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Abstract

We propose an enlarged framework to study transformations that drive an underdamped Brownian
particle in contact with a thermal bath from an equilibrium state to a new one in an arbitrarily short
time. To this end, we make use of a time and space-dependent potential, that plays a dual role: confine
the particle, and manipulate the system. In the special case of an isothermal compression or
decompression of a harmonically trapped particle, we derive explicit protocols that perform this quick
transformation, following an inverse engineering method. We focus on the properties of these
protocols, which crucially depend on two key dimensionless numbers that characterize the relative
values of the three timescales of the problem, associated with friction, oscillations in the confinement
and duration of the protocol. In particular, we show that our protocols encompass the known
overdamped version of this problem and extend it to any friction for decompression and to a large
range of frictions for compression.

1. Introduction

Shortcuts to adiabaticity (STA) emerged in quantum mechanics as fast protocols for state-to-state
transformations that would otherwise require the slow and therefore time-consuming modification of a control
parameter of the system to reach the desired final state following a quasi-adiabatic trajectory [1]. Many strategies
have been proposed to set up non-adiabatic routes to reach the same final state through the use of dynamical
invariants [2], counter adiabatic driving [3—5], reverse engineering methods [6—8], fast-forward techniques

[9, 10], Lie algebraic approaches[11, 12], and optimal control [13—16] to name but a few. Slow processes
(adiabatic in quantum mechanics jargon) and thus STA are quite common to prepare the state of the system in a
wide variety of domains including atomic and molecular physics [17, 18], quantum transport [19-21], solid state
[22], many-body physics [23-25], classical mechanics [26] and statistical physics [27-29]. STA also have
applications in the design of optimal devices, as recently proposed in optics [30] and in internal state
manipulation for interferometry [31]. STA therefore enjoy alarge domain of applications, and the number of
experiments demonstrating their efficiency is soaring.

Recently, these techniques have given birth to new protocols in statistical physics. Thermodynamic
transformations that connect two different equilibrium states are not in most cases quasi-static and thus
necessarily visit out-of-equilibrium states. Operating such transformations in a finite and short amount of time,
potentially much shorter than the relaxation time of the system, is crucial for many applications, in particular in
micro and nano devices or engines [32—37], triggering a number of works considering how STA could boost
engines, among which [38—41]. As in quantum physics, performing this kind of quick transformations requires
to devise an appropriate driving of the intermediate out-of-equilibrium dynamics. A recent example has been
provided with protocols to compress or decompress an isolated 3D harmonically trapped cloud of atoms in an
arbitrarily short amount of time [27]. More importantly, such an approach has been generalized to systems in
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contact with a thermostat which are ubiquitous in thermodynamics. The so-called engineered swift
equilibration (ESE) protocols have been introduced to study the isothermal compression of a colloidal particle
[28]. The idea was then adapted to encompass the shift of the cantilever of an atomic force microscope [29], and
has been generalized in [42] to underdamped processes using a non-conservative driving force. Here, our
interest also goes to the underdamped dynamics of a Brownian particle, under the proviso that the driving force,
used to manipulate the system but also to confine the particle, is conservative.

In section 2, we address the general case of ESE protocols in the underdamped regime, for a non-isothermal
transformation and generic potentials. Contrarily to the works [40, 42], we resort to conservative drivings,
through potentials that only depend on space and not on velocity. This general framework leads to lengthy
equations, that are significantly simplified in the case of transport-free harmonic potentials. We next restrict to
this class of transformations in section 3 and show how to obtain fully explicit isothermal protocols, choosing
the shape of one characteristic quantity of the particle density function and deducing from it the appropriate
evolution of the control parameter. Finally, in section 4 we exhibit and analyze thoroughly the ‘phase diagram’ of
such protocols. We proceed to show that it largely depends on whether the transformation is a compression or a
decompression, and work out the various properties of these protocols, such as existence, crossover to the
overdamped regime, position-velocity decoupling or also transient negativity of the stiffness. We supplement
this by a discussion on the shape of the temporal evolution of the stiffness, through the comparison between the
relevant timescales of the problem. We also analyze the robustness of the phase diagrams with respect to the
shape of the protocol, and comment on the change occurring in the protocol when its duration is decreased. We
conclude in section 5.

2. General formalism

The ESE protocol brought to the fore in [28] addressed the case of an overdamped confined Brownian object.
While the overdamped limit is suited for colloids in a solvent like water, it is desirable to study the generalization
of the idea to underdamped situations, when inertial effects no longer are negligible, such as for an Atomic Force
Microscope tip where friction is on purpose reduced as much as possible [43], or for the study of a levitated
nanoparticle in air where friction can be tuned through gas pressure [44]. Generically, when viscous friction is
not high compared to the other characteristic frequencies of the problem, one should include the velocity
degrees of freedom in the description in addition to positional ones; the overdamped approximation, on the
other hand, assumes that the former are equilibrated at all times. To extend the ESE method proposed in [28] to
the underdamped description of an object immersed in a thermal bath trapped in a confining potential, we
introduce the probability density function K(x, v, t) of the position x and velocity v of the particle. It obeys the
Kramers equation

8’CU8VK = 70,(vK) + ka—TaﬁK, )]
m m

3:K + VaxK -

where U(x, f) is the confining potential, 11y the damping coefficient in the fluid with 1 the mass of the particle,
kg the Boltzmann constant and T the temperature of the bath. At thermal equilibrium, this probability density
function is simply given by the Boltzmann law

(@)

2
Keq(x, v) = Ko exp(— U) - )

kg T 2kg T

To connect an initial equilibrium state characterized by the potential U(x) and the temperature T;to a final
equilibrium state (Ug(x), Ty), we assume that the probability density function keeps a Gaussian form in v during
the transformation

K(x, v, t) = exp(—A(x, t) — B(x, t)v? — D(x, t)v). 3)

This ansatz, inspired by previous works on Boltzmann equation where it results from the use of Boltzmann H-
theorem [27], remains operational here. In equation (3), 1/B plays the role of a kinetic temperature, that should
at equilibrium coincide with that of the bath (T), but is otherwise distinct. It is worth emphasizing here that the
bath temperature can be time dependent. In the colloidal realm for example, this is achieved by an appropriate
random shaking of the confinement potential [45, 46], which creates an effective temperature for the Brownian
object while the true bath temperature remains constant.

In the spirit of ESE techniques, we do not impose the control function/parameter U(x, t) and T(¢)
beforehand to study the response of the system through the functions .4, 3 and D. On the contrary, we adopta
reverse engineering point of view, namely we choose a desired dynamics for these functions and deduce from it
the temporal evolution of the control parameters that needs to be enforced to perform the chosen dynamics.
Functions A, B, D and control parameters Uand T are linked via a set of equations that we obtain by plugging
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the ansatz form (3) into the Kramers equation (1) and sorting the v*,v*, vand constant terms

B =0, (4a)
2
_B- 0D = 27(28 kT _ B), (4b)
m
-D - 6A+2a B= 7( D+4 BD) (4¢)
. 2
“A+ %U L _ 7(1 4 DksT —ZBkBT), (4d)
m m m

where the dot stands for time derivative. This set of equations, general within the ansatz (3), must be obeyed to
connect the two imposed equilibrium states. Of course, they have to be adapted to specific protocols with desired
constraints, such as duration of the protocol, amplitude of the transition and number and nature of control
parameters. The knowledge of the existence of at least one of these specific protocols is in general not a simple
task, as we will see later. However, let us focus on these equations and try to extract as much information as we
can. They describe Gaussian compressions and decompressions with transport when U(x, t) remains quadratic,
but the x part of the particle density function can also stray from the Gaussian shape when arbitrary potentials
are used. For clarity and simplicity purposes, we will restrict ourselves to harmonic potentials of angular
frequency w(t) (stiffness k = muw?) and center position xo(f)

mw?(t)

U, t) = [x — xo()%, (©)

soas to carry outa compression or a decompression from the initial state characterized by (w;, T;) to the final
state (wp Tp). With this harmonic potential, our Kramers equation is linear in x and v, ensuring that the particle
density function keeps a Gaussian shape at all times. A first analysis of equations (4a) and (4b) shows that the
kinetic temperature 1 /13 is time dependent only and does not depend on space, and that D is linear in x

D(x, t) = [—B + 27(6 2BZkBT)]x + Dy(t). 6)

Integrating equation (4c) with respect to x then yields a quadratic form in x for A(x, t)

kB

2
Alx, t) = [ — 3B+ 121813’71‘B + 49828l L 0B 4 B — 12l 16(71‘B ) 33]%
m m

— 2w*Bxxy — Dox — (4BkB — I)Dox + w2Bxd + A(t),

()
where the function A(¢) is related to the normalisation of the distribution. Its temporal evolution can be left
aside from our study, as our Fokker—Planck equation conserves probability during the transformation. If we
plug expressions (6) and (7) into equation (4d), and sort out the monomials in x, we obtain the equations
controlling the time evolution of 5(t)

B —3yB+ 127kLT(B2 + BB) + 2oBBWkBT + 4y sz + 4w(WB + wB — YwB)
m m

k

+ 2428 — 3292855 kT
m

129282 =~ 2 IT
m

’}/kB T
m

+ 3223 B + 64( )BZB

2
+ SWZBZM + M—BT[BZ + 4282 + 166472(]‘5—T) — 167283]%—T] =0 (8)
m m m m

as well as the time evolution of Dy(t)

Bkg T
m

ks
m

Do + 7(4 - 1)D0 + [w +22 (3BT + 2BT — 24BT + 4By ks T )]DO
m

. kg T
+ x0(4wa + 3w?B + 27Bw? — 4w232l) + 2w?Bxy = 0. 9)
m
Both equations are informative. The first one is not very tractable in itself, but highlights that the inverse kinetic
temperature B is completely determined by the bath temperature T'and the trap stiffness w, and thus
independent of the transport part x,(t) of the transformation. On the other hand, the second equation tells us
that Dy(t) is fully induced by transport. With no transport, xo(f) vanishes during the whole transformation, and
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so does Dy(t) since initially Dy(0) = 0. Asaresult, D(x, t) is simply proportional to x, referring to equation (6).
Finally, coming back to equation (7), in a transport-free case, A(x, t) is itself simply proportional to x*.

3. Harmonic transport-free protocol

3.1. Simplified formalism

We now restrict to transport-less transformations, carried out by a time-dependent harmonic potential. A variant
of this problem was numerically solved in [47], and the corresponding protocol displayed discontinuities at initial
and final times. Here, we will provide an exact explicit solution while imposing smooth boundary conditions, in
order to create a protocol well-adapted to experiments. Our Kramers ansatz can be written in the lighter form

K(x, v, t) = N@®)exp(—a(t)x? — B(t)v? — §(t)xv), (10)

with the correspondence A(x, t) = a(t)x* — In N, where N(¢) is a normalization factor, B(x, t) = (8(t)and
D(x, t) = 6(t)x, the function 6(¢) being the amplitude of x — v correlations. The set of equations (4) then
comes down to

—&+ W= Mé% (11a)
m
L. (11b)
m

—b6 — 20 + 2B = —76 + 4Mﬁ5, (11¢)

m

with the following initial conditions

a(0) = =, alty) = 12a
0 T () 2T}, (12a)

m m
B0) = By = (12b)

2ks T} 7 ks,
6(0) = 6(tp) = 0. (12¢)
For the sake of simplicity, we now rescale all quantities and variables as follows
aEZkB?Oz, BE%BT'ﬂ, NE@, p=Y, k=fog, T=1, =L (13)
mw; mw;j wj Ki T; tr

We distinguish the rescaled quantities from the corresponding dimensioned ones by a tilde. From now on, the
dot stands for derivative with respect to rescaled time s. This rescaling yields the following set

& = 2N,R8 — 2N, T4’ (14a)
3 = —2N,6 + 2N, — 2N, T3, (14b)
§ = —N,a + N,&B + N,8 — 2N, T3 (14c)
with initial conditions

2

aO =1, a1 = (ﬂ L (15a)
wij Tf

~ o T

Ty
5(0)=56(1) = 0. (15¢)

We introduced the two dimensionless parameters N, = ytrand N,, = witsthat appear independently in
equations (14). They turn out to be two key parameters in the discussion within the underdamped framework. Indeed,
most of the physics of the problem stems from the comparison between the characteristic timescales, namely the time
associated with viscous friction 1/, the period of oscillation in the harmonic potential 1 /w or rather the position and
velocity relaxation times t, = 7/ w?andt, = 1/, and the duration trof the protocol, as will be discussed later on.
The two numbers N, and N, then simply compare the duration of the protocol with, respectively, the viscous time
and the duration of an oscillation in the potential. Note that for clarity, we use the initial oscillation time to define N,
as it would otherwise vary during the transformation, preventing us from performing a general analysis.

In an ESE approach, as highlighted above, we choose the dynamics of some of the parameters of the particle
density function (here among @, 3 and &, or combinations of them) and deduce from them the required
temporal evolution of the control parameters: here & (and possibly also the bath temperature [46]), that can be
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controlled experimentally. The three relations (14) include five unknowns (@, 3, 8, % and T). Therefore two of
the three functions @, ( and & can be chosen freely, while the last function and the two control parameters are
extracted from the equations. This choice is not unique, which is often an advantage, since it opens for a great
versatility of STA or ESE protocols; we will next see two particular ways to proceed.

3.2. Specification for a fixed temperature bath

The equations that control the system couple non linearly the functions &, 3 and & and the control parameters &
and T, turning out to be rather complex to solve explicitly. As building an explicit protocol is desirable for the
theoretical study of its properties as well as for the experimental implementation of the transformation, we further
restrict our investigation to isothermal transformations T = 1. In this case, our set of three equations becomes

& = 2N,RS — 2N, 87, (16a)
3 = —2N,6 + 2N, 3 — 2N, 37, (16b)
§ = —N,& + N,&B + N,8 — 2N, 35 (16¢)
and the initial conditions are

~ ~ wr :

am=1, al=|2L]|=x (17a)
Wi

B =81 =1, (17b)
5(0) = 6(1) =0, (17¢)

where X = £/ k;is the compression factor. Although the bath temperature T is constant, the kinetic
temperature 1/ is in general not. The overdamped limit of this isothermal case, where the kinetic temperature
is supposed to stay at equilibrium at all times and consequently discarded from the treatment, was previously
addressed in [28]. Here, in the underdamped regime, the problem is intrinsically more complex as both position
and velocity distributions (via the functions @, (3 and 8) need to be engineered only through the stiffness &.

In this particular isothermal case, we rephrase our set of three equations in a way that naturally leads to an
explicit expression of the whole protocol. We first introduce the quantity a and its rescaled equivalent @

52
a=a— —,
40
%2
aZZkala:a—i. (18)
mw; ﬁ
It directly relates to the position-variance (width of the marginal distribution of the position of the particle)
+o00 a(t) 5
P(x, 1) = f K1) = |2 exp(—an)xd). (19)
—00 ™

Consequently a is a measurable quantity, whereas the physical information borne by «v is more elusive, and it is
advantageous to work with & rather than @. Using equations (16), it is easy to obtain a differential equation on a

d=2N, i a. (20)
g
Then we extract 6 from equation (16b) and get
B=-B% +2N,3 - 2N, 3~ 1)
a
Itis convenient to define
A =aj (22)
in order to recast equation (21) as
K =2NX(1 - D). (23)

It turns out that all the used quantities can be expressed in terms of A and its derivatives. Indeed, from
equation (23), (3 reads

B=1- — (24)
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and @ follows from the definition of A (equation (22)). Then the expression of 8 stems from equation (20)

g _Pa_
2N, a

(25)

and @ from its definition (16a) together with equations (24) and (25). Finally, the control parameter K (s) can be
read on equation (164)

F=—=+ —0. 26
7 - (26)

3.3. Towards explicit protocols

The above hierarchy of equations is convenient to devise explicit protocols, and they consequently fully qualify
as STA or ESE in spirit. Indeed, the starting point provided by equations (16) is not convenient, for these coupled
equations involve the unknown forcing time-dependent term 7, a function that needs to obey subtle properties
to be compatible with the boundary conditions (17). Thus, as such, the problem is not amenable to numerical
solution, since it is of a functional-shooting type: find the proper family of % (s) enforcing the desired final
condition. On the other hand, equations (22), (24), (25), (16a) and (26) pave the way to a simple analytical
solution: we first choose the shape of Z(s) and subsequently deduce from it the evolution of 3 making use of
(24), from which 4 is known invoking (22); 6 then follows from (25), @ from (164) and the desired forcing is
computed, at the end of the chain, with equation (26). That solution is referred to as Protocol A.

We emphasize that special attention has to be paid to the temporal boundary conditions, as in every
shortcut-to-adiabaticity-type procedure, in order to avoid excitations of the system when reaching equilibrium,
at the end of the protocol. In addition, a protocol that is smooth enough at initial time, when launched, is more
conducive to a successful experimental realization. We thus enforce the same boundary conditions at initial time
s = Oand final time s = 1, but it can be kept in mind that a different choice can be made ats = 0, under the
proviso that the boundary conditions at s = 1 are as above. Equations (16) imply that the first derivative of @, 3
and & vanishes at initial and final times, and so does the first derivative of @. This condition on the first derivative
of & also forces the second derivative of & to be zero, through equation (25). In turn, this imposes the same
condition on the second derivative of 3. Altogether, this requires at least that the first three derivatives of Z(s)
are zero at the final time. Finally, the values of A atinitial and final times are simply K(O) = land Z(l) = X.

For the sake of simplicity, we choose a polynomial for A. The lowest order admissible function reads
A(s) = 1 4 (x — 1)(35s* — 84s° + 70s° — 2057). Q27)

This method is straightforward, and singles out A, over which ‘control’ is exerted. It is a combination between
the width of the position distribution and the kinetic temperature (related to the velocity distribution), and thus
arather ‘secondary’ quantity. Our goal is next to present an explicit variant, where another quantity is controlled,
with more direct physical meaning.

Another route towards an explicit protocol consists in choosing the inverse kinetic temperature 3 (s) and
deducing from it the other functions, through the same aforementioned hierarchy. The temporal boundary
conditions required for B(s) are again B(0) = B(1) = 1and the first two derivatives vanish at initial and final
times. Once G (s) is chosen, d (s) is obtained integrating equation (21)

o s
a0 = 55 eXp(ZNAI, fo du(1l 5(u))) (28)

while the other quantities can be expressed in terms of functions @ and /3. The initial condition a (0) = 1is
fulfilled since 5 (0) = 1, but the final condition @ (1) = x imposes an additional integral constraint on the
chosen G (s)

1 ~
2N, fo ds(1 — B(s) = Inx. (29)

For the previous procedure, only A and its derivatives were employed to express all the other functions, so that
specifying the boundary conditions of A was enough to ensure the right initial and final states. Here, the solving
procedure involves an integral of the chosen function B (s) in equation (28). As aresult, the initial and final states
cannot be both encoded in the temporal boundary condition of 3 and yield the integral constraint (29). Note
that this relation is true whatever the protocol, and is in particular automatically verified for protocol A when A
has smooth enough boundary conditions. We coin this variant ‘protocol B’.

Finally, a more natural quantity to choose and control would be the inverse variance of position a (s).
However, there is no straightforward solution of the equations in terms of 4 (s), as there was in terms of Nor .
Moreover, a numerical resolution of the hierarchy of equations in terms of 4 necessarily involves a numerical
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Figure 1. Phase diagram of the underdamped protocol A for a compression in the (N, = vt; N, = w;ty) plane, inalog-logscale. The
colors of the inset curves correspond to the different sectors defined (while the white region is ‘neutral’ regarding all the properties
discussed in this section). The overdamped regime is represented in green and can be extended to the hatched region (see

paragraph 4.1.2). In the middle and bottom right insets, the solid curves display the stiffness & (computed within the full
underdamped formalism), while the dashed curves are for its overdamped counterpart. The middle right inset is for a state point
within the overdamped region, while the bottom right is not (and hence, the dashed and continuous curves are distinct). Thex — v
decoupling zone is blue (see paragraph 4.1.3), and the corresponding inset shows the collapsed evolution of 4 and @&. The zone of non-
existence of the protocol is represented in red (see paragraph 4.1.1), and the behavior of the functions @ and 3 near the boundary of
this region is shown in the left inset in red. Finally, the region where % becomes transiently negative (see paragraph 4.1.4) is in purple.
Here, the compression factoris y = 2, Xis given by equation (27), and the set of (N, N,,) parameters is indicated by the position of
the dots on the phase diagram. The straight thin black line represents a ‘trajectory’ followed in the phase diagram when the duration ¢,
of the protocol is decreased, all other parameters being fixed (see figure 5 for further details). The stars correspond to the different
curves presented in figure 5.

integration of a differential equation, for example equation (28). Even a careful choice of the boundary
conditions of 4 fails to produce reliably the desired initial and final states for the transformation. We meet again
a functional-shooting problem, where the function 4 (s), which is a parameter of the following equation

N PR | (30)
a

has to be tuned so that the solution A fulfills the desired initial and final conditions. Equipped with protocols A
and B, we are nevertheless in a position to discuss the robustness of our main findings.

4. Charting out the phase diagrams of the problem

We now study the characteristics of protocol A, as a function of the two dimensionless parameters N and N,,..
We focus in particular on the very existence of the protocol, on the applicability of the overdamped limit, on the
decoupling of the x and v degrees of freedom, and on the temporal evolution of the only control parameter of the
problem, namely the stiffness & of the trap. We represent this thorough study on two phase diagrams in figures 1
and 2. They of course depend on the characteristics of the desired transformation, as will be discussed later on;
we have chosen here a compression factor y = 2 for figure 1 and a decompression factor y = 0.5 for figure 2.

4.1. Zones of the phase diagrams

4.1.1. Existence of the protocol

We first investigate the existence of the underdamped protocol itself. For the underdamped ansatz (10) to be
well-defined, the functions @ and B, as well as @, must remain positive during the whole transformation; our
ansatz is otherwise divergent. However, the expression (24) shows that 3 is positive only as long as

X <2NA. 31)

This criterion can always be satisfied in the case of a decompression, where A canbe chosen monotonically
decreasing whatever the value of N, while Ais by construction always positive. On the other hand, fora
compression, low values of N, can make the function 3 become negative, resulting in a diverging ansatz. This
happens typically when N, is of order 1. The exact threshold of course depends on the chosen shape of Aand the
compression factor X, as will be discussed later. Moreover, since the product A = &E is fixed and positive, 4
and B are always of the same sign. As for &, it is also positive when B (and thus a) is positive too. Therefore, the
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x — v correlations
disappear

— N.
K transiently  overdamped =7

negative limit

Figure 2. Phase diagram of the underdamped protocol A for a decompression in the (N, N,,) plane. The color code is the same as in
figure 1, and the compression factor y is 0.5. In a symmetric fashion compared to quick compressions where the stiffness exhibits
strong overshoots, quick decompressions rely on a stiffness that involves a strong undershoot (see the three insets). Exceeding the
target value of the stiffness (upwards for a compression, downwards for a decompression) is a means to accelerate the transformation.
For very quick transformations, the shape of the stiffness can become very complex and display two undershoots as illustrated by the
left two insets. Again, the straight thin black line represents a ‘trajectory’ followed in the phase diagram when the duration ¢of the
protocol is decreased, all other parameters being fixed, and the stars correspond to the different curves of figure 5.

only region of the compression phase diagram where the ansatz is ill-defined is the left half-plane under a
threshold NJ™ of order unity. The ansatz is on the other hand well-defined in the whole decompression phase
diagram.

Weillustrate this on figure 1, where & and {3 are plotted near the boundary of the existence region, on the red
left inset curves. We notice that the minimum of 3 tends quite quickly to zero when N, is decreased around one
and that in turn, & becomes very large in this region. When the inverse kinetic temperature 3 goes to zero, the
velocity distribution of the particle becomes very broad and the kinetic temperature diverges. In order to keep a
control on the particle, the stiffness of the confinement has to increase dramatically, yielding a very peaked 4, as
illustrated. In this region, where the protocol can be considered fast since it no longer allows for velocity
equilibration, it is necessary to use large stiffness to obtain the desired compression, which provides work to the
system. This results in a heating, marked by the drop of 3.

Our approach fails when the duration ¢;of the compression protocol is of the order of the friction time 1/7y
(see figure 1, leftarea). This can be overcome by using a non-conservative potential that would penalize high
velocities and then prevent this dramatic increase of the kinetic temperature, as suggested in [40, 42]. On the
other hand, for a decompression, the kinetic temperature cannot diverge during the transformation, and our
approach remains valid at any friction in this case, without needing a non-conservative potential. We stress that
realizing such forces in an experiment can be a challenge, while the conservative case worked out here is
routinely employed with optically confined colloids (see [45] and references therein).

4.1.2. Overdamped limit
Next, we consider the overdamped limit and show that we can recover the results obtained in [28] from the
underdamped formalism developed here. We also determine the regime of validity of the overdamped
approximation, which amounts to treating the velocity degrees of freedom as equilibrated at all times. As their
distribution relaxes to the Gaussian distribution on a timescale 1/, the overdamped approximation requires
this time to be much smaller than the other timescales of the problem; in our notations, this leads to N, >> 1 and
N, > N,,. Note that in the following, A(s)is kept unspecified for the sake of generality, but is always of ‘order 17,
in that it is chosen independently of N.,and N,,.. Moreover, the following discussion holds both for a
compression and a decompression.

To investigate the overdamped limit, we focus on the temporal evolution of the stiffness of the potential .
Starting from the overdamped formalism, it was found in [28] to be related to the function d (s) of equation (19)
through

N, &
2N2a

K —a=

(32)

Therefore, we concentrate on the quantity & — 4 in the regime N, > 1and N, > N,,.. Using
equation (16a), (18)and (20), we obtain
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f_a—all 1)y 2,8 _F6) | Mg
R a—a(g 1)+55(23 32]+2N3,aﬂ' (33)

This expression can be developed in power series of N,. We emphasize that in the limit of large N.,, {3 remains
close to one (as expected, the kinetic temperature is equilibrated at all times with the bath temperature), and 4 is
then approximately A, which does neither depend on N, nor on N,,.. This yields

a(; _ ) _ A8 ol L G
g 4N, A N;

g[zﬁ_ﬁ]Jr Ny o Nwﬁg

ba

1
3 B 2Na 2NZa 1+O[Eﬂ 4>

with O denotinga term of order of the argument. Finally under the assumption N, > N,,, we can compare the
leading term of equations (34) and (35)

and

aA N, d ~
= —0 | (36)
2N, A N,a
and we obtain
N, 4 N?
Foa=—221 40|+ o] 2|, (37)
2Nj a N, Ny

This matches exactly equation (32) in the overdamped limit, as expected when N, >> N, and N, >> 1. This
expression is also informative on the scalings with respect to N, and N, of the corrections to the overdamped
asymptotics. Yet, a subtlety should be outlined here, and it is related to the polynomial shape chosen for Z(s).
When our parameters qualify the protocol as belonging in the overdamped regime, 4 inherits this functional
form, which is slightly more complex than the one chosen in [28], where the smoothness requirement only
concerns its first derivative. Indeed, the underdamped protocol requires more derivatives to vanish than its
overdamped counterpart as discussed in paragraph 3.3, which results in a polynomial Z(s) of higher order. Note
here that comparing directly the stiffness & computed within the full underdamped formalism to the
overdamped one, instead of focusingon & — 4, yields alooser criterion: N, > 1withoutany condition on N,
asrepresented on the phase diagrams 1 and 2 in hatched green.

To conclude this discussion, we point out that our criterion for the overdamped limit differs from the one
given in [42], which can be rephrased as N, < N,. This discrepancy likely comes from the fact that the authors
impose that the temperature of the particle (our inverse 3) remains constant during the transformation. Though
this choice offers much simpler calculations, it requires to implement a potential that is quadratic in impulsion,
therefore creating a set-up that strongly strays from ours, where the protocol only involves conservative drivings.

4.1.3.x — vdecorrelation
An interesting characteristics of the protocol is whether or not position and velocity degrees of freedom are
correlated. This correlation is measured by comparing the (squared) cross term 5% tothe product of position and
velocity variances &f3. In particular, these correlations vanish when @ collapses onto @. Following the definition
of @ in (18) and of Ain (22), thisamounts to the criterion |§]* < |Z|,

Going back to expression (25) for §,we see that its scaling depends on that of 3. At large N, B ~ 1sothat &
scales as 1/N,,. On the contrary,for low N, (that only concern decompressions as discussed in the
paragraph about the existence of the protocol), 3 scales as 1 /N, so that b scalesas 1/(N,, N.). The criterion

16 < |Z| then takes two different shapes in the limits of high and low N.,. For high N.,,x and v degrees of
freedom are decorrelated for N2 > 1,which is confirmed by the two phase diagrams (see figures 1 and 2). On the
other hand,for low N, and for decompressions,decorrelation arises when N,, > 1/N.,. This is also confirmed by
the decompression phase diagram (figure 2), where the left frontier of the decorrelation area has a slope —1 in
doublelogscale. The border of this region is determined numerically as the curve on which the relative
difference between d and @ is of one percent.

4.1.4. Implementation challenges and ESE relevance

Finally, a primordial aspect of a protocol such as devised here lies in the characteristics of the control parameter
R that needs to be enforced experimentally to achieve the desired transformation. The main experimental
challenge arises when the stiffness of the trap becomes transiently negative. In this case, the potential switches
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Figure 3. Compression (top) and decompression (bottom) diagrams in the plane (N,, N,,), showing the behavior of the stiffness
during the protocol, while comparing the three timescales, namely the duration of the protocol t5 the position relaxation time ¢, and
the velocity relaxation time t,. Dashed lines indicate where two of these timescales are equal, and define six zones. The red ones
represent the set of (N, N,,) for which the ESE protocol is slow (#/is the largest timescale) and then less interesting. The green ones on
the contrary indicate areas where the ESE protocol is interesting for a relaxation shortcut (t/is not the largest timescale). The grey areas
show features from figures 1 and 2, that is the non-existence zone for compressions and the negative stiffness zone.

from confining to repulsive, a feature that cannot be achieved simply with an optically trapped colloid. We
determine numerically the part of the phase diagram where this change in the sign of the trap curvature takes
place; it is represented in purple on figures 1 and 2.

The global behavior of the stiffness has a complex dependence on the physical parameters N, and N,,.. We
capture this diversity with figure 3, where we represent the shape of the stiffness as a function of rescaled time s
for representative points of the phase space (N, N,). From the phase diagrams of figures 1 and 2, we only keep
the features that concern the implementation of the protocol, namely the non-existence area for compressions,
and the aforementioned zone where the stiffness is transiently negative. Insights into the zoology of behaviors of
the stiffness can be gained by comparing the three timescales of the problem, namely the duration of the protocol
t;; the timescale of position relaxation ¢, = 7/ w? and the timescale of the velocity relaxation t,, = 1/, which are
combined in N, and N,,.. Note that the maximum of these last two timescales defines the global relaxation
timescale of the problem. On figure 3, the dashed lines indicate where these timescales are equal two by two, and
the different colors stand for the six possible orders of the three timescales. We emphasize that for ESE purposes,
the two red areas, where the protocol is slower than the global relaxation scale of the problem, are less interesting
than the green areas where position or velocity (or both) relaxes more slowly than the protocol. The most

10
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interesting set of parameters (N, N,,) ESE-wise are therefore the green zones of these two diagrams out of the
grey-shadowed areas.

Determining the shape of the stiffness from general considerations on our explicit protocol is challenging, as
it involves several quantities that themselves depend non trivially on N, and N, (see equation (26)). However, we
can grasp some features of the shape of the stiffness with the help of the diagrams of figure 3. First, the stiffness
has a very smooth behavior in the red zones, as expected, where the protocol is slow compared to the intrinsic
dynamics of the system. Atlarge N., in the region where the stiffness is appropriately described by its
overdamped expression (37) as discussed in section 4.1.2, the dependence on the parameters N.,and N, of the
stiffness required to perform the transformation is proportional to N, / N? (see equation (32)), i.e. ./ tr. Then the
region where the amplitude of the stiffness is large compared to 1 corresponds to the part of the diagrams that is
well below theline ¢ = t,, as shown on the bottom right insets for compression diagram and most of the bottom
insets for the decompression diagram. The farther from the line t; = t,, the greater the amplitude of the stiffness.
This tendency to have large variations in the stiffness is also amplified when ¢fbecomes smaller than t,, as shown
on the two bottom left insets of the decompression diagram. Finally, the regions in dark green, where ESE
protocols are highly desirable because shorter than both position and velocity relaxation times, display extreme
shapes of stiffness. These bizarre shapes result from the difficulty to control the evolution of both position and
velocity, which cannot equilibrate themselves that quickly, with only one control parameter.

4.2.Robustness of the phase diagrams

We have analyzed above protocol A phase diagrams, in which some details can depend on the functional choice
made for the chosen Z(s). We now quickly address protocol B properties, as a means to put to the test the
robustness of our findings. In this discussion, we choose to only address protocols where the kinetic temperature
is temporarily increased in the case of a compression (resp. decreased in the case of a decompression). In other
words, we suppose that /3 (s) is always smaller than one (resp. bigger than one). This is equivalent to restricting to
monotonous A (s), asindicated by equation (23). As A (0) = land Z(l) = X, this function remains bounded,
irrespective of the values of the parameters N, and N,,.. The previous discussions about the overdamped limit and
the decorrelation of position and velocity degrees of freedom are therefore still valid. These areas are then
completely robust with respect to the exact shape of the protocol.

On the other hand, the exact position of the region where the ansatz no longer exists depends on the shape of
the chosen function 3 for protocol B or A for protocol A. The corresponding boundary is always a vertical line
in the compression phase diagram, as equation (23) does not involve N.. The most favorable case, in which the
existence domain is the largest, corresponds to a situation where 3 (s) is flat during almost the whole
compression (except near initial and final times to fulfill the temporal boundary conditions). Together with the
fixed integral (29) for 3, this indicates that the protocol-dependent existence threshold N;,“in is always such that

NP > me (38)

Therefore this non-existence zone is a generic feature of the process and cannot be eliminated by tinkering with
the shape of the protocol. In particular, there is no way to devise a very fast isothermal compression protocol:
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Figure 5. (a) Evolution of the functions % (s), 8(s), B(s), @ (s) when the duration trof the protocol is decreased, thereby moving along
the thin black bisectrix in figures 1 and 2 (w; = ). The left column is for a compression (x = 2) and the right column is for a
decompression (x = 0.5). Both columns are for protocol A (with equation (27)). The color code is explained in the upper logarithmic
time arrow. The red curves are thus for the faster protocol, that we omitted for decompression, as it does not bring a different
information from the orange curve. (b) Illustration of the relation between the sign of ¢ and the monotony of a. If § is positive, the
particle density function tends to compress whereas when it is negative, it tends to expand.

tr> v~ (Iny)/2. This is a strict lower bound, thai can be significantly exceeded in cases where Ais non-
monotonous (protocol A), or equivalently when ([ presents an overshoot (protocol B). The integral of 3 (s)
being fixed by equation (29), such an overshoot necessarily needs to be compensated by lower values of 3 (s)ina
different part of the transformation, therefore approaching the forbidden zero value. This may endanger the
convergence of the ansatz and thus provide a further reason to dismiss non-monotonous A.

As for the rather exotic shapes of the stiffness & discussed earlier, we show in figure 4 the differences between
protocols A and B. As expected from the hierarchy of equations, a slight modification in the driving function
yields significant changes, affecting all other quantities, including %. However, figure 4 indicates that the
essential features reported in the phase diagrams are robust with respect to a protocol change.

4.3. Consequences of accelerating the protocol

We finally address the effect of accelerating the protocol (diminishing t; other parameters being fixed). How do
the functions a (s), 3 (s), 6 (s) and most importantly the stiffness % (s) evolve? The results are reported in

figure 5(a). For this ‘cut’ across the phase diagrams (line of slope 1), we choose N., = N, i.e. w; = +y(straight
thin black line in figures 1 and 2). This corresponds to the situation where ¢, = t,.

In figure 5(a), the purple curves represent a very slow transformation. As expected, the stiffness & (s)
interpolates smoothly between the boundary values, and is well followed by the inverse variance of position 4 (s):
the dynamics is indeed slower than the timescales ¢, and t,. The velocity distribution always remains at
equilibrium with the inverse kinetic temperature (3 (s) that stays close to 1. Velocity and position degrees of
freedom are decoupled, as shown by a very low crossed term 6 (s).

When the protocol duration #;decreases, the inverse kinetic temperature deviates, temporarily but more and
more, from its unit equilibrium value, undergoing a transient heating for a compression and a transient cooling
for decompression. As explained in paragraph 4.1.1, the protocol no longer exists for too fast a compression,
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since (3 (s) becomes temporarily negative, preventing the ansatz for the particle density function from being
well-defined. We also observe a change of sign in the crossed term & during the transformation. As this quantity
is proportional to the derivative of d (s) (see equation (25)), a change of sign transposes into a change of
monotony of d (s), as illustrated in figure 5(b). This can be understood as follows. We first recast our ansatz (10)
as

2
K, v, t) = N(t)exp(—ax2 — B(V + i—;) ), (39)
so as to bring out alocal mean velocity (vio.) (x) = —6x/(23). The sign of ¢ then indicates the tendency for the

local velocity, as sketched in figure 5(b). This yields a compression if § is positive and a decompression if § is
negative. Indeed, the variance of the position decreases for a positive ¢ and increases in the opposite case (see
figure 5(a)).

When t;diminishes, d (s) steepens, leading to a pronounced overshoot for a fast compression (resp.
undershoot for a fast decompression). Finally, the corresponding trap stiffness turns into a complicated non-
monotonic function for fast protocols, with negative portions as well as peaked variations, as discussed in
paragraph 4.1.4. This rather unexpected behavior stems from the fact that controlling the dynamics of both the
position and the velocity of the system with only one control function, the harmonic force depending on
positional degrees of freedom only, is a delicate task. Figure 5(a) highlights the difficulty faced when devising an
ESE protocol, since even in a case where trexceeds the natural relaxation time by a factor three (yellow curves),
the driving force and associated response significantly depart from their quasi-static counterpart.

5. Conclusion

In this article, we provide a general framework to study ESE beyond the overdamped regime in which it was
initially formulated. A Brownian particle is here confined in a harmonic potential, the stiffness of which can be
changed in time as desired. In addition, the thermal bath is allowed to have a time-dependent temperature T. As
surprising as this situation might appear, the latter T-control is achievable in the laboratory with, for instance,
optically confined colloids [45, 46]. Trap stiffness and temperature are the two driving functions, that need in
general to be carefully shaped to meet the desired goal: reaching the target state at the end of a chosen time #; Yet,
the formalism becomes cumbersome when T'is time dependent, and explicit solutions become elusive. ESE
techniques being designed especially for experiments and concrete applications, it is crucial to be able to exhibit
such an explicit protocol. For this reason, we restricted our discussion to harmonic isothermal transport-free
transformations, that is to say compression and decompression, where the formalism gets significantly simpler.
Trap stiffness is thus the only quantity that is monitored by the experimentalist.

We discussed the explicit and analytical methods that can be employed, and analyzed the corresponding
protocols as a function of the two key quantities of the problem, formed by the ratio between the relevant
characteristic timescales. We summarized this analysis in two phase diagrams and discussed the range of
applicability of our approach, that is ‘limitation-free’ in the case of a decompression and limited to protocols
longer than some lower bound ruled by the friction time in the case of compression. We also investigated core
characteristics of our protocol, such as the crossover to the overdamped limit (where algebra is much simpler).
Some attention was also paid to the relevance of the ESE protocol for each set of parameters, leading to
investigate the influence of the protocol duration compared to the relaxation timescales on the shape of the trap
stiffness. Finally, we discussed the robustness of the phase diagrams presented, by comparing the outcome of two
distinct protocols in a parameter range where rather exotic drivings emerge.

Interesting venues for future work include extending our treatment to baths with time-dependent
temperature. This additional driving degree of freedom presumably leads to more regular protocols. Roughly
speaking, the stiffness will ensure the compression or decompression in position space while temperature will
take care of the velocity degrees of freedom. We thereby expect to overcome the limitations brought to the fore
here, such as the non-existence of the underlying ansatz (which may become un-normalizable) and the odd
shape of the stiffness. A first evidence of such an experimental achievement is presented in [46] where an
effective modulation of the bath temperature allowed to perform a quick decompression without having to
resort to a transiently negative stiffness. Our work also opens interesting perspectives for transformations
including transport. Finally, the study of non-harmonic driving, energetics, and optimal features appears timely.

13



10P Publishing

New]. Phys. 20 (2018) 075003 M Chupeau et al

Acknowledgments

This work as been supported by the ERC contract OUTEFLUCOP. We acknowledge funding from the
Investissement d’Avenir LabEx PALM program (Grant No. ANR-10-LABX-0039-PALM). We also thank A
Prados, C Plata, A Chepelianskii and O Dulieu for insightful discussions.

References

[1] Torrontegui E et al 2013 Shortcuts to adiabaticity Adv. At. Mol. Opt. Phys. 62 117-69
[2] ChenX, Ruschhaupt A, Schmidt S, del Campo A, Guéry-Odelin D and Muga J G 2010 Fast optimal frictionless atom cooling in
harmonic traps: shortcut to adiabaticity Phys. Rev. Lett. 104 063002
[3] Demirplak M and Rice S A 2003 Adiabatic population transfer with control fields J. Phys. Chem. A 107 9937-45
[4] Berry M 2009 Transitionless quantum driving J. Phys. A: Math. Gen. 42 365303
[5] AnS,Lv D, Del Campo A and Kim K 2016 Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase
space Nat. Commun. 7 12999
[6] Muga], Chen X, Ruschhaupt A and Guéry-Odelin D 2009 Frictionless dynamics of Bose—Einstein condensates under fast trap
variations J. Phys. B: At. Mol. Opt. Phys. 42241001
[7] TorronteguiE, Ibéfiez S, Chen X, Ruschhaupt A, Guéry-Odelin D and Muga ] 2011 Fast atomic transport without vibrational heating
Phys. Rev. A83 013415
[8] Zhang Q, Chen X and Guéry-Odelin D 2017 Reverse engineering protocols for controlling spin dynamics Sci. Rep. 7 15814
[9] Masuda S and Nakamura K 2008 Fast-forward problem in quantum mechanics Phys. Rev. A 78 062108
[10] Masuda S and Nakamura K 2009 Fast-forward of adiabatic dynamics in quantum mechanics Proc. R. Soc. A 466 1135
[11] Martinez-Garaot S, Torrontegui E, Chen X and Muga ] 2014 Shortcuts to adiabaticity in three-level systems using Lie transforms Phys.
Rev. A 89053408
[12] Torrontegui E, Martinez-Garaot S and Muga J 2014 Hamiltonian engineering via invariants and dynamical algebra Phys. Rev. A 89
043408
[13] Stefanatos D, Ruths J and LiJ-S 2010 Frictionless atom cooling in harmonic traps: a time-optimal approach Phys. Rev. A 82 063422
[14] ChenX, TorronteguiE, Stefanatos D, Li J-S and Muga J 2011 Optimal trajectories for efficient atomic transport without final excitation
Phys. Rev. A 84043415
[15] Garon A, Glaser S and Sugny D 2013 Time-optimal control of SU(2) quantum operations Phys. Rev. A 88 043422
[16] Glaser ST etal2015 Training Schrodinger’s cat: quantum optimal control Eur. Phys. J. D 69 279
[17] Bason M G, Viteau M, Malossi N, Huillery P, Arimondo E, Ciampini D, Fazio R, Giovannetti V, Mannella R and Morsch O 2012 High-
fidelity quantum driving Nat. Phys. 8 147-52
[18] DuY-X, Liang Z-T, Li Y-C, Yue X-X, Lv Q-X, Huang W, Chen X, Yan H and Zhu S-L 2016 Experimental realization of stimulated
Raman shortcut-to-adiabatic passage with cold atoms Nat. Commun. 7 12479
[19] Couvert A, Kawalec T, Reinaudi G and Guéry-Odelin D 2008 Optimal transport of ultracold atoms in the non-adiabatic regime
Europhys. Lett. 83 13001
[20] Bowler R, Gaebler J, Lin Y, Tan T R, Hanneke D, Jost ] D, Home J, Leibfried D and Wineland D J 2012 Coherent diabatic ion transport
and separation in a multizone trap array Phys. Rev. Lett. 109 080502
[21] Walther A, Ziesel F, Ruster T, Dawkins S T, Ott K, Hettrich M, Singer K, Schmidt-Kaler F and Poschinger U 2012 Controlling fast
transport of cold trapped ions Phys. Rev. Lett. 109 080501
[22] Zhou B B, Baksic A, Ribeiro H, Yale C G, Heremans F J, Jerger P C, Auer A, Burkard G, Clerk A A and Awschalom D D 2017 Accelerated
quantum control using superadiabatic dynamics in a solid-state lambda system Nat. Phys. 13 330—4
[23] del Campo A 2013 Shortcuts to adiabaticity by counterdiabatic driving Phys. Rev. Lett. 111 100502
[24] Rohringer W, Fischer D, Steiner F, Mazets I, Schmiedmayer ] and Trupke M 2015 Non-equilibrium scale invariance and shortcuts to
adiabaticity in a one-dimensional Bose gas Sci. Rep. 59820
Rohringer W, Fischer D, Steiner F, Mazets I, Schmiedmayer J and Trupke M 2015 Erratum: Non-equilibrium scale invariance and
shortcuts to adiabaticity in a one-dimensional Bose gas Sci. Rep. 5 10506
[25] DengS$, Diao P, Yu Q, del Campo A and Wu H 2018 Shortcuts to adiabaticity in the strongly coupled regime: nonadiabatic control of a
unitary Fermi gas Phys. Rev. A97 013628
[26] Deffner S, Jarzynski C and del Campo A 2014 Classical and quantum shortcuts to adiabaticity for scale-invariant driving Phys. Rev. X 4
021013
[27] Guéry-Odelin D, MugaJ, Ruiz-Montero M and Trizac E 2014 Nonequilibrium solutions of the Boltzmann equation under the action of
an external force Phys. Rev. Lett. 112 180602
[28] MartinezI A, Petrosyan A, Guéry-Odelin D, Trizac E and Ciliberto S 2016 Engineered swift equilibration of a Brownian particle Nat.
Phys. 128436
[29] Le Cunuder A, Martinez I A, Petrosyan A, Guéry-Odelin D, Trizac E and Ciliberto S 2016 Fast equilibrium switch of a micro
mechanical oscillator Appl. Phys. Lett. 109 113502
[30] Ho C-P and Tseng S-Y 2015 Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity Opt. Lett. 40
48314
[31] Impens Fand Guéry-Odelin D 2017 Shortcut to adiabaticity in a Stern—Gerlach apparatus Phys. Rev. A 96 043609
[32] Kaka, Pufall M, Rippard W, Silva T, Russek S and Katine ] 2005 Mutual phase-locking of microwave spin torque nano-oscillators
Nature437 389-92
[33] Blickle V and Bechinger C 2012 Realization of a micrometre-sized stochastic heat engine Nat. Phys. 8 143
[34] Dechant A, Kiesel N and Lutz E 2015 All-optical nanomechanical heat engine Phys. Rev. Lett. 114 183602
[35] Rofinagel J, Dawkins S T, Tolazzi KN, Abah O, Lutz E, Schmidt-Kaler F and Singer K 2016 A single-atom heat engine Science 352
[36] MartinezI A, Roldan E, Dinis L, Petrov D, Parrondo ] M and Rica R A 2016 Brownian Carnot engine Nat. Phys. 12 67-70
[37] Dechant A, Kiesel N and Lutz E 2017 Underdamped stochastic heat engine at maximum efficiency Europhys. Lett. 119 50003
[38] Deng]J, Wang Q-H, Liu Z, Hinggi P and GongJ 2013 Boosting work characteristics and overall heat-engine performance via shortcuts
to adiabaticity: quantum and classical systems Phys. Rev. E 88 062122
[39] Del Campo A, Goold ] and Paternostro M 2014 More bang for your buck: super-adiabatic quantum engines Sci. Rep. 4 6208

14



10P Publishing

New J. Phys. 20 (2018) 075003 M Chupeau et al

[40] Tu Z2014 Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity Phys. Rev. E 89 052148

[41] BeauM, Jaramillo J and del Campo A 2016 Scaling-up quantum heat engines efficiently via shortcuts to adiabaticity Entropy 18 168

[42] LiG, Quan Hand TuZ 2017 Shortcuts to isothermality and nonequilibrium work relations Phys. Rev. E96 012144

[43] Giessibl FJ 2003 Advances in atomic force microscopy Rev. Mod. Phys. 75 949

[44] Rondin L, Gieseler J, Ricci F, Quidant R, Dellago C and Novotny L 2017 Direct measurement of Kramers turnover with a levitated
nanoparticle Nat. Nanotechnol. 12 1130

[45] Bérut A, Petrosyan A and Ciliberto S 2014 Energy flow between two hydrodynamically coupled particles kept at different effective
temperatures Europhys. Lett. 107 60004

[46] Chupeau M, Besga B, Guéry-Odelin D, Trizac E, Petrosyan A and Ciliberto S 2018 Thermal bath engineering for swift
equilibrationarXiv:1801.09438v1

[47] Gomez-Marin A, Schmiedl T and Seifert U 2008 Optimal protocols for minimal work processes in underdamped stochastic
thermodynamics J. Chem. Phys. 129 024114

15



