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Abstract

The dynamical transition of an atomic Bose—Einstein condensate from a spatially periodic state to a
staggered state with alternating sign in its wavefunction is experimentally studied using a one-
dimensional phase modulated optical lattice. We observe the crossover from quantum to thermal
fluctuations as the triggering mechanism for the nucleation of staggered states. In good quantitative
agreement with numerical simulations based on the truncated Wigner method, we experimentally
investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density,
and the driving frequency. The effective inverted energy band in the driven lattice is identified as the
key ingredient which explains the emergence of gap solitons as observed in numerics and the
possibility to nucleate staggered states from interband excitations as reported experimentally.

1. Introduction

Cold atoms in optical lattices provide powerful and versatile platforms for quantum simulators of many-body
systems [1—4], and give access to the rich out-of-equilibrium dynamics of such systems. A remarkable progress
for tunability was achieved by exposing lattice potentials to a time-periodic driving, whereby an effective
renormalization of the tunneling rate between adjacent sites can be induced [5-7]. This opened many new
perspectives for quantum simulations with the possibility to engineer effective Hamiltonians and study
topological phases [8]. Recent examples include the realization of the Hofstadter [9] and Haldane models [10] as
well as the investigation of frustrated magnetism [11].

While the single-particle physics appears to be well explored in this context, present-day state-of-the-art
experiments focus on the investigation of many-body effects in driven lattices [12, 14, 15]. Indeed, interactions
between the atoms in the gas are of particular interest as they may trigger dynamical quantum phase transitions
in the presence of the driving, e.g., to a ferro- or antiferromagnetic state of the gas [12, 15]. This opens new
avenues for engineering topological properties of many-body states. However, enhancing the role of interactions
within a cold Bose gas can also give rise to a loss of spatial and many-body coherence [13, 14]’, which poses
additional challenges for the controllability of the resulting state.

To explore the interplay of such interaction-induced transitions with the potential loss of coherence
properties in an elementary context, we focus on a Bose—Einstein condensate (BEC) that is prepared in a
one-dimensional (1D) optical lattice. A periodic shaking of the lattice is switched on with an amplitude for which
the renormalized tunneling matrix element becomes negative. The quantum gas is thereby put in a metastable
situation inside the 1D optical lattice. The presence of interactions will then trigger a dynamical instability which
changes the nodal structure of the underlying wavefunction by inducing a transition from a periodic state
(without nodes) to an antiperiodic or staggered state (with regularly spaced nodes) for which neighboring sites
acquire opposite phases [5, 6, 17—19]. This phase transition can be readily observed in momentum space after a

3 5 . . . . .
The term many-body coherence refers here to Glauber’s notion of coherence [16] applied to the Fock space of identical bosonic atoms. For
instance, a BEC can be represented by a perfectly coherent state, while a thermal or Fock state is incoherent in this sense.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Figure 1. (a) Transition to staggered states triggered by a periodically shaken 1D optical lattice (depth Vy = 2.6 Ep, driving frequency
v = 1.5 kHz, and shaking amplitude ¢, = 0.757) for which the effective time-averaged tunneling rate J becomes negative (see
equation (3) and inset (c)). The absorption images correspond to various durations of the shaking inside the optical lattice, they are
taken after a 25 ms time of free flight in the absence of any trapping potential. The set of images clearly displays the passage of a
spatially periodic condensate wavefunction to the population of a staggered state lying at the edge of the Brillouin zone. (b) Nucleation
time of the formation of staggered states for various values of the shaking amplitude ¢, for which the effective tunneling matrix
element is negative, as shown in the inset (c). The solid (dashed) line shows the numerical results obtained using the TW approach and
assuming the presence of 10° (5 x 10*) atoms within the condensate. A diverging nucleation time is obtained for ¢, = 0.6588 at
which the first zero of the Bessel function arises in (c). This experiment was carried out in the presence of an overall harmonic
confinement with the longitudinal and transverse trap frequencies wy /27 ~ 29 Hz and wy /27 =~ 26 Hz.

time of flight expansion [20], where it manifests itself in form of new interference peaks at the edge of the
Brillouin zone that arise in between the ordinary static peaks (see figure 1(a)), as observed for instance in

[5, 6, 11]. Interestingly, despite its spatial interferability the resulting staggered state does no longer exhibit
many-body coherence (see footnote 4), which implies that this transition is not quantitatively accounted for with
astandard mean-field approach.

In this article, we experimentally investigate the nucleation of such states in a 1D shaken optical lattice and
compare our result with Bogoliubov and truncated Wigner (TW) calculations. Our experiments are
complementary to nucleation studies of vortices in a rotating BEC [21-23], which provides another example of
phase transition triggered by a dynamical instability [24, 25]. In those latter experiments, however, the kinetics of
the transition could not be studied as a function of the density since the rotation weakens the transverse 2D
confinement. We report hereafter a variation by one order of magnitude of the nucleation time of staggered
states with the atomic density, and investigate experimentally and numerically the role of the renormalized
tunneling rate and the modulation frequency on the out-of-equilibrium dynamics. We clearly identify the
triggering mechanism through quantum or thermal fluctuations. We finally determine the range of frequency
over which this nucleation can be observed and report on an accelerated transition to staggered states near
interband resonances within the lattice.

2. Dynamical instability in a driven Bose-Hubbard system

Our experiments were realized on our rubidium-87 BEC machine that relies on a hybrid (magnetic and optical)
trap [26]. The pure BEC of 10° atoms in the F = 1, m; = —1 state is loaded in a horizontal 1D optical lattice
(lattice spacing d = 532 nm) by superposing two counterpropagating lasers. The lattice modulation of the
intensity occurs along the x axis referred to as the longitudinal axis in the following. The relative phase between
the two lasers is modulated so that the atoms experience the potential

V(20 = Smld + Wl +20)
_ %[1 + cos(% + 2, sin(27r1/t))], )

where wj (resp. wy ) accounts for the longitudinal (resp. transverse) confinement of the hybrid trap and s the
mass of the atoms.
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To obtain a first theoretical understanding, we perform a gauge transformation to the comoving frame in
which the lattice is periodically tilted instead of shaken. This gauge transformation can be explicitly expressed in
terms of the unitary operator

T(t) = exp(gumdgoo cos(27ﬂ/t)x) exp( — i(,oo sin(2mvt) i) )
h s 0x

to be applied to the bosonic field operator of the many-body system. The single-particle Hamiltonian describing
an atom in the above time-periodic potential is then transformed according to H(t) — T (t)H (t) T~'(t) +
iR T (t) T~1(¢). In this new representation, we limit ourselves to the single-band approximation, which is valid
for Vo < 4mp,mrd*. The motion of the atoms along the lattice is first modeled by a 1D tight-binding
Hamiltonian in which each well of the lattice is represented by one site. This Hamiltonian is constituted by site-
dependent on-site energies given by the longitudinal confinement of the trap, as well as by an approximately site-
independent inter-site hopping matrix element J that depends on the strength of the lattice.

Asaresult of the modulation, this inter-well tunneling rate ] is renormalized by a Bessel function

] =] x JyQ@mp,hv/Ey), 3

where E; = h2/(2md?) is the lattice characteristic energy”. This result is readily derived from a one-body
analysis [27-29] but turns out to remain valid in the presence of two-body interactions [19]. A qualitative picture
of the impact of this renormalization can be worked out perturbatively with the expression for the energy of the
lowest band using the Peierls substitution: Ey(k) = —2J cos(kd). For J > 0 the minimum of the band is located
atk = 0, and the Fourier transform of the wave function consists in a comb of peaks centered about k = O with a
spacing 27/d. For ] < 0, the minimaare located on the border of the Brillouin zone at k = +7/d.

When the sign of J is suddenly changed through phase modulation, the system is therefore putin a
metastable state. While this would not affect the mean-field dynamics of a BEC in the presence ofa
translationally invariant lattice, any deviation from perfect homogeneity in the condensate wavefunction
or the lattice will give rise to a shrinking amplitude of the periodic condensate mode and to an exponentially
increasing population of staggered modes at k = 47 /d. This mechanism, through which two atoms starting
with zero momentum acquire finite momenta of opposite sign, is an example of spontaneous four-wave mixing
[5, 6, 17—19]. This elementary process occurs similarly in a condensate of 10° atoms where it can apply to any
pair of atoms.

A qualitative understanding of this dynamical instability can be obtained from the homogeneous Bose—
Hubbard Hamiltonian

A O -
H=-] Z (b b1+1+bl+1b1)+? Z by by biby, 4)

I=—00 I=—o0

where b denotes the annihilation operator associated with the Wannier function centered on the /th well of the
lattice and U accounts for a site-independent two-body interaction strength. Assuming the presence of a
perfectly homogeneous condensate at t = 0 exhibiting n atoms per site, we make the Bogoliubov ansatz

~ w/d . . .
bit) = | vit + |4 Ak, tyeilkddk |e~int/h, )
2m J—n/d

where y = —2J + nU is the chemical potential of the condensate. Following [30], we hereby introduce the
(number-conserving) de-excitation operator f\(k, t) which transfers an atom from an excited state with finite
quasimomentum kd = 0 back to the condensate characterized by k = 0, while its adjoint operator /A\T(k, 1)
would revert this process. Linearizing the resulting equation for Ak, 1) yields

iﬁ%fx(k, £) =271 — coskd)Ak, 1) + nU[AGk, 1) + A (—k, 1] (6)
whose solution evolves sinusoidally in time according to
A 2i] . A
Ak, t) = [costt — Q—(l - coskd)stkt]A(k, 0)
k

inU

~ U Ak, 0) + AT(=K, 0)]sinyt 7)
k

* The characteristic energy is given by E; = 4E,. where E,.c = h?/(2m)?) is the recoil energy associated with the absorption of one photon
with wavelength A = 2d from one of the laser beams that generate the lattice.

3
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Figure 2. Numerically computed mean momentum density (a) and mean numbers of atoms on the lattice sites (b, blue line) at the
evolution time f = 7.5 ms in the presence of a shaking with the frequency v = 1.5 kHz and the amplitude ¢, = 0.757, calculated with
the TW method for a BEC containing 10” atoms (lattice depth Vj, = 2.6E;). The shaded areasin (a) correspond to the staggered mode
populations S and S_. The light gray (red) line in panel (b) shows the occupancies that are obtained by computing a single TW
trajectory. It indicates that the population of staggered states is accompanied by strong fluctuations of the lattice site occupancies.

with the Bogoliubov phonon frequencies

Q= %\/U(l — coskd)[J(1 — coskd) + nU]. 8)

The time-dependent population of non-condensed modes can then be directly evaluated in the Heisenberg
representation using the commutator [A(k, 0), AT(k’ , 0)] = 6(k — k') aswell as the fact that excited modes
with k == 0 are unpopulated in the initial state. This straightforwardly yields

sin (it

2
(R k, DAW, 1)) = (nU)Z( ) 5k — K. )

k

A dynamical instability occurs when ] becomes negative. In that case, {2, becomes imaginary for each
quasiparticle mode that satisfies the relation J (1 — coskd) < 0 < J(1 — coskd) + nU, which according to
equation (9) implies that tiny initial populations of such modes experience an exponential growth with time. For
nU > —4], this growth is most pronounced for the staggered Bogoliubov modes defined by kd = =+, which
describe an antiperiodic Bloch function within the lattice; the population of these staggered modes grows with
the Lyapunov exponent A = [—8] (2] + nU)]'/?/h.

In practice, the dominant deviations from translational invariance required to trigger the instability are
provided by quantum or thermal fluctuations’. This can be verified by numerical simulations of the time
evolution of the condensate using the TW method [31]. This method, implemented here within the single-band
approximation at zero temperature, accounts for the effect of quantum fluctuations about the initial coherent
state of the condensate, and is adapted to take into account the inhomogeneities of the confinement and the
finite size of the BEC (see appendix A). Applied to the Bose~Hubbard Hamiltonian (4), it essentially amounts to
sampling the time evolution of the quantum bosonic many-body state in terms of classical trajectories that
evolve according to a discrete Gross—Pitaevskii equation.

The transition to staggered states is quantitatively characterized by the nucleation time representing the
instance at which the population of a periodic condensate state within the shaken lattice becomes less significant
than the population of a staggered state with antiperiodic nature. To this end, we define by P, the population of
the central condensate peak located at k = 0, and by S.. the staggered states population about +4/(2d) in
momentum space. In the numerical simulations, Py and S, are determined by integrating the momentum-space
density p(k) = n(k)ay exp(— k2a||2)/(7r1/2d) within the intervals —7/2d < k < w/2dand —7/2d < k F
7/d < w/2d,respectively, where n(k) is the 27/ d-periodic momentum density that results from the TW
simulation of the Bose—Hubbard dynamics (see shaded areas in figure 2(a)). The nucleation time is defined by

> We should note that a qualitatively similar transition from a periodic to a staggered state can also arise on the level of the mean-field
dynamics of the condensate described by the Gross—Pitaevskii equation, namely if the spatial homogeneity of the lattice is perturbed by the
presence of an additional confinement. For the experimental parameters at hand, however, this perfectly coherent effect is entirely
overshadowed by the depletion of the condensate arising due to the presence of quantum or thermal fluctuations.

4
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the time beyond which S, + S_ exceeds P,. It corresponds to the instance at which the peaks at k = £ /d have
the same accumulated contrast as the peak at k = 0 in the experimental absorption images.

3. Experimental findings and comparison with numerical simulations

The first experimental study that we performed deals with the nucleation time of staggered states for different
values of the renormalized tunneling rate J in the regime where it acquires negative values. As predicted by the
expression for the Lyapunov exponent, we indeed observed a strong increase of the nucleation time when we
approach an amplitude of modulation that corresponds to the zero of the Bessel function (see figure 1(c)). Good
agreement is obtained with TW computations of the nucleation time indicated by the solid (dashed) lines in
figure 1(b), which were conducted according to the above prescriptions assuming the presence of 10° (5 x 10%)
atoms in the condensate®. As these simulations were performed at zero temperature, thermal fluctuations seem
to playa minor role in this set of data. This is indeed consistent with time-of-flight measurements that we carried
out for this parameter regime, which could only yield an upper value estimation T' < 5nK for the temperature.

The evolution of the atomic gas in momentum space is illustrated in figure 1(a) which shows a sequence of
time-of-flight absorption images taken after various evolution times. We clearly see the transition from an
initially coherent BEC, characterized by a sharp central peak atk = 0 and by two side peaksat k = +27/d,toa
cloud that oscillates between two maxima at k = =7 /d. These latter peaks are significantly broader than the
initial condensate peaks, which is indicative of an effective increase of the temperature as a consequence of the
dynamical instability mechanism [14, 19, 32, 33]. As shown in figure 2(a), this is also observed in the TW
simulations, which also reveal that many-body coherence is lost in those side peaks (see appendix A). The sharp
coherent BEC peaksat k = 0and £27/d are still present in the numerical simulations, in contrast to the
experiment where they are nearly completely washed out after the nucleation. We attribute this to the single-
band approximation that we apply in our TW approach and to the effect of quantum fluctuations in the
transverse degrees of freedom within the lattice [34], which are not accounted for in the numerical simulations.

The TW approach allows one to obtain complementary insight into the nature of the staggered states that
would not be easily accessible in the experiment. This concerns, in particular, the behavior of lattice site

occupancies. While their mean values (7;) = (l;,* by) do not display any notable feature in the course of the time
evolution, their rms widths ((A7) — (/;)*)!/2 dramatically increase as soon as staggered states become
significantly populated. This is illustrated in figure 2(b) where the mean lattice site occupancies (averaged over
10 000 trajectories) are plotted together with the occupancies that were obtained from a single trajectory (shown
inred), at an evolution time ¢ = 7.5 ms that exceeds the nucleation process. We see pronounced spatial
fluctuations of the lattice site occupancies. They give rise to an enhancement of the interaction energy contained
within the atomic gas, which compensates for the loss of kinetic energy that is entailed by the transition to
staggered states in the presence of the driving.

The occurrence of such spatial fluctuations is strongly reminiscent of gap solitons [35] and indicates that the
formation of staggered states in momentum space is accompanied by the generation of solitons. This
interpretation is consistent with the Bogoliubov mode analysis in a 1D shaken optical lattice of [19]. It is further
confirmed by the fact that the spatial extension of the density peaks is indeed on the order of the theoretical
prediction o =~ 2.6d[2|]|/ (max U)]'/? =~ 0.7d for the full width at half maximum (FWHM) of a gap soliton
according to [35] with 71,5, =~ 5000 the maximal occupancy within a lattice site (see appendix B for a more
detailed account on such gap solitons). In our specific (three-dimensional) experimental context, these gap
solitons are expected to quickly disintegrate into vortices and vortex rings through the snake instability [36]. By
preparing the condensate in highly elongated (cigar-shaped) trapping potentials, they can be stabilized.
However, their observation would require an in situ imaging with an optical resolution on the order of 500 nm.

To explore the dependence of the nucleation time on the atomic density, we performed experiments where
we changed the intensity of the vertical beam of the crossed dipole trap after the BEC production. In this
manner, we could vary the atomic peak density between 5.5 x 10'*atcm™>and 10" at cm ™~ and” observe a
large variation of the nucleation time. As shown in figure 3(a), the experimental results are in good agreement
with TW simulations, except for high peak densities f1peax 2 5 X 10'3 at cm . Indeed, to induce such high
densities we compress adiabatically the trap and therefore increase the temperature. From the data point O, to
the data point O, in figure 3(a) the temperature is doubled, and it is further enhanced by a factor 1.6 from O, to
the data point O; yielding Tp, >~ 13 nK. Thanks to this protocol, we clearly observe the onset of the role of
thermal fluctuations in the nucleation process. This is to be contrasted with the low density regime where the
nucleation is consistently explained by quantum fluctuations solely. Such a quantitative comparison of

6 . . . . .
We estimate to have between 5 x 10*and 10° atoms in our experimentally prepared Bose—Einstein condensates.

The calibration of the density was confirmed by an in situ on-resonance strong intensity absorption imaging as described in [37].
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Figure 3. (a) Nucleation time as a function of the peak atomic density for an optical lattice of depth of 2.6E; (119 ~ 10'* at cm ), a
driving frequency of 1.5 kHz and an amplitude of modulation of ¢, = 0.757. Upper (lower) triangles show the results of numerical
TW simulations taking into account N = 10° (5 x 10*) atoms in the condensate and using accurate estimates for the longitudinal and
transverse trapping frequencies of the experiments. They display significant deviations from the experimental nucleation times at high
peak densities (marked by Oy, O,, and O;), since the experimental protocol used in order to generate such high densities involves a
non-negligible heating of the atomic cloud. (b) Nucleation time (same vertical axis label as panel (a)) as a function of the shaking
frequency v where the shaking amplitude  is adapted such that v, (and hence also J) is kept constant (see panel (c), having the
same horizontal axis and tick labels as panel (b); shaded areas show parameter regions where the effective tunneling matrix element (3)
is positive). TW simulations (dashed blue line) predict a convergence towards the nucleation time that would be obtained within the
time-averaged Bose—Hubbard model (4). They provide an upper bound on the nucleation time since they do not take into account the
role of thermal fluctuations.

experimental data with a theoretical approach at zero temperature without adjustable parameters remains the
only method to identify the crossover between quantum and thermal fluctuations.

Finally, we investigate in figure 3(b) the dependence of the nucleation time with the driving frequency v
where we adapt the shaking amplitude ¢y = (0.8897/v) x 1.5 kHz such that the argument of the Bessel
function is kept constant according to equation (3) yielding J ~ —0.33]. As we have the same time-averaged
Bose—Hubbard Hamiltonian (4) for all 7, the nucleation time is found to vary only rather weakly with the driving
frequency. This behavior is expected to change for v ~ v, where v, corresponds to the center of mass oscillation
frequency (see appendix C) [26]. Spanning the interval 0 < v < v,, we could nucleate staggered states only for a
frequency v below ~v,/2 (see figure 3(b) with Viy = 2.6E; and v, = 8.1kHz, and appendix D), which defines
experimentally the range of validity of the single band approximation. However, changing the driving
parameters such that J > 0 can give rise to a resurgence of nucleation near the interband resonance. For a lattice
depth V, = 3.7E;, amodulation frequency v = 14 kHz and ¢, = 0.028 a fast transition to staggered states
within 2.7 ms was observed, as shown in figure 4. We attribute this to the population of the first excited band
triggered by quantum or thermal fluctuations, which for J > 0 has an inverted parabolic shape near k = 0 and
exhibits its minima at k = £ /d in the Brillouin zone. The numerical study of the appearance of staggered
states in this frequency regime therefore requires a more involved treatment taking into account higher bands.

4. Conclusion

In summary, we presented an experimental study of the dynamical transition of a BEC from periodic to
staggered states within a periodically shaken optical lattice. As was revealed by TW simulations, this transition is
accompanied by a global loss of many-body coherence, even though spatial interferability between different
lattice sites is still preserved. It is triggered by quantum or thermal fluctuations, depending on the temperature
within the BEC. As key ingredient we identified the inversion of the effective energy band in momentum space,
which exhibits a maximum in the center and minima at the edges of the Brillouin zone. This inversion is
responsible for the formation of density fluctuations within the lattice that are closely related to gap solitons. The
presence of an inverted energy-momentum dispersion relation lies also at the heart of the rapid nucleation of
staggered states observed for positive renormalized tunneling near interband resonances, which involve the
population of the first excited band within the lattice.

6
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Figure 4. Nucleation of staggered states near an interband resonance. The modulation frequency v = 14 kHz lies slightly above the
center-of-mass oscillation frequency v, = 10.6 kHz (for alattice of depth 3.7 E;) and is close to the transition from the ground band
to the first excited band within the optical lattice. The amplitude of modulation ¢, = 0.0287 is chosen such that one would geta
positive renormalized tunneling rate ] = 0.94 ] within the single-band approximation (which breaks down in this resonant
frequency domain). Staggered states are nevertheless nucleated owing to the population of the first excited energy band which exhibits
its minima at the edges of the Brillouin zone. Panel (a) shows absorption images obtained for various evolution times (followed by

25 ms time-of-flight), where the time step is set to 200 ps. Panels (b), (c) show the time evolution of the population in the different
orders of momentum p = (0, £1/2, +1)h/d extracted from the absorption images, with the orders (b) 0 (solid), +1 (dashed), —1
(dotted) and (c) +1/2 (dashed), —1/2 (dotted).

The present experimental setting can be exploited in order to yield a quantitative diagnostic tool for
determining interaction and fluctuation effects in similar dynamical transitions involving, e.g. ferro- or
antiferromagntic states [15]. Further studies in the high-frequency regime will be interesting in order to explore
the nucleation of staggered states through near-resonant interband transitions in more detail.
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Appendix A. Implementation of the TW method

The starting point for the implementation of the TW method is the effective many-body Bose—Hubbard
Hamiltonian

AHu=-] Y [I;ITBlHe*wm + l;llll;zew(t)]
I=—00
S pte Uptptprn
+ 20 [Vibi b+ by b bib (A.1)
I=—00
which describes the dynamics of a BEC within a periodically shaken lattice. Here we employ a single-band

approximation within the reference frame that is comoving with the shaken lattice. The shaking is incorporated
by means of a periodically time-dependent Peierls phase

0@ = 277%};—V cos(2mut) (A.2)
L

within the inter-site hopping matrix elements of the lattice. The on-site energies
1
Vi= Emwﬁ d’? (A3)

account for the presence of the longitudinal harmonic confinement with the oscillation frequency wj,.
For lattice strengths V, = s E; with s 2 2, we can approximately represent the Wannier function within the
Ith well by the Gaussian
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(A4)

1 x — Id)?
P(x) = exp[—( > ) ],
/2, 2a

—1/2
ap= | N (A5)
mwy k

is the oscillator length associated with the frequency wy = s'/?E; /i of oscillations within each well of the lattice.
The effective hopping parameter between adjacent wells can be determined from a semiclassical Wentzel—
Kramers—Brillouin (WKB) ansatz [38, 39]. We obtain
j= 0 e (A.6)
Jer

where

with the dimensionless imaginary action

(T:\/zfﬂ /m — cosu du

arccosn

— [0+ 1)E[” - azrccosn, /n i 1 ] (A7)

where we introduce the parameter

1 1
1=ew(-515) - 537 Ao

and the incomplete elliptic integral of the second kind E (¢, k) = j(; * J1 — k2sin? 0 d6. Note that this WKB

ansatz is based on the approximate expression Ey = (1 — 1)s'/*Aw, /2 for the ground state energy within each
well, which is obtained from the expression (A.4) for the Wannier function using first-order perturbation
theory.

A complication is introduced by the fact that the lattice wells in the experiment are not truly 1D but rather
exhibit a pancake shape, as the transverse confinement frequency w, of the trap is comparable to the
longitudinal one wj and hence much larger than wy. For the total atom numbers at hand, the BEC exhibits a
parabolic Thomas—Fermi profile in its transverse density distribution within lattice wells that are located near
the center of the trap. The interaction energy within such a well therefore scales in a non-quadratic manner,
namely ocr /2, with the occupancy n; of that well, which implies that the effective on-site interaction parameters
U, appearing in the Bose—Hubbard Hamiltonian (A.1) scale as n,’l/ 2 with the occupancies of the corresponding
sites. For weakly populated lattice sites that are located at the edge of the atomic cloud, on the other hand, we can
justify the perturbative approximation g =~ 2hw) a; [40] for the effective 1D interaction strength with
a; >~ 5.3 x 107 m the s-wave scattering length of *’Rb atoms, which yields U; =~ 2w, as/(~/27 a,) for those
sites.

In order to simultaneously account for weakly and strongly occupied sites of the lattice, we employ a
heuristic interpolation formula

l]l — ZﬁwLas/(mﬂO)
J1 + 4ma,/ (V27 ag)

between the perturbative and the Thomas—Fermi regime [41]. We furthermore make the simplifying
assumption that the lattice site occupancies n; remain fairly constant and are not substantially altered in the
course of time evolution. While this constraint appears to be well respected on average, significant fluctuations
of the lattice site occupancies about their average values may nevertheless arise if the condensate undergoes a
transition to a staggered state (as seen in figure 2(b)).

Having thereby determined all relevant parameters of the Bose—Hubbard system (A.1), we can then derive
the discrete nonlinear Schrodinger equation

(A9)

iﬁ%w) (e + (1) 0]

+ Vit (1) + Ul 1> — 1]4i(t) (A.10)

by means of which the classical fields ¢, that sample the quantum many-body state of the system have to be
evolved with time in the framework of the TW method. For the initial state we assume the presence of a perfect
BEC within the optical lattice, which is in an idealized manner described by a coherent state in the classical field
space. This leads to the choice 1(0) = ¢; + x;for the initial value of 1); where ¢, corresponds to the condensate
wavefunction within the (unshaken) lattice at t = 0. In practice, ¢,is determined by imaginary-time propagation
of the Gross—Pitaveskii equation that describes the condensate at t = 0 (which is nearly identical with
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Figure Al. Numerically computed density of atoms in momentum space calculated for the driving frequency v = 1.5 kHz and the
amplitude ¢y = 0.757 at the evolution times (a) t = 2.5 ms, (b) t = 5 ms, (c) t = 7.5 ms, and (d) t = 10 ms. The lattice depth is
Vo = 2.6E;. The blue solid line represents the total mean density in momentum space computed with the truncated Wigner method,
while the red dashed line shows the coherent part of the density which is calculated according to the prescription indicated in
equation (A.12).

equation (A.10), except that it exhibits real hopping and the usual U|+|*1); interaction term). This thereby yields
n; = |¢,[? for the determination of the on-site interaction strengths according to equation (A.9). x;is a complex
random number drawn from a Gaussian probability distribution which is centered about the origin in the
complex plane and yields the variance | x,[* = 1/2. Effects due to the presence of finite temperature and initial
quantum depletion within the atomic cloud are therefore neglected in this study.

Expectation values of one-body operators are then evaluated according to the prescription
At A A oAt —_
(by by + brby )y = 247(6) (D), (A.11)

where 1 (t) 1)y (t) denotes the statistical average (over TW trajectories) of the expression 1} (¢)1)y (¢). This yields

in particular (l;,T 51): = |9y (t)]> — 1/2 for the average occupancy of the site [ at time #. A similar subtraction ofa
‘half-particle’ is needed in order to determine the average distribution of atoms in momentum space.
The TW method also allows one to estimate the remaining condensate fraction within the atomic cloud,

namely through the coherent part of one-body observables l;; by defined by
AF A ol - —
(b b = () Pr(@. (A.12)
The non-condensed fraction associated with the population of the site /is then approximately determined as

(b b — (BB = [T — [P — 1/2. (A.13)

Performing a similar calculation in momentum space, we thereby find in our numerical simulations that many-
body coherence is entirely lost in the two side peaks associated with the staggered populations S, shown in
figure 2, while it is still preserved within the central peak at p = 0 as well as within the side peaksat p = +h/d.
This is shown in figure A1.

Appendix B. Bright solitons in periodically driven Bose-Hubbard systems

In this section, we outline the theory of bright solitons within repulsively interacting BEC that are prepared in
periodically driven 1D optical lattices. Our starting point is the simplified Bose-Hubbard Hamiltonian (4) which
assumes the presence of a homogeneous optical lattice of infinite extension. A BEC prepared within this lattice
therefore evolves according to the discrete nonlinear Schrédinger equation

iﬁ%wz(t) = —J[Wr1(t) + Y1 (O] + Ulhi () Pu(®), (B.1)

where U > 0 represents the on-site interaction strength and J is the effective renormalized tunneling rate
according to equation (3).
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For J < 0, equation (B.1) admits approximate solitonic solutions of the form
Yi(t) = Jmg sech[(I — Lo) /w)e #/h, (B.2)

which correspond to a hyperbolic secant function sech(x) = 1/ cosh(x) centered about some lattice site index
ly € Z with the peak density n, and the characteristic width win terms of the lattice spacing. Indeed, we can
approximately express

2
Yra(t) + () ~ 200(0) + %1/)1(0 (B.3)
for w > 1and evaluate
2 1 2 ,
S0 = =2 (0) — O (B.4)

using sech”(x) = sech(x) — 2sech®(x) forall x € R. Inserting the expressions (B.3) and (B.4) into the discrete
Gross—Pitaevskii equation (B.1) yields the relation

,2]‘
N B.
w O (B.5)

between the width w and the height 74 of the soliton. Its associated chemical potential
- 1
w=-2] + EUno (B.6)

is located within the band gap above the ground band of the driven optical lattice.
From the shape of the hyperbolic secant function we infer the FWHM of the gap soliton as

—2]

Ul”l()

o~ 2.634 wd = 2.634 d, (B.7)

where d is the lattice period. For the experiment shown in figure 1(a), which was done with the shaking
amplitude p, = 0.757yielding ] ~ —0.16] and which featured an average occupancy of some 3300 atoms per
lattice site as can be seen in figure 2(b), we obtain through equations (A.6) and (A.9) J /U =~ 180 on average
within the lattice. Inferring again from figure 2(b) a peak height of the order of ny > 5000, we finally obtain
o =~ 0.7 d for the FWHM width of the soliton, which is in fairly good agreement with the TW calculation shown
in figure 2(b).

We should note that the above reasoning is rather approximate insofar as we cannot a posteriori justify the
approximation (B.3) for such narrow widths. This is reflected by the fact that the spiky peaks shown in
figure 2(b) are not really isolated from each other in a solitary manner, but rather form a dense array. Their
occurrence gives rise to an enhancement of the total interaction energy contained within the atomic gas (as
would any inhomogeneity in the spatial density distribution), and this enhancement compensates for the loss of
kinetic energy that is associated with the transfer of atoms from the condensate state in the presence of the
driving atk = 0 (highly energetic) to the staggered state characterized by k = £ /d (lowly energetic). This
situation is perfectly complementary to the formation of conventional bright solitons within an attractively
interacting 1D BEC, where the enhancement of kinetic energy due to the loss of homogeneity would be
compensated by the gain of interaction energy.

Appendix C. Lattice depth calibration

We perform a precise calibration of the lattice depth using the out-of-equilibrium dynamics of a chain of BECs
in an optical lattice following the method we demonstrated in [26]. To do so, we first load adiabatically a BEC in
thelattice, creating a chain of BECs trapped at the bottom of the lattice sites. At t = 0, we suddenly shift the
phase of the lattice, which triggers the center-of-mass motion of the atomic wave packets in each well (shift of

6y = 90° here). After a given holding time in the shifted lattice, we perform a 25 ms time-of-flight. The
experimental absorption images (see figure C1) show the interferences of the different wave packets located in
each lattice site. The interference figure is centered on the central interference peak (Oth order) corresponding to
wave packets that were released while being at rest in the shifted lattice, i.e. at the turning points of the oscillatory
motion. We observe oscillations of the population in the Oth order from which we extract the period of the
center-of-mass motion of the atomic wave packets. This period can be directly related to the depth of the optical
lattice. Indeed, the intrasite dipole mode is coupled to a two phonon transition between the ground state band
and the second excited band atk = 0:

10
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Figure C1. Lattice depth calibration using the oscillatory motion of atoms within the lattice after a sudden phase shift of the lattice of
0y = 90° att = 0. The measured period is 153 us, corresponding to a lattice depth of 1.9 E;. Top: absorption images for various
holding time in the shifted lattice (followed by 25 ms time of free flight in the absence of the lattice). Bottom: time evolution of the
populations of the different orders of momentum p = (0, £1)h/d extracted from the absorption images.
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Figure D1. (a) Double logarithmic representation of panel (b) of figure 1. We see that the nucleation time diverges approximately as
~(p, — 0.65887)1/2. The straight (black) dashed line corresponds to a power law with the exponent —1/2 and serves as a guide to
the eye. Panel (b) displays the experimental and theoretical data shown in figure 1(b) as a function of —J /] = —J (2w hv/Er). This
confirms even more directly that the nucleation time scales proportionally to the inverse Lyapunov exponent X! oc (—J)~1/2.
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In this way, we find a lattice of depth 1.9 E; corresponding to the measured period T, = 153 us. Interestingly, we
have shown that this kind of measurement is robust against the value of the phase shift of excitation ,, the
atom-—atom interaction strength, and the external confinement superimposed to the lattice. For these values of
the phase shift and the lattice depth, tunneling plays an important role in the wave packet dynamics insofar as an
important fraction of the wave packets tunnels to the neighboring lattice sites. It explains for instance the
population of the —1 order for an evolution time in the shifted lattice of 40 s but also more generally the
asymmetry of the populations in the =1 orders. We have studied in details such effect in [26].

Appendix D. Parameter ranges for the nucleation of staggered states

This section is devoted to a more extensive discussion of the parameter ranges within which a nucleation of
staggered states can be observed. We start by recalling that the dependence of the nucleation time with the
driving amplitude ¢ is studied in detail within figure 1. As key feature we find that the nucleation time diverges
when g approaches the value 0.65887 where the Bessel function appearing within equation (3) of the main text
has its first node. Identifying this nucleation time approximately with the inverse of the Lyapunov exponent

A\ = [—8] (2] + nU)]'/2/h that characterizes the dynamical instability of the condensate, and assuming an
approximately linear scaling (with negative slope) of the effective renormalized tunneling rate J with the
distance of ¢, from the node of the Bessel function, we should expect that the nucleation time diverges as
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Figure D2. Nucleation of the staggered states for different modulation frequency v. For (1-4), the modulation frequencies are below
the center-of-mass oscillation frequency (v, = 6.55 kHz, corresponding to a lattice depth of 1.9 E;). The product @y with ¢, the
amplitude of modulation is kept constant, corresponding to a negative renormalized tunneling rate J. The (amplitude,frequency)
couple takes the following values (1) (0.67, 2 kHz), (2) (0.44m, 3 kHz), (3) (0.337, 4 kHz) and (4) (0.277, 5 kHz). For every set of
values are represented: (a) absorption images obtained for various evolution times followed by 25 ms time-of-flight, where the time
step is set to 100 ys for the measurement (2) and 200 ys for the other measurements; (b), () time evolution of the population in the
different orders of momentum p = (0, £1/2, +1)h/d extracted from the absorption images, with the orders (b) 0 (solid), +1
(dashed), —1 (dotted) and (c) +1/2 (dashed), —1/2 (dotted).

~(p, — 0.6588m) /2 when approaching the node of the Bessel function. As we can see in figure D1, this is
indeed confirmed when plotting the experimental and numerical nucleation time data of figure 1(b) in a double
logarithmic representation.

D.1. Frequency range

We extend the study of the effect of the modulation frequency v on the nucleation of staggered states performed
in the main article to determine the frequency range in which such states appear. We first use a lattice of depth

1.9 Ej, characterized by a center-of-mass oscillation of frequency v, = 6.55 kHz (see above) and perform phase
modulation experiments at different modulation frequencies below v, (see figure D2 (1-4)). We maintain the
product v constant with ¢, the amplitude of modulation, yielding an effective tunneling rate J thatis constant
and negative. The argument of the Bessel function (see equation (3)) is chosen equal to 3.24.

At the lowest modulation frequencies (2 and 3 kHz), we clearly observe the nucleation of staggered states
with the population of staggered modes at momentum p = +h/2d, whereas for larger modulation frequencies
(v = 5 kHz), we do not significantly populate the staggered modes (see figure D2(c4)). More specifically, we
observe the population of staggered modes for modulation frequencies up to typically v/./2, meaning for
modulation frequencies that are not too close to excitations frequencies towards the excited bands. The
experiments presented in figure 3 on the effect of the modulation frequency were performed with a lattice of
depth 2.6 E, corresponding to a center-of-mass oscillation frequency v, = 8.1 kHz. As those experiments were
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Figure D3. Nucleation of the staggered states for different lattice depths: (a) 1.2 E, (b) 1.8 E;, () 2.6 E; and (d) 3.2 E;. The absorption
images are obtained for various evolution times followed by 25 ms time-of-flight. The amplitude ¢, and frequency v of modulation
have been chosen such to keep the argument of the Bessel function (see equation (3)) equal to 3.24: (a) ¢y = 1.67mand v = 800 Hz
(b)~(d) po = 0.897and v = 1.5 kHz.

performed for modulation frequencies up to 4 kHz, we could see the population of the staggered modes for each
chosen modulation frequency.

D.2. Lattice depth range

We perform phase modulation experiments for different lattice depths ranging from 1.2 E; to 3.2 E; and observe
the nucleation of staggered states in this range of lattice depth (see figure D3). The product ¢, x viskept
constant and corresponds to a negative effective tunneling rate J. The dynamics for the population of staggered
modes look similar to the dynamics shown in figure 1, but for the lattice depth 1.2 E;. For the lattice depth 1.2 Ej,
the measurement is performed at alower modulation frequency and as a consequence with a larger amplitude of
modulation. For such an amplitude of modulation, the associated classical phase space starts to exhibit chaotic
zones, which is probably responsible for the disrupted aspect of the dynamics observed in this case (see

figure D3(a)).
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