Les ondes de matière géantes

David Guéry-Odelin Laboratoire Collisions Agrégats Réactivité Université Paul Sabatier, Toulouse

www.coldatomsintoulouse.com

Quelques comportements ondulatoires

Interaction d'un atome avec la lumière

Spectre d'émission atomique : un révélateur de la nature ondulatoire des électrons

Un gaz entier peut-il avoir un comportement ondulatoire ?

Quelques réflexions autour de l'histoire des basses températures

Les ondes électromagnétiques

Fréquence v (ne dépend pas du milieu) Longueur d'onde λ (qui dépend du milieu)

Quelques comportements ondulatoires

Comportement diffractif de la lumière

Comportement diffractif de la lumière

Diffraction par un bord d'écran

Diffraction par un bord d'écran

La fameuse expérience des fentes d'Young

La diffraction de Bragg (1913)

Découverte des rayons X W. C. Röntgen Prix Nobel de physique 1901 Lorsque la différence de parcours entre les ondes réfléchies par deux plans adjacents est un multiple de la longueur d'onde incidente, il y a un maximum de diffraction

2d sin θ = n λ

W. H. Bragg W

W. L. Bragg

Prix Nobel de physique 1915

Sonder la structure de la matière grâce aux rayons X

Les modes longitudinaux d'une cavité

Réflexion totale

Le point de vue de l'optique géométrique (description en termes de rayons)

Les ondes évanescentes

L'optique géométrique est une approximation de la description ondulatoire

La description ondulatoire fait apparaître un nouveau phénomène L'existence d'une **onde évanescente**

L'effet tunnel avec des ondes électromagnétiques

L'effet tunnel avec des ondes électromagnétiques

L'effet tunnel est un effet ondulatoire Grande sensibilité à la distance de séparation

Interaction d'un atome avec la lumière

Les couleurs émises : une source d'information

L'histoire de la mécanique quantique tire en partie son origine des études spectrales faites au XVIII et XIX ième siècle

Ex : lampes au sodium (éclairage orangé des lampes de ville)

La conception de l'atome après les expériences de Rutherford

Bohr souligne le problème de l'instabilité du modèle planétaire proposé par Rutherford

Instabilité dynamique car les électrons se repoussent

Le modèle de Niels Bohr (1913)

Il n'existe que des orbites discrètes (notion d'état stationnaire)

Le passage d'une orbite à une autre se fait grâce à l'émission ou l'absorption d'un grain de lumière, le photon

> La théorie de Bohr propose une image simple et convaincante des données spectrales

Inhibition de l'émission spontanée

D. Kleppner and S. Haroche, Physics Today 42, (1)24 (1989)

Louis de Broglie Associer une onde à une particule

Einstein : « Il a soulevé une partie du voile »

Particule matérielle : Energie E et impulsion p

Onde : fréquence v et longueur d'onde λ

Dualité
$$v = \frac{E}{h}$$
 $\lambda = \frac{h}{p}$

Louis de Broglie

Exemple lumière : longueur d'onde λ (couleur) et corpuscule = photons

Pour une particule matérielle

$$\lambda_{\rm dB} = \frac{h}{p} \underset{v \ll c}{\simeq} \frac{h}{mv}$$

Prix Nobel de physique 1929

Ordres de grandeur

Ordres de grandeur (*h*=6,63 10⁻³⁴ J s)

Système considéré	Masse (kg)	Vitesse (m/s)	Taille de l'ouverture (m)	p a / h
Homme passant une porte	70	1	1	10 ³⁴
Globule rouge dans un capillaire	10-16	10-1	10-4	10^{11}
Electron à travers une fente	9 10 ⁻³¹	700	10-6	1

L'expérience de Davisson et Germer (1927)

C'est une expérience de diffraction de Bragg avec des ondes électroniques

Lorsque l'énergie est fixée on observe un maximum de diffraction à un certain angle

Lorsque l'angle de diffraction est fixé, on observe un maximum de diffraction pour une certaine énergie des électrons incidents

Diffraction des électrons

Prix Nobel de Physique 1937

Clint Davisson (1881-1958) Lester Germer (1896-1971)

George Paget Thomson (1892-1975)

Microscopie à effet tunnel

Prix Nobel de Physique 1986

Diffraction d'un objet composite : l'hélium

L'expérience d'Estermann et Stern 1932

I. Estermann

O. Stern

Les atomes d'Hélium sondent la structure périodique de la surface

L'expérience des fentes d'Young avec des atomes de néon

1992 : Expérience de démonstration atomes de néon (Prof. Shimizu, Tokyo) Des atomes préparés dans *les mêmes conditions* donnent des impacts en des positions différentes !

Les atomes sont dans une superposition d'états des deux chemins possibles

La **répétition** de la mesure permet de reconstituer $|\Psi(x,t)|^2$ qui exhibe un caractère ondulatoire

Diffraction de grosses molécules

M. Arndt *et al.* Nature **401**, 680 (1999). L. Hackermüller *et al.* Physical Review Letters (2003).