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Restoring quasireversibility with a single topological charge
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We numerically study a rotating Bose-Einstein condensate placed transiently over the critical rotation
frequency, i.e., in a regime where the rotation frequency is larger than the radial frequency of the confinement.
We study the reversibility of this process depending on the strength of the interactions and the presence of
vortices. We find that the reversibility is broken by the interactions in the absence of vortices but systematically

quasirestored in the presence of a single vortex.
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I. INTRODUCTION

The behavior of a rotating quantum fluid is known to
exhibit some counterintuitive phenomena. For instance, by
contrast with the rigid body rotation of a classical fluid, a
quantum fluid reacts to the rotation, if sufficiently large, by
nucleating vortices. This superfluid behavior was first observed
in liquid He 1 [1], and more recently revisited in the cold
atom community with studies dedicated to rotating dilute
Bose-Einstein condensates (BECs) [2—-10].

Experimentally, various methods have been investigated to
generate vortices using either phase imprinting [2,9,10] or a
rotating anisotropy superimposed to the confining potential.
In this article, we concentrate on this latter technique for
its versatility. This problem involves two frequencies: the
rotation frequency 2 and the trapping frequency wy associated
to the harmonic confinement. Vortices are here nucleated
when the rotation resonantly excites quadrupole modes in
the frequency domain 0 < Q < wo/ﬁ [3,4,6,7] through a
dynamical instability [11,12]. The critical rotation regime
Q =~ w has attracted a lot of attention [13-29]. In this regime
and from a one-body point of view, the harmonic trapping force
is exactly compensated by the centrifugal force. Thus atoms
experience the Coriolis force only in the rotating frame. This
force is formally equivalent to the Lorentz force. The physics
of neutral atoms in this regime is thus analogous to that of an
electron gas in a uniform magnetic field. The ground energy
level becomes macroscopically degenerated, and phenomena
related to the quantum Hall effect with many vortices involved
are expected [25].

In this article, we propose to explore the dynamics of a
BEC in the presence or not of a single vortex in the rotation
frequency domain 2 > wy. This regime is particularly difficult
to study from an analytical point of view, since there is no
well-adapted hydrodynamic formalism, no possible coarse-
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graining approaches, and no ground state. As we shall discuss
in the following, the change in €2 that we consider prohibits a
perturbative treatment of the problem. We therefore propose
a numerical study of the corresponding out-of-equilibrium
dynamics.

In practice, the BEC is subjected to a cyclic evolution. It
is initially prepared at equilibrium with Q < wg, and placed
afterwards at a larger rotation frequency 2 > wy, either
abruptly or adiabatically, and transferred back to its initial
trap configuration. Such a path through an instability region
provides a test-bed of the robustness of topological charges
when initial conditions are chosen so to accommodate them.
Furthermore, it is known that cyclic evolution also gives rise in
one dimension to specific time durations of the cycle for which
reversibility is observed [30]. The study is here performed in
a much more complex system of higher dimensionality, in
the presence of interactions and topological charges, crossing
back and forth an instability region. Our main result is the
breakdown of reversibility in such a cyclic evolution except in
the presence of a single vortex.

The paper is organized as follows. In Sec. II, we summarize
the different regimes depending on the relative value of €2 and
wp. In Sec. III, we detail our numerical procedures to prepare
and place the BEC in the desired window of parameters. In
Sec. IV, we provide a few exact analytical results in some
limiting cases. Our numerical results are discussed in Sec. V.

II. REMINDER ON ROTATING PARTICLES

We restrict our analysis to two dimensions, i.e., in the plane
perpendicular to the rotation axis. The potential experienced
by the atom in the rotating frame R is

Ve(t,x,y) = dmaj([1 + e(0]x® + [1 — ey, (1)

where m is the particle mass and & accounts for the small
rotating anisotropy. The corresponding classical equation of
motions are time independent [31]:

i) = [—oj(1 + &) + Q]x +2Qy
§(t) = [—wp(1 — &) + Q%]y — 2Qit. )
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As expected, the confining potential frequency is reduced by
the contribution of the centrifugal force: w3(1 & &) — w(1 £
& — Q). The dispersion relation of these two linearly coupled
equations yields stable solutions in two separated frequency
domains: Q < Q_ and Q > Q,, with Qi = a)(z)(l +¢) and
unstable solutions in the frequency range Q2_ < Q2 < ;.

For Q_ < Q < €, the direction along the y axis is no
more confining, resulting in an instability of the particle. The
observed stability for 2 > Q. originates from the Coriolis
force. This force favors a precession of the velocity which
counteracts the repulsive force generated by the centrifugal
force. We therefore obtain a dynamical stabilization of the
atom in this regime. This is reminiscent of the magnetron
stabilization in ion Penning traps [32].

The different regimes have been partially explored experi-
mentally with an interacting Bose-Einstein condensate in the
Thomas-Fermi regime [5]. The routes to vortex nucleation
through dynamical instabilities have been investigated in the
range of parameters 0.5 < Q/wy < 1.1 and 0 < ¢ < 0.03 [5].
The instability window of rotation frequencies Q2_ < Q2 < Q4
has also been explored with a BEC from both a theoretical
and an experimental point of view (2 = wy and ¢ = 0.09)
[8]. For this choice of parameters, the center of mass is
unstable. The conclusions about the size of the cloud were
somewhat counterintuitive: in the absence of interactions the
cloud expands to infinity while it spirals out as a rigid body
when repulsive interactions are sufficiently large [8]. The upper
bound €2 is reduced in the presence of interactions while €2_
is immune to the strength of interactions. In this article, we
study the dynamics of a dilute interacting BEC in the regime
Q> Q.

III. NUMERICAL PROCEDURE

Our results are based on the numerical resolution of
the time-dependent two-dimensional (2D) Gross-Pitaevskii
equation [33,34] in the rotating frame associated to the
potential (1):

Y _ _lA\y+l([l+ (O1x* + [1 — e()]y*) ¥
lat =3 3 e(t)]x elr)ly
+BIVIPY — QL. 3

where the lengths are normalized to the harmonic length ag =
(h/mawy)'/? and the time and rotation frequency normalized to
the angular frequency wg. The operator L, = xp, — yp,, with
momentum operators p, = —id, and p, = —id,, accounts
for the angular momentum rotation term. The parameter f
characterizes the strength of interactions.

For a given value of § and Q2 =, =0.9 (¢ =0), we
determine the ground-state wave function using an imaginary
time evolution technique. The ground state contains a number
N, of vortices that depends on the interaction strength S
[35]. For g = 2, the ground state has no topological defect
(i.e., no phase jump) and N, = 0 (see Fig. 1). For g =5,
the ground state accommodates a single vortex N, = 1, as
explicitly shown on the phase map that exhibits a single phase
singularity (see Fig. 1) [36].

Figure 2 graphically summarizes the different procedures
that we have investigated for the variations in time of &(¢)
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FIG. 1. Density profile (left) and phase map (right) of the ground
states fore = 0,2 =0.9and 8 = 2,5, and 9.

and €2(¢). The initial and final steps of the all procedures are
always the same. We first ramp up the anisotropy ¢ from 0 to
a small value e, of a few percent keeping the other param-
eters constant, and finally ramp it down symmetrically from
Emax t0 0:

) = Emax X P(t)’
8( ) B {gmax[l - P(t - 2t2 - tl)]!

initial ste

( p) @
(final step),

where 2t, is the amount of time over which the rotation
frequency € is changed and P(1) = 6(¢t/1,)° — 15(t/t))* +
10(¢/t;)? is a smooth polynomial function increasing from 0
to 1 when ¢ spans the interval [0; #;]. We fix #{ = 10 to ensure
a quasiadiabatic ramping up of the anisotropy. The variation
of the angular rotation frequency obeys

Qy,t €[0;01]
Qu +(Qy — Q) ft — 1)t €lt13t1 + 1]
Q1) =\ Qu — (Qu — Q) flt — (11 + )], o)
t €ty + ity + 28]
Qnu,t >t + 21,

with £(t) = 3(t/1:)* — 2(t/1,)° and Q1) € [Qm, 2]
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FIG. 2. Time evolution of the anisotropy ¢ (top) and the rotation
frequency €2 (bottom). The initial state is in the stable zone (£2,, =
0.9). The shaded area depicts the instability zone in the absence of
interactions Q(¢) € [v/1 — €max; V1 4 €max]. To cross the instability
zone, €2 is either abruptly changed [scenario (b)] or smoothly ramped
[scenario (a)] to £2,;.

We consider two different scenarios (see Fig. 2): (a) @
is smoothly ramped up over 2, during the time interval 21,
crossing the instability zone (interval [2_,<2.]) twice and (b)
Q is abruptly increased to a constant value 2, > Q., this
plateau value being maintained during the time interval 2¢,.
The response of the system is analyzed as a function of #,.

In practice, we keep track of the total energy defined by

B

E(V) = l|qu|2+\/ W12+ S |W* — QUL W | d?
= ) ext 3 z r,

(©)

the fidelity with respect to the initial ground state ¥ (r = 0) =
Wy, F(t) = |(Wo|W(r))|* and the mean quadratic size of the
cloud.

IV. EXACT RESULTS IN LIMITING CASES

To position the results obtained by our numerical simula-
tions, it is instructive to work out analytically two limiting
cases in the absence of vortices. We describe hereafter the
evolution of the size of the wave function through the exact
determination of the time evolution of its mean quadratic size,
first in the absence of interactions and then in the opposite
limit, the Thomas-Fermi regime [37].

A. Noninteracting bosons

In the absence of interactions (8 = 0), we can infer the
evolution of the size of the cloud using the Ehrenfest theorem
with the time-dependent Hamiltonian

pi+p;

H(t) =~

1 2 2
+ 5[(] +ex +(1—e)y 1-QL,. (7)
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FIG. 3. Relative energy difference between the initial and final
states of the system AE/Ey = (E; — Ey)/Ey as a function of 21,,
applying scenario (b) to a noninteracting BEC (8 = 0) with gy,x =
5%, and for various values of €2,, and ;.

Any dynamical quantity y, which depends on the variables
X,¥y,p,,and Py has an average that evolves according to

% — LW OIH O£ O ®)

This equation is exactly analogous to its classical
counterpart based on the Boltzmann equation [31,38].
The mean quadratic size involves the average quantity
(x> +y?), and its time evolution involves other averages
of quadratic operators in x,y, p,, and p,. We eventually
find that its evolution is given by a set of ten linear
equations (see Appendix A), coupling the averages of
the following quadratic operators: x; =x%+ y2, o =
X =y 3= XY, e =X+ pX YDy F Py, X5 =
Xpx + PxX = YPy = PyY, X6 = XPy + YPx, X7 = XPy — YDx
=L,xs=p;i+py,x0=pi—py,, and  xio= pipy.
Interestingly, the total energy can also be expressed in terms
of those averages (H (1)) = ({(xs) + (x1) + &(x2))/2 — Q2(x7).

For scenario (b), corresponding to a sudden change of €2,
we solve numerically this set of equations with the initial
conditions (x1)o = {(xs)o =1 and (x;)o =0 for i % 1 or 8.
In Fig. 3, we plot the relative energy difference between the
initial and final states of the system AE/Ey = (E; — Eg)/Ey
as a function of 2f,, the duration over which 2 is changed.
We observe an oscillatory behavior which can be readily
explained as the selective excitation of a single eigenvalue
of the 10 x 10 matrix associated with the equations of motion.
The corresponding frequency can be worked out,

o1 =21+ — (e +423) 17 ©)
which, for enax = 5%, yields the oscillation periods 7 =
32.3482 for Qy = 1.1 and T} ~ 15.8112 for Q4 = 1.2, in
perfect agreement with the observed periods. As a matter
of fact, the amplitude of oscillations of the relative energy
difference decreases when €2, increases (7.5% for Q3 = 1.1
and 4% for 2y = 1.2). The jump in 2 therefore selects a
single eigenvalue which guarantees the reversibility of the
process, i.e., the periodic cancellation of the relative energy
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difference AE/E, as a function of time. We have checked
that by applying the same procedure with a different initial
rotation frequency (€2, = 0.5), we recover the same behavior
(see Fig. 3). In the following we choose €2,, = 0.9.

B. The Thomas-Fermi limit

For sufficiently large interaction strength 8 and in the
absence of vortices, the 2D Gross-Pitaevskii equation is
equivalent in the corotating frame to a set of two hydro-
dynamiclike equations associated to the phase and modulus
of the wave function W(x,y;t) = p'/?(x,y;1)e!?®¥D. The
continuity equation reads

ap

§+V[p(v—ﬂxr)]=0, (10)

with v = V0, and the Euler-like equation is given by

Y N+ — e
ot 2 732 e ey

+,3p—v~(SZxr)i|:O. (11)

Equations (10) and (11) are easily solved using the ansatz

p(x,y;t) = ap + ax)c2 + ayy2 + acyxy,
(12)
O(x,y;t) = axx2/2 + ayy2/2 + nxy,

where ag, a,, ay, ayy, ay, oy, and n are time-dependent vari-
ables. We find a closed set of nonlinear coupled equations for
these variables (see Appendix B), which provides a nonlin-
ear oscillation of period T, =~ 13.38 for g = 0.05, 2, =
0.9, Qy = 1.1, and whose value does not depend on .

V. NUMERICAL RESULTS OUTSIDE THE
LIMITING CASES

This section first summarizes the results we have obtained
for a jump of the rotation frequency 2 [scenario (b)] at a finite
value of the interaction strength parameter 8 in the absence
and in the presence of vortices. We also report on the results
obtained with a smooth variation of the rotation frequency
[scenario (a)].

A. Results for a sudden variation of 2

We consider a ground state with no topological charge
(N, =0,0 < B <4) and change suddenly the rotation fre-
quency from €, =0.9 to Qj = 1.1, for an anisotropic
parameter &max = 5%. As previously, we plot the relative
energy difference between the initial and final states as a
function of 2#,. We find three main differences compared to
the case without interactions (see Fig. 4): oscillations have a
lower frequency, they are slightly damped, and their relative
amplitude is dramatically reduced [amplitude of ~0.5% (for
B = 2) to be compared to 7.5% for 8 = 0]. This latter feature
results from the large contribution of the interaction energy
to the total energy. The slight damping suggests that, in the
presence of interactions, many modes are contaminated by the
excitation process. In the absence of interactions, we have seen
that the breathing mode (i.e., x1) is coupled to the quadrupole
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FIG. 4. Relative energy difference between the initial and final
states AE/Ey as a function of 2wy, applying the scenario (b)
(with ggpax = 5%, 2, = 0.9, and 2, = 1.1) to ground states without
vortices for different interaction strengths 8.

mode (i.e., x2). It is known that the frequency of both modes
decreases as the interaction strength B increases [37]. We
recover here the same tendency in the corotating frame.

Applying the very same procedure for different interaction
strengths S in the interval 4 < 8 < 8.5, i.e., in the presence of
a single vortex, we observe an oscillation that is not damped
and whose period is close to that for 8 = 0 at the lowest value
of B for which a single vortex appears, and that decreases with
B. Figure 5 provides for 8 = 5 the evolution of the relative
energy difference between the initial and final state along with
the fidelity of the final state with respect to the initial one for
various values of the anisotropy parameter &p,x.

Our numerical results for a sudden change in the rotation
frequency and for 0 < B < 10 are summarized in Fig. 6. We
plot the period of oscillation of the relative energy difference
AE/E as a function of 8 and compare it to the predictions
of Sec. IV in the absence of interactions and in the Thomas-
Fermi regime, respectively. The data obtained in the absence
of vortices are in between those two limiting cases. We also
plot on the same figure the contrast Cy, of the excess of energy
AE/Ey as a function of 8 [39]. Remarkably, the contrast is
restored to unity [40] only in the window of interaction strength
that corresponds to the presence of a single vortex. In the
presence of two vortices, the contrast drops again drastically,
which is probably related to the rotation symmetry break.

We have also studied the dependence of the amplitude b,
and the period 7, of the oscillations of AE/E( with the final
rotation frequency 2y, (see Fig. 7). For B = 0, we observe a
divergence of both the amplitude and the period as we approach
the instability zone 2 — 2. The same behavior is observed
for B = 5. However, the divergence in the amplitude is less
pronounced. This is due to the fact that 2, is renormalized by
the interactions, as explained in Ref. [8].

B. Smooth variation of the rotation frequency

In this section, we consider a smooth variation of the
rotation frequency from its initial value €2, to its final value
Qu [scenario (a)]. As a direct consequence, the rotation
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FIG. 5. (a) Fidelity of the final state with respect to the initial
one as a function of 21, applying scenario (b) (with €2,, = 0.9 and
Q) = 1.1) to a BEC with a single vortex (8 = 5) for various values
of the anisotropic parameter &y, (b, ¢) Evolution of the fidelity over
time respectively at the first minimum and the first maximum of the
final fidelity. (d) Relative energy difference between the initial and
final states as a function of 21,.

frequency crosses the instability region [Q2_, 2, ] twice. In the
absence of interactions, the variations of the relative excess of
energy AE/Ej as a function of the time #, are given in Fig. 8
for various values of the anisotropic parameter €p,x. In the
instability domain for the rotation frequency, the cloud size
explodes; this is the reason why A E / Ej increases with 1, i.e.,
with the time spent in this instability window. Remarkably,
this instability does not prohibit the quasireversibility of the
process, and we find discrete values of time #, for which the
excess of energy cancels out. These “magic” time durations
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FIG. 6. Period (top) and contrast Cy, (bottom) of the excess of
energy AE/E, as a function of the interaction strength 8 when
applying scenario (b) (with &y = 5%, 2, = 0.9 and Q) = 1.1) to
different ground states with N, = 0 (circles), N, = 1 (diamonds), and
N, = 2 (triangle) vortices. The square corresponds to the prediction
of Sec. IV in the noninteracting case and the lower dashed line to that
in the Thomas-Fermi regime.

are for emax = 5%, 2t, ~ 86, and 2t, ~ 184 with the respective
relative energy differences 2 x 10™* and 2 x 1075.

This is to be contrasted with our observations at finite
interaction strength 8. As an example, we start from a ground
state without vortices (8 = 2). The relative energy difference
is plotted in Fig. 9, where there are two clear local minima for
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0.2+ O 1
o
0 OBbBEEBEBEBOBBEODOD OO0
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LY
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FIG. 7. Amplitude b, and period 7, of the excess of energy
AE/E, with the maximum rotation frequency €2, in the single-
vortex case (8 = 5) and in the noninteracting case (8 = 0), following
scenario (b) with 2,, = 0.9 and &,,x = 5%. The vertical dashed line
shows the upper limit of the instability zone /T 4 £ in the absence
of interactions.
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FIG. 8. Relative energy difference AE/E as a function of 21, in
the noninteracting case (8 = 0), using scenario (a) (with €2, = 0.9
and 2y = 1.1) for various values of the anisotropic parameter &pay.

2ty ~ 34 (AE/Ey ~ 0.49%) and 2t, ~ 174 (AE/Ey ~ 16%).
In the absence of vortices initially (8 < 4), the wave function
has its phase strongly affected by crossing the instability
region, as it can be seen, for instance, in Fig. 9, where
we provide the final density and phase profiles of the wave
function at the local minimum of the relative energy difference
at 21, = 174. The transient entrance of vortices in the course of
the out-of-equilibrium dynamics breaks the quasireversibility.
A fingerprint of the quasireversibility observed in the absence
of interactions remains with the presence of a local minimum
at 2f, ~ 174 but at a nonzero value of the relative energy
difference.

Eo g4l

8=2

€max = 9

%

0 40 80 120 160 200

FIG. 9. Relative energy difference as a function of 2z, when
applying scenario (a) to an interacting BEC without vortices: g = 2,
Emax = 3%, 2,, = 0.9, and Q,; = 1.1. The insets show the final
density and phase profiles after the instability sweep at the local
minimum at 2t, = 174.
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FIG. 10. Relative energy difference as a function of 2¢, when
applying scenario (a) to a BEC with a single vortex (8 =5) for
Q, =0.9,Qy = 1.1, and e,,x = 5%. The shaded area depicts the
zone where the results are no longer reliable. The density (phase)
profiles at the extrema denoted by the roman numbers are shown in
the top (bottom) strips. Color scale from blue to red: amplitude varies
from O to 0.12, and phase from —x to 7.

In contrast, the same scenario applied to a BEC that contains
a single vortex (8 = 5) for various values of #, at fixed Qy =
1.1 and &,,x = 5% restores a curve reminiscent of that without
interactions with well-pronounced minima (see Fig. 10). For
such minima, the energy given to the system while sweeping
the instability zone upwards is almost exactly canceled out
during the downward sweep. We have checked that an adiabatic
sweep towards lower rotation frequency values (with 2, =
0.7) has no impact on the relative energy.

The roman numbers in Fig. 10 correspond to the extrema
of the relative energy difference. We show the associated
density and phase profiles. As expected, the points with almost
vanishing energy difference have a final density profile very
close to that of the initial single-vortex ground state, while
the maxima present a final cloud almost separated in two
subclouds, linked by a central elongated low-density part. The
more elongated the cloud, the more energy it has. However,
the central vortex present in the initial ground state remains
present, as confirmed by the computation of the circulation
around the center. The robustness of the central topological
defect is confirmed in this context, since the explosion of the
cloud resulting from the crossing of the instability region does
not change the circulation.

VI. CONCLUSION

In this article, we have explored numerically a singular
regime for rotating BEC that cannot be accessed in a simple
manner by analytical means. We have observed the strong
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influence of the presence of a single vortex when the BEC
is driven over the critical rotation frequency. The time
reversibility observed in the absence of interactions can be
explained by classical equations. Numerically we observed
that this effect is destroyed when repulsive interactions are
increased, but it is restored in the regime for which interactions
are sufficiently large so that the ground state accommodates a
single vortex. Intensive numerical experimentations suggest
that the quasireversibility that we have highlighted is not
impacted by the numerical parameters (grid size and time step).
It is well known that the moment of inertia of a BEC with many
vortices tends to the classical value. Here, we observe on the
dynamics of the breathing mode that a single vortex restores a
classical dynamics while more vortices would not.

We have studied the quasireversibility in the presence
of a harmonic trap. In [41,42], the authors emphasize a
phenomenon which suggests that the choice of an anharmonic
potential could lead to an instability of a topological defect
through the emission of sound. We thus led additional
numerical experiments in the presence of a quartic perturbation
for our 2D potential, revealing that the quasireversibility is
still present. This suggests that this process is robust with
respect to the choice of the potential and therefore can be
safely investigated experimentally.
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APPENDIX A: AVERAGE METHOD FOR
QUADRUPOLAR MOMENTS

Using Egs. (8) for the Hamiltonian (7), we find the
following set of coupled equations:

d{x1)

i (xa) =0,

W) (y5) ~ 4200 = 0,

) () + Q0 =0,

diﬁ“ — 2{xs) +2(x1) +2&(x2) = 0,

d<d)§5) — 2(x9) + 2(x2) + 2&(x1) — 4Q(t)(x6) = O,
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d

B 3 0) +20) + 205) =
d
Y0 26t =,
d

iﬁ” + (xa) + £{xs) =0,

d
U5 — 490000 + ) + £a) =0,

d
2100 | 6 (56 + (xe) + £ (xa) = 0.
dt (Al)

We can readily check the conservation of the total energy in the
case of time-independent rotation frequency 2 and anisotropy
e, d(H(t))/dt = 0.

APPENDIX B: NONLINEAR SOLUTION OF THE
HYDRODYNAMIC EQUATIONS

The stationary solutions of Egs. (10) and (11) read
[43] vy =noV(xy) and By = (/)1 — x*/R} — y*/R}),
with@? = (1 + &) + 12 — 2n0Q, &> = (1 — &) + 03 + 210,
R} = 2[i/@}, and R} = 2i/&}. The constant [ is the chemi-
cal potential. Its value is determined through the normalization
to unity of the density i*> = Bw}, /7, where wp, = (@, @y)"/%.
The condition of self-consistency imposes that the parameter
o is a solution of a third-order equation:

g + (1 — 292 )no + e, = 0. (B1)

The time-dependent solution resulting from the sudden change
of Q is obtained by inserting the ansatz (12) into the
hydrodynamic equations (10) and (11):

n=—(ax +oy)n — Qulay —ay) — Payy,
ay = —a>—n* —1—¢&—2Ba, +2Qun,
dy = —a; —n° — 1 +& —2Bay, — 2Qum,
ag = —(atx + ay)ao,
ay = —Gay +ay)ay — (0 — Qy)ayy,
ay = —QCay + ax)ay — (1 + Quy)axy,
ayy = —2(0x + aylaxy — 200 + Quax — 2(n — Qu)ay.
(B2)
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