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Abstract

®
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Large momentum transfer (LMT) beam splitters are implemented in atom interferometers to
increase their sensitivity. However, an LMT interferometer requires additional light pulses to
modify the response function of the atom interferometer. In this paper, we develop an analytical
model for the sensitivity function of LMT interferometers using sequential accelerating light
pulses. We use the sensitivity function to calculate the acceleration sensitivity taking into
account the pulse duration. In addition, the sensitivity to laser phase fluctuations is calculated,
and we show that the pulse sequence can be engineered to mitigate the phase noise sensitivity.
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1. Introduction

Light-pulse atom interferometers [1] are implemented for pre-
cision measurements in various areas [2]. In particular, they have
been used for gravito-inertial measurements such as the Earth’s
gravitation [3-5], its gradients [6], and rotations [7-9]. They are
also used for measuring fundamental constants such as the
gravitational constant [10, 11] or the fine structure constant
[12, 13]. In addition, atom interferometers with an increased
sensitivity are potential candidates for laboratory tests of general
relativity [14], the weak equivalence principle [15-18], abnor-
mal acceleration at various length scales [19, 20] or for the
detection of gravitational waves [21]. In order to increase their
sensitivity, a promising idea is to increase the momentum
separation between the two arms of the interferometer.
Various solutions have been developed to implement large
momentum transfer (LMT) beam splitters in an atom inter-
ferometer: either by using a multiphoton transition with a
single pulse [22], or by using a beam splitter pulse (7/2-pulse)
followed by an acceleration of the interferometer arms. The
acceleration can be controlled by an optical lattice (Bloch)
[23, 24] or can result from a sequence of light pulses (7-pulse)
[25]. These additional light pulses change the interferometer
phase, which is why an accurate model of the response func-
tions of the LMT atom interferometer is required for precision
measurements. Phase shift calculations for arbitrary atom
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interferometer geometries have been studied extensively
[26-29]. However, most of these methods are not convenient
for modeling precisely the laser phase evolution experienced
by the atoms during the light pulses.

In this paper, we calculate the response function of an LMT
interferometer based on the sequential light pulse acceleration.
The calculation relies on the sensitivity function formalism,
initially developed for atomic clocks [30], which proved to be
very efficient in the analysis of the sensitivity of light-pulse atom
interferometers thereafter [31]. In particular, this formalism can
precisely calculate the impact of phase fluctuations at any fre-
quency. It is also used to determine the modification of the
interferometer space-time area due to the finite duration of the
light pulses. A straightforward extension of this formalism can
model any interferometer involving two quantum states. How-
ever, LMT interferometers based on sequential accelerating
pulses couple more than two momentum states. In this paper, we
extend the sensitivity function formalism to these LMT inter-
ferometers and we derive an analytical solution for the response
function in the temporal and Fourier domains. The paper is
structured as follows: in section 2 we describe the atom inter-
ferometer modeled in this paper, in section 3 we introduce the
sensitivity function of this type of interferometer, and in
section 4 we calculate the spectral response to evaluate phase
noise contributions, emphasizing the specific features of the
sequential LMT interferometers.

© 2018 IOP Publishing Ltd  Printed in the UK
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Figure 1. High-order Bragg diffraction. The multiple interactions
with the two far detuned Bragg beams at frequency wy; and wy,
couple the momentum states |g, p) and |g, p + 2n/K). The

diffraction order n is set by the tuning of the laser frequencies. A is
the single photon detuning with respect to the excited state |¢). Inset:
counter-propagative Bragg configuration.

2. The LMT atom interferometer

We consider LMT atom interferometers based on sequential
Bragg pulses. The Bragg lattices are created by two counter-
propagative laser beams with adjustable frequencies wy; and
wr, (see inset of figure 1), and the phase difference between
the two lasers is labelled ¢ in the following. The detuning A
of the two beams with respect to the single-photon transition
is large compared to the excited state line-width to avoid any
spontaneous emission.

Here, we consider high-order Bragg diffraction pulses that
couple momentum states with a momentum separation of 2n 2K,
where the order of diffraction » is an integer number and k is the
laser wave-vector. The high-order Bragg coupling, illustrated in
figure 1 in the laboratory frame, can be modeled as an effective
coupling between two momentum states |p) and |p + 2n/%K).
For a square pulse, the effective Rabi frequency between those
two states {2 is a function of the two-photon Rabi frequency €2,
and the diffraction order n [32]:

ar 1
Q — 0
ST = DIP Bu

(D

where w, = /;—:(: is the recoil frequency for an atom of mass m.
The relevance of this equation is questionable for high n.
However, it illustrates that the required laser intensity increases
rapidly with the Bragg order n. In addition, for an nth order
Bragg transition, the laser phase imprinted on the diffracted state
|p + 2n/%Kk) is n x ¢.

The atom interferometer considered is based on a Mach—
Zehnder geometry as shown in figure 2. It consists of a series
of three diffracting Bragg pulses that act on both arms of the
interferometer. The input state of the interferometer is |p). A
first 7w/2-pulse of duration T creates a coherent superposition
of the two momentum states |p) and |p + 2n/Kk). After a time
T, a central m-pulse of duration 27 exchanges the momentum

2nhk 2nhk
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Figure 2. The upper panel represents the space-time diagram of the
considered LMT interferometer in the Bragg lattice frame. The three
long red lattices are the diffracting w/2-m-7/2-pulses of a standard
Mach—Zehnder atom interferometer with a 27 interrogation time.
The space-time area is increased by sequences of N accelerating
m-pulses separated by a time 7., acting only on a single arm (short red
lattices). Each nth order Bragg pulse lasts 7 (resp. 27) for m/2-pulses
(resp. m-pulses). The lower panel sketches the intensity of the Bragg
beams as a function of time.

of the two arms. Finally, after another time 7, the last 7/
2-pulse closes the interferometer paths. Those diffracting
pulses are illustrated in figure 2 by long red lattices.

To increase the momentum separation between the two
interferometer arms, accelerating pulses are resonant with
only one of the interferometer arms at a time. After the first
diffracting pulse, a first sequence of N m-pulses of duration
27 transfers N x 2nhk to the upper arm. The accelerating
pulses are regularly separated by a time #.. For simplicity, we
consider that the delay between the end of the first diffracting
m/2-pulse and the first accelerating pulse is 7. A second
sequence of N m-pulses decelerates the upper arm down to
|p + 2n/k) before the central diffracting m-pulse. It is
important to note that each accelerating pulse of the first
sequence has its symmetric decelerating pulse in the second
sequence. The same acceleration-deceleration sequence is
applied to the lower arm after the central m-pulse.

The interferometric signal corresponds to the probability
of finding the atoms in either state at the output port of the
interferometer. It is determined from the atomic populations
measured in each interferometer output:

P Nip) 1+ cos®
Nip+2nsik) + Nip) 2

. @)

with ® the phase difference between the two arms that contain
the signal of interest. In many cases, the measured phase shift
® is proportional to the effective momentum separa-
tion keff = 2n(N + l)k

With uncorrelated atoms, the smallest measurable phase
shift (the phase sensitivity) is ultimately limited by the
quantum projection noise that scales with the square root of
the detected atom number [33]. In practice, the phase sensi-
tivity is lowered by laser phase noises that can be evaluated
with the sensitivity function.
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3. Sensitivity function

An infinitesimal laser phase shift between the two lasers of
the Bragg lattice 6¢» modifies the atom interferometer phase
shift ® and so the population measured at the interferometer
outputs. The sensitivity function corresponds to the phase
response of the interferometer for a laser phase shift d¢
occurring at time ¢. The sensitivity function gu(#) of the
interferometer is defined by:

6P(6, 1) _ 2 lim OP (P, 6¢, t).

— | (3)
o) sin @ 6¢p—0 o

8,(t): =1lim
! 6p—0

This function is used to determine the interferometric phase
shift ® for a laser phase fluctuation ¢(f) during the inter-
ferometer sequence:

+00 ,d , ,
o= [T e s, @

Our calculation of the sensitivity function relies on three main
assumptions. First, we model each multiphoton transition
with an effective coupling between only two states. Second,
the square light pulses considered are resonant with the
effective transition. Third, the interferometer is operated at its
maximal sensitivity ® ~ 7/2.

3.1. Sensitivity function for a three-pulses interferometer

The sensitivity function of the standard three-pulses inter-
ferometer has been calculated in [31] for the effective two-
levels system associated with a two-photon Raman transition
[34]. Their results can be directly adapted to any effective
two-level system. In particular, we consider the coupling
between two momentum states for an atom in an optical lat-
tice in the Bragg regime. The sensitivity function g(go)(t) is an
odd function of time so it is completely determined for ¢ > 0:

n x sin(Qpt) t € [0; 7]
g (1) =qn te[n T+ 7]
—n X sin(Qr(T — 1)) t€ [T+ 7, T+ 27]

&)

The sensitivity function is plotted in figure 3 for an inter-
ferometer with momentum separation of 36Ahk using high
order Bragg diffraction (n = 18).

3.2. Sensitivity function for a sequential LMT-interferometer

This paper focuses on the extension of the previous formalism
in order to include the phase shift induced by the additional
accelerating light pulses. The calculation of the sensitivity

function for a sequential LMT-interferometer gCELMT) is

detailed in the appendix. The derivation is based on the
separation of g™ into a discrete sum of terms with dif-
ferent starting times and durations (see figure 4).

The first term g, (¢) corresponds to the sensitivity function
of the diffracting pulses (/2 — w — 7 /2) interacting with
the two arms of the interferometer. With our choice of timings
(total duration from the first pulse to the last pulse equals to

~T-27 ~T+(2N=1)7+Nt;~(2N+1)7=Nt,

(2N+1)7+Nt, T-2N=1)7-Nt, T+21

-
I

-

o

Figure 3. Sensitivity functions of a three-pulse interferometer
(dashed red) and an N = 5 LMT interferometer (continuous blue).
In order to compare similar scaling factors, the diffraction order is
n = 18 for the three-pulse interferometer and n = 3 for the LMT-
interferometer sequence.

g()
6n

5n - \

4n

3n / \

2n <

jtr+t)-1 T-j2t+t)+1 (T+27)

Figure 4. Representation of the partial sensitivity function as defined
in equation (7) for N = 5. The timing of the jth pulse (continuous
red line) as well as the end of the final pulse are indicated on the
temporal axis.

2(T + 271)) it is equal to the three-pulse sensitivity function:
g1 =g ). (6)

We define a sensitivity function g;(¢) for each pair of
accelerating and decelerating pulses between the momentum
states j X 2n/ZKk and (j + 1) x 2n/zk and we find that:

0 t € [0; ;]
n % sin (M)z t€ [ty tpl
g1 =3 n € [tp; tj] )
n x sin(W)2 1€ [tj3; 4]
0 t € [tjg; T+ 27]

The jth accelerating pulse after the diffracting 7w-pulse starts
at tjy = j27 +t.) — 7 and ends at t =j27 + 1) + T,
it is combined with the jth decelerating pulse which
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starts at tj3 =T — j(27 +#) + 7 and ends at tj;4 =T —
Jj@7 + t.) + 37. The global sensitivity function is then

N
g =3 g (). (8)
k=0

The sensitivity function for an LMT interferometer with a
momentum separation of 367k is shown in figure 3 in the
case of N=5and n = 3.

3.3. The acceleration scale factor

The phase shift of an LMT interferometer can be calculated
from a deterministic laser phase evolution ¢ () experienced
by the atom by integrating the sensitivity function (4). We
consider atomic motion described by a constant acceleration
a, in the laboratory frame. Therefore an atom moving in the
laser lattice experiences a laser phase evolution given by:

DO g art2X P ©)
dt m

In practice, the frequency difference between the lasers is
adjusted to retain the Bragg resonance condition during all the
light pulses, according to the assumption made for the calc-
ulation. One can compute directly the phase resulting from
the constant acceleration which accounts for the finite dura-
tion of the light pulses. As the sensitivity function is anti-
symmetric, the integral over g,(t)p vanishes, which means
that this atom interferometer géometry is independent of the
initial atom momentum p. The phase shift obtained for a
three-pulse sequence (N = 0) is:

P, 2
L*z:]+(1+g)2l+%(2_7), (10)
Kegr - a.T )T «\T
The phase shift obtained for LMT interferometer is:
Lz:wr(wrg—/v(zv—l)) L 2yl
Kegr - a.T ™ N+1T T

2 2 2

In order to compare the sensitivity between the N-pulse
and the standard three-pulse interferometers, we consider
identical pulse durations (7) and an identical total momentum
transfer Kege. In the limit of infinitely short light pulses (z,,
7 — 0), we find the expected factor which scales as the
momentum difference and the interferometric time squared
ke T?. However, precision measurements need an accurate
knowledge of the scale factor which requires us to consider
the additional terms in 7/7 and #./T. In the case of the LMT
sequence, momentum transfer takes a longer duration than
the equivalent three-pulse interferometer and this slightly

modifies the space-time area:

q)acc,3 - q)acc _ N (g -I—N)Z—T + Ni
keff . aCT2 N+ 1\=7 T T

EEale G

4. Phase noise sensitivity

12)

To estimate the impact of the laser phase noise on the inter-
ferometer sensitivity, it is convenient to define the transfer
function of the interferometer in the Fourier domain H (w).
The variance of the interferometric phase is given by the
power spectral density S,(w) of the laser phase noise
weighted by the transfer function:

o0 d
o =f0 | H(w>|25¢<w>§. (13)

With the transfer function of the interferometer H (w) defined as:
+o00 X
Hw): =w f eivrg, (1)dt.

(14)

To determine H (w), we define the partial transfer function for
each individual partial sensitivity function g;(7):

Hi(w): =w [ foo e g (1)dt. (15)

From the equations (7) and (15) we calculate each partial transfer
function. For j = 0, we recover the usual three-pulse transfer
function [31]:

.02
Ho(w) = ézlmQRz s'n(wT+ 27')
v . (16)
. ( T) w ( T+ 27)
Xqsm|w— |+ —cos|w
2 197% 2
For j = 0, the partial transfer function is given by:
4inQ . ( T+2
Hi(w) = 2m R2 s1n(w + T)
i (17)

T — 221 + 1) + 271
2

X sin (u, ) cos(wr)

The transfer function of the interferometer H (w) is the sum
of all the partial transfer functions. First we calculate the sum
Zj.vlej(w), dropping the global factor independent on j, one
gets:

N N-1 .
ZI_IJ ~ Sin(wT 2(r + t.) 2+]( 47 — 2t,)

J=1 Jj=0

). (18)
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Figure 5. Transfer functions |H (w)|?> of a three-pulse (red dashed
line), N = 5 multipulse (blue solid line) and N = 17 multipulse
(green dashed-dotted line), for 27 = 500 ms, 7 = 50 ws and

T = 50 pus.

This expression is simplified with the following property
[35]:

N—1 sin (x + —(N_z l)y) sin (%)
i iy) = 19
]Z:% sin(x + jy) S 0/2) (19)

Finally, we get the global transfer function of the atom inter-
ferometer, which is the central result of this paper:

Hw) =

4inQ% . ( T+2r
2 > Sin | w
w

w ( T+ 27) : ( T)
x4 —cos | w————| + sin| w—
Qr 2 2

Nt + 27)) (20)

2
. 1ot 2
sin (w%)

T— N+ Dt. — 2NT)}
2

sin (w

+ cos(wr)

X sin (u,

In figure 5, we plot |H (w)|* for three interferometers of
identical space-time area (27 = 500 ms, and 36 hk). We con-
sider a three-pulse interferometer with high-order Bragg pulses
n = 18 (red dashed line), an LMT interferometer with first-order
Bragg pulses n = 1 and many accelerating pulses N = 17 (green
dashed-dotted line) and an intermediate configuration with N = 5
and n =3 (blue solid line). In addition, we keep the pulse
duration 7 = 50 ms, and the pulse delay 7. = 50 s identical for
the three configurations.

At low frequency (w/(2m) < 2N + 1)/Q2T)), |H (w)[?
does not depend on the specific sequence of the beam split-
ters. In particular, the finite duration 27 of the interferometer
induces periodic cancellation at frequencies of 1/(T + 27)
(2 Hz with our parameters). This feature is shown in figure 5

T~ o = -80
~ 3
20 AN ) ,
10 N %—100
N 3
. N 120 P
E S| et
w us z
S
&
S
10"
= N=0 pulses, n=18
—N=5 pulses, n=3
N=17 pulses, n=1

10° 10" 102 10°

7 (1s)

Figure 6. Interferometer phase noise from equation (13) for different
diffracting pulses durations. The interferometric time is constant
T = 500 ms) and for simplicity, the delay between each pulse is
chosen to be equal to the pulse duration (¢, = 7). The phase power
spectrum density used is shown as an inset. Different interferometer
configurations are considered (N = 0, red dashed line; N = 5, blue
solid line; and N = 17, green dot-dashed line.)

at low frequencies (f < 11 Hz). At higher frequencies
(>11 Hz), we plot the averaged value of |H (w)|*> over a 1/T
frequency span for a better readability of its envelope.
Besides, a numerical factor multiplies the averaged plots to
match the low frequency maxima obtained without averaging.

The finite duration of the pulses leads to a low-pass fil-
tering with a 1/ /f? scaling which is characteristic of rectan-
gular pulses [36]. In the case of the three-pulse interferometer
the cut-off frequency is ~1/(27) (10 kHz with our para-
meters). For the LMT-interferometer, the effective duration of
the beam splitter leads to a lower cut-off frequency
~(@2N x (27 + t.))"!. Moreover, it is interesting to note that,
regardless of the partial cancellation of sensitivity to fre-
quencies above the effective cutoff, a residual phase sensi-
tivity around w/(27) ~ 1/(27 + t.) remains independent of
the number of intermediate pulses.

In order to illustrate the impact of the pulse sequence, we
modeled a laser phase noise characterized by the power
spectral density S,(w) shown in the inset of figure 6. In this
example, we considered phase-locked lasers shifted by a few
MHz for Bragg diffraction. The phase noise is representative
of an optical phase locked loop limited by the finite band-
width of acousto-optic modulators used for the feedback
(~50kHz in our example). Figure 6 shows the laser phase
noise according to the pulse duration 7 for the three inter-
ferometer configurations (N =0, N=5 and N=17). It
emphasizes the decrease in phase noise reachable in a mul-
tipulse configuration due to the high frequency filtering.
Moreover, we added a sharp resonance in the noise spectra
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(fo = 10kHz in our example), which leads to an increased
phase noise for a pulse duration of ~1/(3fy). This example
shows the possibility of the developed formalism to design an
optimized interferometer sequence depending on the specific
technical laser phase noise and/or power limitation.

5. Conclusion

We derived the response function of a light-pulse atom
interferometer using a sequential diffraction in the temporal
and Fourier domains. The model presented in this paper is
based on sequential effective two-level couplings, hence it
can be extended to the other sequential light pulses such as
two-photon Raman transition or single-photon transition. The
precise knowledge of this transfer function allows us to cal-
culate the influence of several noise contributions onto the

:leiw/-(t/t)

Or(ty — t)]e
2

[QR(tf —1)
CoOS| ————8M8
2

iei(wlzﬂr"d))sin[ —iwj1(tr—1)

atom interferometers. In particular, we highlighted resonances
in the transfer function depending on the sequence of the
LMT beam splitters. In addition, a central result of our study
is the rejection of high frequency laser phase fluctuations for
sequential pulse LMT beam splitters. The modification of the
response function is also of great interest for implementing an
active noise rejection with an external vibration sensor. We
also presented the modification of the space-time area of the
interferometer which impacts on the scale factor of the inertial
sensor. Future work should implement the combination of
pulse shaping [36] and the multipulses configuration studied
in this paper, which would be directly applicable to future
experiments using sequential LMT interferometers. Finally,
the sensitivity function can be used for the analysis of sys-
tematic effects induced by the light pulses including light-
shift which are of importance for LMT interferometers. It
would be of interest to consider the case of nonresonant
accelerating pulses and the effect of multiphoton light shifts
[37] during the acceleration pulses.
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Appendix. Detailed derivation of the sensitivity
function

To compute the sensitivity function of the LMT inter-
ferometer we use a formalism based on a matrix formulation
of the momentum state superposition during the inter-
ferometer sequence. For an N-pulse sequence, we consider
momentum states {|j) := |p + j x 2n/K)}jcjo.n) Where p is
the initial atomic momentum. From an initial wave function
|Tg) = |0) one can compute the atomic wave function evol-
ution by considering a sequence of light pulses coupling only
neighboring states and leaving the other states evolving
freely. Each step can be represented by a matrix M; which is
block diagonal with a unique 2 x 2 irreducible subspace
coupling |j) and |j + 1) expressed as:

_jeiwnt+nd)gin [ QR(tf — t) :|eiu.)j(tft)
2

(A1)

cos [ Qr(ty — 1) ]eiwj+,(zft)
2

where Qg /(27) is the Rabi frequency, hw; is the energy of the
state | j), wyp = wr; — wyy is the frequency difference between
the two counter-propagating lasers, ¢ is the absolute timing at the
start of the time step, ¢ is the laser phase at this instant and #is
the time at the end of the step. All other nonzero elements of M;
lie on the diagonal and are simply {e~*“%="} ... . The
interferometric sequence is then directly represented by a product
of 5 + 8N of these matrices (see figure Al). These matrices
depend on four parameters: the initial time #, the Rabi frequency
(g, the pulse duration #; — ¢, and the laser phase difference ¢. As
an example, the N = 1 sequence corresponds to:

MF"(T + 7, Qr, 7, o) MY(T + 7 — 1, 1)
MNT — 7 — 1, Qr, 27, ).
MY (3T + 1o, T — 47 — 21). M (7 + 1., Ok, 27, ¢,)
MM, 1).M (=7, Qr, 27, ¢,).
M (=7 — 1o, 1M (=37 — 1., Qr, 27, &)
MY (=T + 7+ t., T — 47 — 21.).
M" (=T — 7+ 1, Qr, 27, $).M) (=T — 7, 1)
M (=T = 21, Ok, 7, ¢)
(A.2)

where the matrices are labelled with roman numerals. For the
light pulses matrices (M, M,;) the quadruplets
(, O, (ty — 1), ¢) are specified. During the free evolution
(2 = 0) the matrices (M,) are determined by the doublets
(¢, (tf — 1)). In this expression, we have used the usual
convention of setting the phase of the three-pulse interferometer
to ¢ 3. For clarity, we give also the full expression of the two
matrices:
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Figure A1. Complete pulse sequence including the associated matrices for N = 1. Red pulses correspond to the common diffracting pulses
while green pulses correspond to accelerations produced on a single interferometric arm.

ME(..,d2) MX (., dy + 60)

<>
t

C

0 T+t E 3t+t,
0] i
N —_—
W 0!
o} 0) -
t

Figure A2. Schematic representation of the phase jump 6¢ happening
at time t during the IXth step. The associated matrix is split into two
halves which depend on .

0s I: QR(tf ) ]e—iw()(ff'_f)
2

on the time at which the step occurs, the corresponding matrix
into two matrices with different laser phases (only relevant when
Qr = 0). For example (see figure A2), if the phase step happens
during the interval [z, + 7; 7. 4+ 37], one has to replace the term
MX @ + 1, Qg, 27, ¢,) by the product:

M (1, Qr, 3T + 1 — 1, ¢y + 50)

X M{E(T 4 te, Qr, t — (T + 10), ¢,) (A4

and propagate the additional phase d¢ in all subsequent laser
phases present in later matrices. This results in an additional
accumulated phase 6P (¢, 1) which directly gives the sensitivity
function with:

im 6P(60, 1)

g, = li 5 (A.5)

6p—0

_jeiwnt+nd) gin [w]e—muf—w 0
2

My = _ —
‘ —je—iwnttnd)gip —QR(tf 2 e~ wity=1 cos —QR(tf 2 e inlty=0 0
2 2
0 0 e*l‘LUz(tf*t)
and
e—in(tf—l) 0 0

0 cos [M]ewl(ﬁ’) —ieiwnt+nd)gip [M e—iwity—1)
M, = 2 2

0 _je~iwnttnd)gin [w]e—iwz(v—n cos [w]e—in(;f—r)

2 2

The output state corresponds to a superposition of |0) and
[1), from which we find the accumulated phase ®™), given by
the usual formula:

M) = n(N + 1)[¢, — 26, + ¢5]. (A3)

Finally, to obtain the sensitivity function (equation (3)) one
has to include a step change in phase for all possible times in the
interferometer sequence. This can be done by splitting, depending

where we have used the mid fringe assumption by choosing
N=1)

2n(¢; — 20, + ¢3) = g (A.6)

The general form given by equation (7) was obtained
from a full calculation of resonance (wj, = wjy; — wj Vj) for
N =1, 2 and 3 and then generalizing to arbitrary N using the
temporal symmetry of the interferometer sequence.
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