter time
scale tf� s. For t> tf, the voltage will be the sinusoidal driv-
ing voltage given by (2). Within our approach, tf can be cho-
sen at will, in principle, arbitrarily small.25 We adopt an
inverse engineering approach. To this end, we first fix
the boundary conditions that we would like on the charge
q(t): q(0)¼ 0, and qðtf Þ ¼ qf ðtf Þ; _qðtf Þ ¼ _qf ðtf Þ and €qðtf Þ
¼ €qf ðtf Þ ¼ �x2qf ðtf Þ. The last condition is important since
the stationary trajectory we aim to reach is a solution of the
second-order linear differential equation (4). We add the two
following constraints _qð0Þ ¼ 0 and €qð0Þ ¼ 0 to ensure a
smooth initial variation of the charge. As the motion of the
charge is sinusoidal, the boundary conditions on the first and
second derivatives must be chosen consistently. The second
step consists in choosing an interpolation function for the
charge. Having set 6 boundary conditions, we will therefore use
an interpolation function featuring 6 free parameters. In practice
and for the sake of simplicity, we take a fifth order polynomial

q tð Þ ¼ 10q tfð Þ � 4tf _q tfð Þ þ t2
f €q tfð Þ=2

h i t

tf

� �3

þ �15q tfð Þ þ 7tf _q tfð Þ � t2f €q tfð Þ
h i t

tf

� �4

þ 6q tfð Þ � 3tf _q tfð Þ þ t2
f €q tfð Þ=2

h i t

tf

� �5

: (7)

By plugging this time-dependent form for the charge into
Eq. (1), we find the voltage V(t) that we should impose on
the circuit to obtain the desired evolution of the charge. This
is the essence of the inverse engineering technique.

As a concrete example, we propose to reach the stationary
regime in a quarter of the driving period tf¼p/(2x) (see
Fig. 2(a)). As a result, we fix the final values for the charge
qðtf Þ ¼ Ax

1 ; _qðtf Þ ¼ �xAx
2 ; €qðtf Þ ¼ �x2qðtf Þ. With such

boundary conditions, we have found the following voltage
for the time interval 0� t� tf:

VðtÞ ¼ �V0

2

t

tf

� �2 1

1þ x2s2
a2 þ a3

t

tf

� �(

þa4

t

tf

� �2

þ a5

t

tf

� �3
)
; (8)

with

a2 ¼ 3
s
tf

� �
�20þ 8x2stf þ xtfð Þ2
h i

;

a3 ¼ 120
s
tf
þ xtfð Þ2 � 4 5þ 14 xsð Þ2

	 

;

a4 ¼ �60
s
tf
� 2 xtfð Þ2 � 9x2stf þ 30 1þ xsð Þ2

	 

;

a5 ¼ �12þ 6x2stf þ xsð Þ2: (9)

Fig. 1. (a) The RC circuit under study. (b) Phase portrait of our system, dis-

playing the measured evolution of the voltage V2ðtÞ ¼ s _V 1ðtÞ as a function

of V1(t) for a voltage source VðtÞ ¼ V0 sinðxtÞ. Here, V0¼ 10 V, x/

2p¼ 10 kHz, s¼ 327.5 ls, and 10 000 experimental data points have been

gathered to produce the curve, with a subsequent average over 20 realiza-

tions. The insets provide the explicit variation with time of the voltage

source, V(t), and the voltage drop across the capacitor, V1(t).
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These coefficients satisfy all our boundary conditions. For
t� tf, the voltage is simply the sinusoidal driving voltage
(see Eq. (2)). To drive the voltage source, V(t), with such a
time dependency, we use the LabVIEW control of the arbi-
trary waveform generator Keysight 33611A (see upper insets
of Fig. 2(a)). The imposed source voltage is discretized with
a time step of 2.5 ns. Interestingly, our fast protocol for the
chosen boundary values does not exhibit a voltage over-
shoot: the designed voltage has an amplitude always smaller
than or equal to V0¼ 10 V in our experiment. The resulting
measured voltages are summarized in the phase space plot of
Fig. 2(a). As expected, we observe the rapid convergence
towards the stationary regime. Comparing the inset of Fig.
2(a), one clearly observes that the charge time evolution
measured through V1(t) responds to the change in the voltage
source V(t) with a delay. It is worth noticing that the conver-
gence towards the stationary regime has been dramatically
accelerated thanks to our protocol as it can be seen by com-
paring Figs. 1(b) and 2(a). The stationary regime is approxi-
mately reached in a time 6s ’ 2 ms when the voltage source
is applied suddenly while our fast protocol requires a quarter
of a period p/2x¼ 25 ls. The gain in time is therefore about

2 orders of magnitude. We have taken boundary conditions at a
final time for a quarter of period just for convenience and sim-
plicity, but the method still holds for shorter amounts of time.

In a similar manner, the reverse transformation from the
stationary regime to the complete discharge of the capacitor
can also be driven in a short amount of time. The calculation
of the desired voltage is obtained in the very same manner
using the proper boundary conditions for the charge. Figure
2(b) (lower panel) illustrates such an experimental realiza-
tion with the same electrical circuit using V0¼ 10 V, x/
2p¼ 10 kHz, and tf¼ 10 ls.

Combining the previous methods, one can readily extend
the control of the circuit driving to connect two stationary
states associated with two different driving frequencies,
going through the state of “rest” (vanishing V1 and V2) as an
intermediate. We have realized this experiment by driving
the system at 20 kHz and then at 10 kHz as explicitly shown
in Fig. 3. We present in the upper panel such a transforma-
tion performed with a sudden change in the frequency and in
the lower panel the reaching of the new stationary regime in
tf¼ 35 ls thanks to a proper shaping of the voltage source
(see the inset of Fig. 3(b)).

Fig. 2. (a) Experimental evolution of the voltage V2ðtÞ ¼ s _V 1ðtÞ as a func-

tion of V1(t) for a shaped voltage V(t) imposed to the RC circuit. Here, the

target time tf is chosen to be tf¼p/(2x)¼ 25 ls. From t equal to zero to p/

(2x), the signal V(t) has been calculated to force the evolution of the charge

towards the stationary regime and to be continuously connected to the sinu-

soidal driving voltage for t� tf. (b) Experimental evolution of the voltage

V2(t) as a function of V1(t) for the driving voltage that ensures the discharge

of the capacitor in tf¼ 10 ls for an initial charge in the stationary regime

associated with the driving frequency 10 kHz. The amplitude and frequency

are the same as for Fig. 1. Insets represent the voltages V(t) and V1(t) as a

function of time.

Fig. 3. (a) Phase portrait representation (V2(t) as a function of V1(t)). The circuit

undergoes a sudden frequency change from a sinusoidal driving frequency at

20 kHz to 10 kHz. We observe the convergence towards the initial stationary

state (internal ellipse) to the targeted one (external ellipse). (b) Similar plot

using the inverse engineering technique to accelerate the change in the station-

ary regime and operate the switch in a chosen time tf. The voltage is engineered

in a non-sinusoidal manner during a time span tf¼ 10þ 25¼ 35ls to ensure

first the passage from the stationary regime at 20 kHz to a complete discharge

and then from q¼ 0 to the stationary regime associated with the frequency

10 kHz. Same notation as in Fig. 2 for the insets.

127 Am. J. Phys., Vol. 87, No. 2, February 2019 Faure et al. 127



IV. CONCLUSION

In conclusion, we have shown both theoretically and
experimentally the usefulness of inverse engineering to drive
at will the current in a RC circuit. Our treatment offers spe-
cific projects and activities for students that feature both con-
ceptual/mathematical and experimental aspects. While the
most rewarding option is to treat both questions in class, it is
also possible to restrict to a one-sided treatment. For a suc-
cessful implementation, we have provided after Eq. (6) a rel-
evant set of parameter values. The idea can be easily
implemented as a computer-interfacing project. From a peda-
gogical point of view, such studies also contribute to the
renewal of the teaching of differential equations with appli-
cation in the growing field of control in physics. This method
can be readily generalized to other linear circuits such as the
RLC circuit. Using the analogy between electricity and clas-
sical mechanics, the technique provides interesting and non-
trivial solutions in this latter domain. For instance, the trans-
port of a particle in a moving harmonic trap obeys the
second-order linear differential equation as follows:

€x þ x2
0x ¼ x2

0x2
0; (10)

where x denotes the position of the particle and x0 that of the
bottom (i.e., the center) of the potential. An optimal transport
over a distance d of a particle initially at rest and that reaches
its final position at rest imposes the following boundary condi-
tions: xð0Þ ¼ 0; _xð0Þ ¼ 0; €xð0Þ ¼ 0; xðtf Þ ¼ d; _xðtf Þ ¼ 0,
and €xðtf Þ ¼ 0, with x0(0)¼ 0 and x0(tf)¼ d. The position x(t) is
chosen by interpolation between the initial and final boundary
conditions, and the instantaneous position of the trap, x0(t), is
then inferred from Eq. (10). The method can be further
improved to take into account non-harmonic traps9 or to guar-
antee robust transport.8 Similarly, this idea has been used to
drive, at will, a spin or two spins to generate entangled states.26

As presented here, inverse engineering is quite simple and
does not require a sophisticated mathematical formalism. It
is worth emphasizing that it differs from optimal control the-
ory, which aims at extremalizing a given objective (or cost)
function,27 under some constraints.28,29 Here, the protocols
we advocate are not meant to be optimal but to perform a
given task in a specific, and short, time span.

Other general methods to speed up quantum transformations
have been put forward in the context of quantum mechanics
such as the counterdiabatic method,30,31 the Lewis-Riesenfeld
invariant methods,32,33 the fast-forward method,35 or techni-
ques relying on the Lie algebra.34 Some of those techniques
have been recently transposed in the classical world6,7 not only
in mechanics but also in statistical physics.20,36,37
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