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Abstract
The dynamical transition of an atomic Bose–Einstein condensate from a spatially periodic state to a
staggered state with alternating sign in its wavefunction is experimentally studied using a one-
dimensional phasemodulated optical lattice.We observe the crossover fromquantum to thermal
fluctuations as the triggeringmechanism for the nucleation of staggered states. In good quantitative
agreementwith numerical simulations based on the truncatedWignermethod, we experimentally
investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density,
and the driving frequency. The effective inverted energy band in the driven lattice is identified as the
key ingredient which explains the emergence of gap solitons as observed in numerics and the
possibility to nucleate staggered states from interband excitations as reported experimentally.

1. Introduction

Cold atoms in optical lattices provide powerful and versatile platforms for quantum simulators ofmany-body
systems [1–4], and give access to the rich out-of-equilibriumdynamics of such systems. A remarkable progress
for tunability was achieved by exposing lattice potentials to a time-periodic driving, whereby an effective
renormalization of the tunneling rate between adjacent sites can be induced [5–7]. This openedmany new
perspectives for quantum simulations with the possibility to engineer effectiveHamiltonians and study
topological phases [8]. Recent examples include the realization of theHofstadter [9] andHaldanemodels [10] as
well as the investigation of frustratedmagnetism [11].

While the single-particle physics appears to bewell explored in this context, present-day state-of-the-art
experiments focus on the investigation ofmany-body effects in driven lattices [12, 14, 15]. Indeed, interactions
between the atoms in the gas are of particular interest as theymay trigger dynamical quantumphase transitions
in the presence of the driving, e.g., to a ferro- or antiferromagnetic state of the gas [12, 15]. This opens new
avenues for engineering topological properties ofmany-body states. However, enhancing the role of interactions
within a cold Bose gas can also give rise to a loss of spatial andmany-body coherence [13, 14]3, which poses
additional challenges for the controllability of the resulting state.

To explore the interplay of such interaction-induced transitionswith the potential loss of coherence
properties in an elementary context, we focus on a Bose–Einstein condensate (BEC) that is prepared in a
one-dimensional (1D) optical lattice. A periodic shaking of the lattice is switched onwith an amplitude forwhich
the renormalized tunnelingmatrix element becomes negative. The quantumgas is thereby put in ametastable
situation inside the 1Doptical lattice. The presence of interactions will then trigger a dynamical instability which
changes the nodal structure of the underlyingwavefunction by inducing a transition from a periodic state
(without nodes) to an antiperiodic or staggered state (with regularly spaced nodes) for which neighboring sites
acquire opposite phases [5, 6, 17–19]. This phase transition can be readily observed inmomentum space after a
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The termmany-body coherence refers here toGlauber’s notion of coherence [16] applied to the Fock space of identical bosonic atoms. For

instance, a BEC can be represented by a perfectly coherent state, while a thermal or Fock state is incoherent in this sense.
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time offlight expansion [20], where itmanifests itself in formof new interference peaks at the edge of the
Brillouin zone that arise in between the ordinary static peaks (see figure 1(a)), as observed for instance in
[5, 6, 11]. Interestingly, despite its spatial interferability the resulting staggered state does no longer exhibit
many-body coherence (see footnote 4), which implies that this transition is not quantitatively accounted forwith
a standardmean-field approach.

In this article, we experimentally investigate the nucleation of such states in a 1D shaken optical lattice and
compare our result with Bogoliubov and truncatedWigner (TW) calculations. Our experiments are
complementary to nucleation studies of vortices in a rotating BEC [21–23], which provides another example of
phase transition triggered by a dynamical instability [24, 25]. In those latter experiments, however, the kinetics of
the transition could not be studied as a function of the density since the rotationweakens the transverse 2D
confinement.We report hereafter a variation by one order ofmagnitude of the nucleation time of staggered
states with the atomic density, and investigate experimentally and numerically the role of the renormalized
tunneling rate and themodulation frequency on the out-of-equilibriumdynamics.We clearly identify the
triggeringmechanism through quantumor thermalfluctuations.We finally determine the range of frequency
over which this nucleation can be observed and report on an accelerated transition to staggered states near
interband resonances within the lattice.

2.Dynamical instability in a drivenBose–Hubbard system

Our experiments were realized on our rubidium-87 BECmachine that relies on a hybrid (magnetic and optical)
trap [26]. The pure BECof 105 atoms in the F=1,mF=−1 state is loaded in a horizontal 1D optical lattice
(lattice spacing d=532 nm) by superposing two counterpropagating lasers. The latticemodulation of the
intensity occurs along the x axis referred to as the longitudinal axis in the following. The relative phase between
the two lasers ismodulated so that the atoms experience the potential
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whereωP (resp. ŵ ) accounts for the longitudinal (resp. transverse) confinement of the hybrid trap andm is the
mass of the atoms.

Figure 1. (a)Transition to staggered states triggered by a periodically shaken 1Doptical lattice (depth V E2.6 L0 = , driving frequency
ν=1.5 kHz, and shaking amplitudej0=0.75π) forwhich the effective time-averaged tunneling rate J̄ becomes negative (see
equation (3) and inset (c)). The absorption images correspond to various durations of the shaking inside the optical lattice, they are
taken after a 25 ms time of free flight in the absence of any trapping potential. The set of images clearly displays the passage of a
spatially periodic condensate wavefunction to the population of a staggered state lying at the edge of the Brillouin zone. (b)Nucleation
time of the formation of staggered states for various values of the shaking amplitudej0 for which the effective tunnelingmatrix
element is negative, as shown in the inset (c). The solid (dashed) line shows the numerical results obtained using the TWapproach and
assuming the presence of 105 (5×104) atomswithin the condensate. A diverging nucleation time is obtained forj0=0.6588π at
which thefirst zero of the Bessel function arises in (c). This experimentwas carried out in the presence of an overall harmonic
confinementwith the longitudinal and transverse trap frequencies 2 29 Hzw p �∣∣ and 2 26 Hzw p^ � .
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To obtain afirst theoretical understanding, we perform a gauge transformation to the comoving frame in
which the lattice is periodically tilted instead of shaken. This gauge transformation can be explicitly expressed in
terms of the unitary operator
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to be applied to the bosonic field operator of themany-body system. The single-particleHamiltonian describing
an atom in the above time-periodic potential is then transformed according to H t T t H t T t1 +-6( ) ( ) ( ) ( )

T t T ti 1� -˙ ( ) ( ). In this new representation, we limit ourselves to the single-band approximation, which is valid
forV m d40 0

2 2pj n< . Themotion of the atoms along the lattice isfirstmodeled by a 1D tight-binding
Hamiltonian inwhich eachwell of the lattice is represented by one site. ThisHamiltonian is constituted by site-
dependent on-site energies given by the longitudinal confinement of the trap, as well as by an approximately site-
independent inter-site hoppingmatrix element J that depends on the strength of the lattice.

As a result of themodulation, this inter-well tunneling rate J is renormalized by a Bessel function

J J J h E2 , 3L0 0pj n= ´¯ ( ) ( )
where E h md2L

2 2= ( ) is the lattice characteristic energy4. This result is readily derived from a one-body
analysis [27–29] but turns out to remain valid in the presence of two-body interactions [19]. A qualitative picture
of the impact of this renormalization can beworked out perturbatively with the expression for the energy of the
lowest band using the Peierls substitution: E k J kd2 cos0 = -( ) ¯ ( ). For J 0>¯ theminimumof the band is located
at k=0, and the Fourier transformof thewave function consists in a combof peaks centered about k=0with a
spacing 2π/d. For J 0<¯ , theminima are located on the border of the Brillouin zone at k dp= o .

When the sign of J̄ is suddenly changed through phasemodulation, the system is therefore put in a
metastable state.While this would not affect themean-field dynamics of a BEC in the presence of a
translationally invariant lattice, any deviation fromperfect homogeneity in the condensate wavefunction
or the lattice will give rise to a shrinking amplitude of the periodic condensatemode and to an exponentially
increasing population of staggeredmodes at k dp= o . Thismechanism, throughwhich two atoms starting
with zeromomentum acquire finitemomenta of opposite sign, is an example of spontaneous four-wavemixing
[5, 6, 17–19]. This elementary process occurs similarly in a condensate of 105 atomswhere it can apply to any
pair of atoms.

A qualitative understanding of this dynamical instability can be obtained from the homogeneous Bose–
HubbardHamiltonian
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where bl̂ denotes the annihilation operator associatedwith theWannier function centered on the lthwell of the
lattice andU accounts for a site-independent two-body interaction strength. Assuming the presence of a
perfectly homogeneous condensate at t=0 exhibiting n atoms per site, wemake the Bogoliubov ansatz
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where J nU2m = - +¯ is the chemical potential of the condensate. Following [30], we hereby introduce the
(number-conserving) de-excitation operator k t,L̂( )which transfers an atom from an excited state withfinite
quasimomentum kd 0¹ back to the condensate characterized by k=0, while its adjoint operator k t,L̂ ( )†

would revert this process. Linearizing the resulting equation for k t,L̂( ) yields
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whose solution evolves sinusoidally in time according to
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4
The characteristic energy is given by E E4L rec= where E h m2rec

2 2l= ( ) is the recoil energy associatedwith the absorption of one photon
withwavelengthλ=2d fromone of the laser beams that generate the lattice.
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with the Bogoliubov phonon frequencies
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The time-dependent population of non-condensedmodes can then be directly evaluated in theHeisenberg
representation using the commutator k k k k, 0 , , 0 dL L ¢ = - ¢[ ˆ ( ) ˆ ( )] ( )†

aswell as the fact that excitedmodes
with k 0¹ are unpopulated in the initial state. This straightforwardly yields
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Adynamical instability occurs when J̄ becomes negative. In that case,Ωk becomes imaginary for each
quasiparticlemode that satisfies the relation J kd J kd nU1 cos 0 1 cos- < < - +¯ ( ) ¯ ( ) , which according to
equation (9) implies that tiny initial populations of suchmodes experience an exponential growthwith time. For
nU J4> - ¯, this growth ismost pronounced for the staggered Bogoliubovmodes defined by kd p= o , which
describe an antiperiodic Bloch functionwithin the lattice; the population of these staggeredmodes growswith
the Lyapunov exponent J J nU8 2 1 2 �l = - +[ ¯ ( ¯ )] .

In practice, the dominant deviations from translational invariance required to trigger the instability are
provided by quantumor thermalfluctuations5. This can be verified by numerical simulations of the time
evolution of the condensate using the TWmethod [31]. Thismethod, implemented herewithin the single-band
approximation at zero temperature, accounts for the effect of quantum fluctuations about the initial coherent
state of the condensate, and is adapted to take into account the inhomogeneities of the confinement and the
finite size of the BEC (see appendix A). Applied to the Bose–HubbardHamiltonian (4), it essentially amounts to
sampling the time evolution of the quantumbosonicmany-body state in terms of classical trajectories that
evolve according to a discreteGross–Pitaevskii equation.

The transition to staggered states is quantitatively characterized by the nucleation time representing the
instance at which the population of a periodic condensate state within the shaken lattice becomes less significant
than the population of a staggered state with antiperiodic nature. To this end, we define by P0 the population of
the central condensate peak located at k=0, and by So the staggered states population about h d2o ( ) in
momentum space. In the numerical simulations, P0 and So are determined by integrating themomentum-space
density k n k a k a dexp 2 2 1 2r p= -( ) ( ) ( ) ( )∣∣ ∣∣ within the intervals−π/2d<k<π/2d and d k2p- < B

d d2p p< , respectively, where n(k) is the 2π/d-periodicmomentumdensity that results from the TW
simulation of the Bose–Hubbard dynamics (see shaded areas infigure 2(a)). The nucleation time is defined by

Figure 2.Numerically computedmeanmomentumdensity (a) andmean numbers of atoms on the lattice sites (b, blue line) at the
evolution time t=7.5ms in the presence of a shakingwith the frequency ν=1.5 kHz and the amplitudej0=0.75π, calculatedwith
the TWmethod for a BEC containing 105 atoms (lattice depthV0=2.6EL). The shaded areas in (a) correspond to the staggeredmode
populations S+ and S−. The light gray (red) line in panel (b) shows the occupancies that are obtained by computing a single TW
trajectory. It indicates that the population of staggered states is accompanied by strong fluctuations of the lattice site occupancies.

5
We should note that a qualitatively similar transition from aperiodic to a staggered state can also arise on the level of themean-field

dynamics of the condensate described by theGross–Pitaevskii equation, namely if the spatial homogeneity of the lattice is perturbed by the
presence of an additional confinement. For the experimental parameters at hand, however, this perfectly coherent effect is entirely
overshadowed by the depletion of the condensate arising due to the presence of quantumor thermal fluctuations.
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the time beyondwhich S++ S− exceeds P0. It corresponds to the instance at which the peaks at k dp= o have
the same accumulated contrast as the peak at k=0 in the experimental absorption images.

3. Experimentalfindings and comparisonwith numerical simulations

Thefirst experimental study that we performed deals with the nucleation time of staggered states for different
values of the renormalized tunneling rate J̄ in the regimewhere it acquires negative values. As predicted by the
expression for the Lyapunov exponent, we indeed observed a strong increase of the nucleation timewhenwe
approach an amplitude ofmodulation that corresponds to the zero of the Bessel function (seefigure 1(c)). Good
agreement is obtainedwith TWcomputations of the nucleation time indicated by the solid (dashed) lines in
figure 1(b), whichwere conducted according to the above prescriptions assuming the presence of 105 (5×104)
atoms in the condensate6. As these simulationswere performed at zero temperature, thermalfluctuations seem
to play aminor role in this set of data. This is indeed consistent with time-of-flightmeasurements that we carried
out for this parameter regime, which could only yield an upper value estimationT< 5nK for the temperature.

The evolution of the atomic gas inmomentum space is illustrated infigure 1(a)which shows a sequence of
time-of-flight absorption images taken after various evolution times.We clearly see the transition from an
initially coherent BEC, characterized by a sharp central peak at k=0 and by two side peaks at k d2p= o , to a
cloud that oscillates between twomaxima at k dp= o . These latter peaks are significantly broader than the
initial condensate peaks, which is indicative of an effective increase of the temperature as a consequence of the
dynamical instabilitymechanism [14, 19, 32, 33]. As shown infigure 2(a), this is also observed in the TW
simulations, which also reveal thatmany-body coherence is lost in those side peaks (see appendix A). The sharp
coherent BECpeaks at k=0 and d2po are still present in the numerical simulations, in contrast to the
experiment where they are nearly completely washed out after the nucleation.We attribute this to the single-
band approximation that we apply in our TWapproach and to the effect of quantumfluctuations in the
transverse degrees of freedomwithin the lattice [34], which are not accounted for in the numerical simulations.

The TWapproach allows one to obtain complementary insight into the nature of the staggered states that
would not be easily accessible in the experiment. This concerns, in particular, the behavior of lattice site

occupancies.While theirmean values n b bl l lá ñ = á ñˆ ˆ ˆ†
do not display any notable feature in the course of the time

evolution, their rmswidths n nl l
2 2 1 2á ñ - á ñ( ˆ ˆ ) dramatically increase as soon as staggered states become

significantly populated. This is illustrated infigure 2(b)where themean lattice site occupancies (averaged over
10 000 trajectories) are plotted together with the occupancies that were obtained from a single trajectory (shown
in red), at an evolution time t=7.5ms that exceeds the nucleation process.We see pronounced spatial
fluctuations of the lattice site occupancies. They give rise to an enhancement of the interaction energy contained
within the atomic gas, which compensates for the loss of kinetic energy that is entailed by the transition to
staggered states in the presence of the driving.

The occurrence of such spatial fluctuations is strongly reminiscent of gap solitons [35] and indicates that the
formation of staggered states inmomentum space is accompanied by the generation of solitons. This
interpretation is consistent with the Bogoliubovmode analysis in a 1D shaken optical lattice of [19]. It is further
confirmed by the fact that the spatial extension of the density peaks is indeed on the order of the theoretical
prediction d J n U d2.6 2 0.7max

1 2s � �[ ∣ ¯∣ ( )] for the full width at halfmaximum (FWHM) of a gap soliton
according to [35]with nmax;5000 themaximal occupancywithin a lattice site (see appendix B for amore
detailed account on such gap solitons). In our specific (three-dimensional) experimental context, these gap
solitons are expected to quickly disintegrate into vortices and vortex rings through the snake instability [36]. By
preparing the condensate in highly elongated (cigar-shaped) trapping potentials, they can be stabilized.
However, their observationwould require an in situ imagingwith an optical resolution on the order of 500 nm.

To explore the dependence of the nucleation time on the atomic density, we performed experiments where
we changed the intensity of the vertical beamof the crossed dipole trap after the BECproduction. In this
manner, we could vary the atomic peak density between 5.5×1013 at cm−3 and 1013 at cm−3 and7 observe a
large variation of the nucleation time. As shown in figure 3(a), the experimental results are in good agreement
with TWsimulations, except for high peak densities n 5 10peak

132 ´ at cm−3. Indeed, to induce such high
densities we compress adiabatically the trap and therefore increase the temperature. From the data pointO1 to
the data pointO2 infigure 3(a) the temperature is doubled, and it is further enhanced by a factor 1.6 fromO2 to
the data pointO3 yieldingT 13 nKO3 � . Thanks to this protocol, we clearly observe the onset of the role of
thermalfluctuations in the nucleation process. This is to be contrastedwith the low density regimewhere the
nucleation is consistently explained by quantum fluctuations solely. Such a quantitative comparison of

6
We estimate to have between 5×104 and 105 atoms in our experimentally prepared Bose–Einstein condensates.

7
The calibration of the densitywas confirmed by an in situ on-resonance strong intensity absorption imaging as described in [37].
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experimental data with a theoretical approach at zero temperaturewithout adjustable parameters remains the
onlymethod to identify the crossover between quantumand thermalfluctuations.

Finally, we investigate in figure 3(b) the dependence of the nucleation timewith the driving frequency ν
wherewe adapt the shaking amplitudej0=(0.889π/ν)×1.5 kHz such that the argument of the Bessel
function is kept constant according to equation (3) yielding J J0.33-�¯ . Aswe have the same time-averaged
Bose–HubbardHamiltonian (4) for all ν, the nucleation time is found to vary only rather weaklywith the driving
frequency. This behavior is expected to change for ν∼νcwhere νc corresponds to the center ofmass oscillation
frequency (see appendix C) [26]. Spanning the interval 0<ν<νc, we could nucleate staggered states only for a
frequency ν below∼νc/2 (see figure 3(b)withV0=2.6EL and νc=8.1kHz, and appendixD), which defines
experimentally the range of validity of the single band approximation.However, changing the driving
parameters such that J 0>¯ can give rise to a resurgence of nucleation near the interband resonance. For a lattice
depthV0=3.7EL, amodulation frequency ν=14 kHz andj0=0.028π a fast transition to staggered states
within 2.7 mswas observed, as shown infigure 4.We attribute this to the population of thefirst excited band
triggered by quantumor thermal fluctuations, which for J 0>¯ has an inverted parabolic shape near k=0 and
exhibits itsminima at k dp= o in the Brillouin zone. The numerical study of the appearance of staggered
states in this frequency regime therefore requires amore involved treatment taking into account higher bands.

4. Conclusion

In summary, we presented an experimental study of the dynamical transition of a BEC fromperiodic to
staggered states within a periodically shaken optical lattice. Aswas revealed by TWsimulations, this transition is
accompanied by a global loss ofmany-body coherence, even though spatial interferability between different
lattice sites is still preserved. It is triggered by quantumor thermal fluctuations, depending on the temperature
within the BEC. As key ingredient we identified the inversion of the effective energy band inmomentum space,
which exhibits amaximum in the center andminima at the edges of the Brillouin zone. This inversion is
responsible for the formation of density fluctuationswithin the lattice that are closely related to gap solitons. The
presence of an inverted energy-momentumdispersion relation lies also at the heart of the rapid nucleation of
staggered states observed for positive renormalized tunneling near interband resonances, which involve the
population of thefirst excited bandwithin the lattice.

Figure 3. (a)Nucleation time as a function of the peak atomic density for an optical lattice of depth of 2.6EL (n 100
13� at cm−3), a

driving frequency of 1.5 kHz and an amplitude ofmodulation ofj0=0.75π. Upper (lower) triangles show the results of numerical
TW simulations taking into accountN=105 (5×104) atoms in the condensate and using accurate estimates for the longitudinal and
transverse trapping frequencies of the experiments. They display significant deviations from the experimental nucleation times at high
peak densities (marked byO1,O2, andO3), since the experimental protocol used in order to generate such high densities involves a
non-negligible heating of the atomic cloud. (b)Nucleation time (same vertical axis label as panel (a)) as a function of the shaking
frequency νwhere the shaking amplitudej0 is adapted such that νj0 (and hence also J̄ ) is kept constant (see panel (c), having the
same horizontal axis and tick labels as panel (b); shaded areas showparameter regionswhere the effective tunnelingmatrix element (3)
is positive). TW simulations (dashed blue line) predict a convergence towards the nucleation time that would be obtainedwithin the
time-averaged Bose–Hubbardmodel (4). They provide an upper bound on the nucleation time since they do not take into account the
role of thermalfluctuations.
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The present experimental setting can be exploited in order to yield a quantitative diagnostic tool for
determining interaction andfluctuation effects in similar dynamical transitions involving, e.g. ferro- or
antiferromagntic states [15]. Further studies in the high-frequency regimewill be interesting in order to explore
the nucleation of staggered states through near-resonant interband transitions inmore detail.
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AppendixA. Implementation of the TWmethod

The starting point for the implementation of the TWmethod is the effectivemany-body Bose–Hubbard
Hamiltonian
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which describes the dynamics of a BECwithin a periodically shaken lattice.Here we employ a single-band
approximationwithin the reference frame that is comovingwith the shaken lattice. The shaking is incorporated
bymeans of a periodically time-dependent Peierls phase

t
h

E
t2 cos 2 A.2

L
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n
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within the inter-site hoppingmatrix elements of the lattice. The on-site energies
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account for the presence of the longitudinal harmonic confinement with the oscillation frequency w∣∣.
For lattice strengthsV0=s ELwith s 22 , we can approximately represent theWannier functionwithin the

lthwell by theGaussian

Figure 4.Nucleation of staggered states near an interband resonance. Themodulation frequency ν=14 kHz lies slightly above the
center-of-mass oscillation frequency νc=10.6 kHz (for a lattice of depth 3.7 EL) and is close to the transition from the ground band
to thefirst excited bandwithin the optical lattice. The amplitude ofmodulationj0=0.028π is chosen such that onewould get a
positive renormalized tunneling rate J J0.94=¯ within the single-band approximation (which breaks down in this resonant
frequency domain). Staggered states are nevertheless nucleated owing to the population of the first excited energy bandwhich exhibits
itsminima at the edges of the Brillouin zone. Panel (a) shows absorption images obtained for various evolution times (followed by
25 ms time-of-flight), where the time step is set to 200 μs. Panels (b), (c) show the time evolution of the population in the different
orders ofmomentum p h d0, 1 2, 1= o o( ) extracted from the absorption images, with the orders (b) 0 (solid),+1 (dashed),−1
(dotted) and (c)+1/2 (dashed),−1/2 (dotted).
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is the oscillator length associatedwith the frequency s EL0
1 2 �w = of oscillations within eachwell of the lattice.

The effective hopping parameter between adjacent wells can be determined from a semiclassicalWentzel–
Kramers–Brillouin (WKB) ansatz [38, 39].We obtain
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with the dimensionless imaginary action
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and the incomplete elliptic integral of the second kind E k k, 1 sin d
0

2 2òj q q= -
j( ) . Note that thisWKB

ansatz is based on the approximate expression E s1 20
1 2

0�h w= -( ) for the ground state energywithin each
well, which is obtained from the expression (A.4) for theWannier function usingfirst-order perturbation
theory.

A complication is introduced by the fact that the lattice wells in the experiment are not truly 1Dbut rather
exhibit a pancake shape, as the transverse confinement frequency ŵ of the trap is comparable to the
longitudinal one w∣∣ and hencemuch larger thanω0. For the total atomnumbers at hand, the BEC exhibits a
parabolic Thomas–Fermi profile in its transverse density distributionwithin lattice wells that are located near
the center of the trap. The interaction energywithin such awell therefore scales in a non-quadraticmanner,
namely nl

3 2µ , with the occupancy nl of thatwell, which implies that the effective on-site interaction parameters
U l appearing in the Bose–HubbardHamiltonian (A.1) scale as nl

1 2- with the occupancies of the corresponding
sites. For weakly populated lattice sites that are located at the edge of the atomic cloud, on the other hand, we can
justify the perturbative approximation g a2 s�ŵ� [40] for the effective 1D interaction strengthwith
a 5.3 10 ms

9´ -� the s-wave scattering length of 87Rb atoms, which yieldsU a a2 2l S 0�w p^� ( ) for those
sites.

In order to simultaneously account for weakly and strongly occupied sites of the lattice, we employ a
heuristic interpolation formula

U
a a

n a a

2 2

1 4 2
A.9l

s

l s

0

0

�w p

p
=

+

^ ( )
( )

( )

between the perturbative and the Thomas–Fermi regime [41].We furthermoremake the simplifying
assumption that the lattice site occupancies nl remain fairly constant and are not substantially altered in the
course of time evolution.While this constraint appears to bewell respected on average, significant fluctuations
of the lattice site occupancies about their average valuesmay nevertheless arise if the condensate undergoes a
transition to a staggered state (as seen infigure 2(b)).

Having thereby determined all relevant parameters of the Bose–Hubbard system (A.1), we can then derive
the discrete nonlinear Schrödinger equation

t
t J t t

V t U t t

i
d

d
e e

1 A.10

l l
t

l
t

l l l l l

1
i

1
i

2

� y y y

y y y

=- +

+ + -

q q
+ -

-( ) [ ( ) ( ) ]

( ) [∣ ( ) ∣ ] ( ) ( )

( ) ( )

bymeans of which the classical fieldsψl that sample the quantummany-body state of the systemhave to be
evolvedwith time in the framework of the TWmethod. For the initial state we assume the presence of a perfect
BECwithin the optical lattice, which is in an idealizedmanner described by a coherent state in the classical field
space. This leads to the choiceψl(0)=fl+χl for the initial value ofψlwherefl corresponds to the condensate
wavefunctionwithin the (unshaken) lattice at t=0. In practice,fl is determined by imaginary-time propagation
of theGross–Pitaveskii equation that describes the condensate at t=0 (which is nearly identical with
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equation (A.10), except that it exhibits real hopping and the usualUl l l
2y y∣ ∣ interaction term). This thereby yields

nl l
2f= ∣ ∣ for the determination of the on-site interaction strengths according to equation (A.9).χl is a complex

randomnumber drawn from aGaussian probability distributionwhich is centered about the origin in the
complex plane and yields the variance 1 2l

2c =∣ ∣ . Effects due to the presence offinite temperature and initial
quantumdepletionwithin the atomic cloud are therefore neglected in this study.

Expectation values of one-body operators are then evaluated according to the prescription

b b b b t t2 , A.11l l l l t l l*y yá + ñ =¢ ¢ ¢
ˆ ˆ ˆ ˆ ( ) ( ) ( )† †

where t tl l*y y ¢( ) ( ) denotes the statistical average (over TW trajectories) of the expression t tl l*y y ¢( ) ( ). This yields
in particular b b t 1 2l l t l

2yá ñ = -ˆ ˆ ∣ ( )∣†
/ for the average occupancy of the site l at time t. A similar subtraction of a

‘half-particle’ is needed in order to determine the average distribution of atoms inmomentum space.
The TWmethod also allows one to estimate the remaining condensate fractionwithin the atomic cloud,

namely through the coherent part of one-body observables b bl l¢
ˆ ˆ†

defined by

b b t t . A.12l l t l l
coh *y yá ñ =¢ ¢

ˆ ˆ ( ) ( ) ( )†

The non-condensed fraction associatedwith the population of the site l is then approximately determined as

b b b b t t 1 2. A.13l l t l l t l l
coh 2 2y yá ñ - á ñ = - -ˆ ˆ ˆ ˆ ∣ ( ) ∣ ∣ ( )∣ ( )† †

/

Performing a similar calculation inmomentum space, we thereby find in our numerical simulations thatmany-
body coherence is entirely lost in the two side peaks associatedwith the staggered populations So shown in
figure 2, while it is still preservedwithin the central peak at p=0 aswell as within the side peaks at p h d= o .
This is shown infigure A1.

Appendix B. Bright solitons in periodically drivenBose–Hubbard systems

In this section, we outline the theory of bright solitonswithin repulsively interacting BEC that are prepared in
periodically driven 1Doptical lattices. Our starting point is the simplified Bose–HubbardHamiltonian (4)which
assumes the presence of a homogeneous optical lattice of infinite extension. ABECpreparedwithin this lattice
therefore evolves according to the discrete nonlinear Schrödinger equation

t
t J t t U t ti , B.1l l l l l1 1

2� y y y y y
¶
¶

= - + ++ -( ) ¯ [ ( ) ( )] ∣ ( ) ∣ ( ) ( )

whereU >0 represents the on-site interaction strength and J̄ is the effective renormalized tunneling rate
according to equation (3).

Figure A1.Numerically computed density of atoms inmomentum space calculated for the driving frequency ν=1.5 kHz and the
amplitudej0=0.75π at the evolution times (a) t=2.5 ms, (b) t=5 ms, (c) t=7.5 ms, and (d) t=10 ms. The lattice depth is
V0=2.6EL. The blue solid line represents the totalmean density inmomentum space computedwith the truncatedWignermethod,
while the red dashed line shows the coherent part of the density which is calculated according to the prescription indicated in
equation (A.12).
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For J 0<¯ , equation (B.1) admits approximate solitonic solutions of the form

t n l l wsech e , B.2l
t

0 0
i �y = - m-( ) [( ) ] ( )

which correspond to a hyperbolic secant function x xsech 1 coshº( ) ( )/ centered about some lattice site index
l0 'Î with the peak density n0 and the characteristic widthw in terms of the lattice spacing. Indeed, we can
approximately express

t t t
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2

2
y y y y+ +
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using sech″(x)= x xsech 2sech3-( ) ( ) for all x �Î . Inserting the expressions (B.3) and (B.4) into the discrete
Gross–Pitaevskii equation (B.1) yields the relation

w
J

Un

2
B.5

0
=

- ¯
( )

between thewidthw and the height n0 of the soliton. Its associated chemical potential

J Un2
1

2
B.60m = - +¯ ( )

is locatedwithin the band gap above the ground band of the driven optical lattice.
From the shape of the hyperbolic secant functionwe infer the FWHMof the gap soliton as

wd
J

Un
d2.634 2.634

2
, B.7

0
s =

-�
¯

( )

where d is the lattice period. For the experiment shown infigure 1(a), whichwas donewith the shaking
amplitudej0=0.75π yielding J J0.16-�¯ andwhich featured an average occupancy of some 3300 atoms per
lattice site as can be seen infigure 2(b), we obtain through equations (A.6) and (A.9) J U 180�¯ on average
within the lattice. Inferring again from figure 2(b) a peak height of the order of n0;5000, wefinally obtain

d0.7s � for the FWHMwidth of the soliton, which is in fairly good agreementwith the TWcalculation shown
infigure 2(b).

We should note that the above reasoning is rather approximate insofar aswe cannot a posteriori justify the
approximation (B.3) for such narrowwidths. This is reflected by the fact that the spiky peaks shown in
figure 2(b) are not really isolated from each other in a solitarymanner, but rather form a dense array. Their
occurrence gives rise to an enhancement of the total interaction energy containedwithin the atomic gas (as
would any inhomogeneity in the spatial density distribution), and this enhancement compensates for the loss of
kinetic energy that is associatedwith the transfer of atoms from the condensate state in the presence of the
driving at k=0 (highly energetic) to the staggered state characterized by k dp= o (lowly energetic). This
situation is perfectly complementary to the formation of conventional bright solitonswithin an attractively
interacting 1DBEC,where the enhancement of kinetic energy due to the loss of homogeneity would be
compensated by the gain of interaction energy.

AppendixC. Lattice depth calibration

Weperform a precise calibration of the lattice depth using the out-of-equilibriumdynamics of a chain of BECs
in an optical lattice following themethodwe demonstrated in [26]. To do so, we first load adiabatically a BEC in
the lattice, creating a chain of BECs trapped at the bottomof the lattice sites. At t=0, we suddenly shift the
phase of the lattice, which triggers the center-of-massmotion of the atomicwave packets in eachwell (shift of

900q = nhere). After a given holding time in the shifted lattice, we perform a 25 ms time-of-flight. The
experimental absorption images (seefigureC1) show the interferences of the different wave packets located in
each lattice site. The interference figure is centered on the central interference peak (0th order) corresponding to
wave packets that were releasedwhile being at rest in the shifted lattice, i.e. at the turning points of the oscillatory
motion.We observe oscillations of the population in the 0th order fromwhichwe extract the period of the
center-of-massmotion of the atomicwave packets. This period can be directly related to the depth of the optical
lattice. Indeed, the intrasite dipolemode is coupled to a two phonon transition between the ground state band
and the second excited band at k=0:
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In this way, we find a lattice of depth 1.9 EL corresponding to themeasured periodTc=153 μs. Interestingly, we
have shown that this kind ofmeasurement is robust against the value of the phase shift of excitation θ0, the
atom–atom interaction strength, and the external confinement superimposed to the lattice. For these values of
the phase shift and the lattice depth, tunneling plays an important role in thewave packet dynamics insofar as an
important fraction of thewave packets tunnels to the neighboring lattice sites. It explains for instance the
population of the−1 order for an evolution time in the shifted lattice of 40 μs but alsomore generally the
asymmetry of the populations in the±1 orders.We have studied in details such effect in [26].

AppendixD. Parameter ranges for the nucleation of staggered states

This section is devoted to amore extensive discussion of the parameter ranges withinwhich a nucleation of
staggered states can be observed.We start by recalling that the dependence of the nucleation timewith the
driving amplitudej0 is studied in detail withinfigure 1. As key featurewe find that the nucleation time diverges
whenj0 approaches the value 0.6588πwhere the Bessel function appearingwithin equation (3) of themain text
has its first node. Identifying this nucleation time approximately with the inverse of the Lyapunov exponent

J J nU8 2 1 2 �l = - +[ ¯ ( ¯ )] that characterizes the dynamical instability of the condensate, and assuming an
approximately linear scaling (with negative slope) of the effective renormalized tunneling rate J̄ with the
distance ofj0 from the node of the Bessel function, we should expect that the nucleation time diverges as

FigureC1. Lattice depth calibration using the oscillatorymotion of atomswithin the lattice after a sudden phase shift of the lattice of
900q = n at t=0. Themeasured period is 153 μs, corresponding to a lattice depth of 1.9 EL. Top: absorption images for various

holding time in the shifted lattice (followed by 25 ms time of free flight in the absence of the lattice). Bottom: time evolution of the
populations of the different orders ofmomentum p h d0, 1= o( ) extracted from the absorption images.

FigureD1. (a)Double logarithmic representation of panel (b) offigure 1.We see that the nucleation time diverges approximately as
0.65880

1 2j p~ - -( ) . The straight (black)dashed line corresponds to a power lawwith the exponent−1/2 and serves as a guide to
the eye. Panel (b) displays the experimental and theoretical data shown infigure 1(b) as a function of J J J h E2 L0 0pj n- = -¯ ( ). This
confirms evenmore directly that the nucleation time scales proportionally to the inverse Lyapunov exponent J1 1 2l µ -- -( ¯) .
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0.65880
1 2j p~ - -( ) when approaching the node of the Bessel function. Aswe can see infigureD1, this is

indeed confirmedwhen plotting the experimental and numerical nucleation time data offigure 1(b) in a double
logarithmic representation.

D.1. Frequency range
Weextend the study of the effect of themodulation frequency ν on the nucleation of staggered states performed
in themain article to determine the frequency range inwhich such states appear.Wefirst use a lattice of depth
1.9 EL, characterized by a center-of-mass oscillation of frequency νc=6.55 kHz (see above) and performphase
modulation experiments at differentmodulation frequencies below νc (see figureD2 (1–4)).Wemaintain the
productj0ν constant withj0 the amplitude ofmodulation, yielding an effective tunneling rate J̄ that is constant
and negative. The argument of the Bessel function (see equation (3)) is chosen equal to 3.24.

At the lowestmodulation frequencies (2 and 3 kHz), we clearly observe the nucleation of staggered states
with the population of staggeredmodes atmomentum p h d2= o , whereas for largermodulation frequencies
(ν=5 kHz), we do not significantly populate the staggeredmodes (see figureD2(c4)).More specifically, we
observe the population of staggeredmodes formodulation frequencies up to typically νc/2,meaning for
modulation frequencies that are not too close to excitations frequencies towards the excited bands. The
experiments presented infigure 3 on the effect of themodulation frequencywere performedwith a lattice of
depth 2.6 EL, corresponding to a center-of-mass oscillation frequency νc=8.1 kHz. As those experiments were

FigureD2.Nucleation of the staggered states for differentmodulation frequency ν. For (1–4), themodulation frequencies are below
the center-of-mass oscillation frequency (νc=6.55 kHz, corresponding to a lattice depth of 1.9 EL). The productj0νwithj0 the
amplitude ofmodulation is kept constant, corresponding to a negative renormalized tunneling rate J̄ . The (amplitude,frequency)
couple takes the following values (1) (0.67π, 2 kHz), (2) (0.44π, 3 kHz), (3) (0.33π, 4 kHz) and (4) (0.27π, 5 kHz). For every set of
values are represented: (a) absorption images obtained for various evolution times followed by 25 ms time-of-flight, where the time
step is set to 100 μs for themeasurement (2) and 200 μs for the othermeasurements; (b), (c) time evolution of the population in the
different orders ofmomentum p h d0, 1 2, 1= o o( ) extracted from the absorption images, with the orders (b) 0 (solid),+1
(dashed),−1 (dotted) and (c)+1/2 (dashed),−1/2 (dotted).
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performed formodulation frequencies up to 4 kHz, we could see the population of the staggeredmodes for each
chosenmodulation frequency.

D.2. Lattice depth range
Weperformphasemodulation experiments for different lattice depths ranging from1.2 EL to 3.2 EL and observe
the nucleation of staggered states in this range of lattice depth (see figureD3). The productj0×ν is kept
constant and corresponds to a negative effective tunneling rate J̄ . The dynamics for the population of staggered
modes look similar to the dynamics shown infigure 1, but for the lattice depth 1.2 EL. For the lattice depth 1.2 EL,
themeasurement is performed at a lowermodulation frequency and as a consequence with a larger amplitude of
modulation. For such an amplitude ofmodulation, the associated classical phase space starts to exhibit chaotic
zones, which is probably responsible for the disrupted aspect of the dynamics observed in this case (see
figureD3(a)).
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