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Coherent backscattering and forward-scattering peaks in the quantum kicked rotor
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We propose and analyze an experimental scheme using the quantum kicked rotor to observe the newly predicted
coherent forward-scattering peak together with its long-known twin brother, the coherent backscattering peak.
Contrary to coherent backscattering, which arises already under weak-localization conditions, coherent forward
scattering is only triggered by Anderson or strong localization. So far, coherent forward scattering has not been
observed in conservative systems with elastic scattering by spatial disorder. We propose to turn to the quantum
kicked rotor, which has a long and successful history as an accurate experimental platform to observe dynamical
localization, i.e., Anderson localization in momentum space. We analyze the coherent forward-scattering effect
for the quantum kicked rotor by extensive numerical simulations, both in the orthogonal and unitary class of
disordered quantum systems, and show that an experimental realization involving phase-space rotation techniques
is within reach of state-of-the-art cold-atom experiments.
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I. INTRODUCTION

As is now well known, interference is a crucial ingredient
to fully understand transport properties of waves propagating
in media with quenched spatial disorder. Phase coherence is
responsible for nontrivial weak localization corrections to the
large-scale diffusion predicted by Drude-Boltzmann theory
[1,2]. Ultimately, interference can even suppress transport
entirely, a phenomenon known as strong (or Anderson)
localization [3,4]. Localization is the rule for large enough 1D
and 2D systems, but a genuine, disorder-driven metal-insulator
transition, the Anderson transition (AT), occurs in 3D [5,6].
Over the past 50 years, numerous experiments have revealed
the delicate intricacies of Anderson localization [7–14].

In the context of cold atoms, localization experiments so far
have monitored the real-space expansion of a wave packet [15].
The atomic cloud first spreads diffusively, then slows down
and finally comes to a halt (vanishing diffusion). The wings of
the stationary density profiles then show an exponential decay
as a function of position. However, the critical properties of
the 3D AT remain difficult to analyze by only using these
real-space observables [16–18]. Indeed, the main challenge is
to circumvent the large disorder-induced energy broadening
of the initial state [19,20] and to select a sufficiently narrow
energy window to avoid blurring the energy dependence of
the diffusion constant and of the localization length near the
critical point [21]. Though energy-filtering methods have been
proposed for cold atoms [22], their successful experimental
implementation is still lacking.

Recent theoretical works have proposed instead to study the
localization dynamics in reciprocal space, i.e., to start from a
narrow initial wave packet centered at nonzero momentum
k0 (ideally a plane wave) and to monitor the time evolution
of the disorder-averaged momentum distribution. It has been

shown that interference effects give rise to nontrivial structures
in momentum space: two narrow peaks emerge on top of an
otherwise isotropic (diffusive) background [23–28]. On a time
scale set by the elastic scattering time, one observes the rapid
emergence of a coherent peak centered at −k0 [23]. This peak
is associated with the paradigmatic coherent backscattering
(CBS) effect [29] and has been recently observed with cold
atoms [30,31]. At longer times, theoretical arguments predict
the emergence of a second peak centered at k0, the coherent
forward-scattering (CFS) peak, on a time scale given by
the Heisenberg time associated to a localization volume
[24–26,28]. For time-reversal symmetric systems, these coher-
ence peaks settle to a twin structure in the localized regime,
and both can be used to extract the critical properties of the
3D AT [27,28] as exemplified by [32] for CBS. It is worth
noticing that, contrary to the CBS peak that disappears when
time-reversal symmetry is broken, the CFS peak is robust and
exists in other symmetry classes [33]. The CFS effect is thus a
genuine marker of Anderson localization in the bulk. Despite
extensive and accurate numerical studies, an experimental
observation of the CFS peak is still lacking. Here again, the
implementation of reliable energy-filtering methods remains
an experimental bottleneck.

With this article, we suggest circumventing this problem by
considering another system, the quantum kicked rotor (QKR).
This system has been extensively studied in the framework
of quantum chaos [34]. From an experimental point of view,
it has allowed the study of interference effects mimicking
those observed with spatial disorder in a very controlled
way [35]. For example, dynamical localization, the equivalent
of 1D Anderson localization in momentum space, has been
observed with a simple magneto-optical trap already back in
the 1990s [36,37]. More recently, the 3D AT has been fully
addressed, including a measurement of the critical exponents
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[38–43]. In fact, theoretical and experimental studies are
arguably more convenient with the QKR than with other
systems (see, e.g., Refs. [44–47]). One of the many reasons is
that characteristic parameters, like the mean free path, or the
localization properties do not depend on (quasi-)energy. We
thus propose to use the QKR for an experimental observation
of the CBS and CFS peaks.

In the following, we briefly present our theoretical model,
introduce the CBS and CFS peaks for the QKR, analyze
their properties, and propose a realistic experimental route
to their observation, all of this both in the orthogonal and
unitary universality class. We then briefly conclude with some
perspectives and future work.

II. KICKED ROTOR MODEL IN A NUTSHELL

The kicked rotor (KR) is a paradigmatic model system
for classical and quantum chaos [34]. The corresponding
Hamiltonian serving our purposes reads

H = P 2

2m
− V0 cos(kX)

∑

n

δ(T /T0 − n), (1)

and has been realized experimentally using cold atoms exposed
to light pulses [37]. It describes a particle with mass m
on a line that is periodically kicked with period T0 by a
sinusoidal potential of strength V0 and spatial period 2π/k.
For mathematical convenience, the periodic train of kicks is
idealized in Eq. (1) as a series of δ functions (Dirac comb).

A. Classical dynamics and chaos

Using k−1, T0, p0 = m/(kT0), and E0 = p2
0/m as space,

time, momentum, and energy units, the classical dynamics
is conveniently described by the dimensionless Hamiltonian
H = H/E0,

H = p2

2
− K cos x

∑

n

δ(t − n), (2)

featuring the dimensionless variables x = kX, t =
T /T0, p = P/p0 and the stochasticity parameter K = V0/E0.
This system can be reduced to Chirikov’s standard map [48]
and exhibits a transition to chaos above Kc ≈ 0.97 [49].
Classical transport is then described by a pseudorandom walk
leading to an unbounded Brownian motion in momentum
space. A small “drop” of initial conditions peaked around
p = 0 spreads diffusively as ⟨p2(t)⟩ = 2Dclt with a classical
diffusion constant Dcl ≈ K2/4 for K > 4 [50].

B. Dynamical localization

The quantum Hamiltonian is obtained by the usual canon-
ical procedure P → −ih̄∂X, which translates into p →
−ih̄e∂x . It introduces an additional dimensionless constant,
the effective Planck constant h̄e = h̄/Scl , where Scl = p0/k =
E0T0 is the classical action associated with the system.
Whereas the classical phase-space dynamics is only governed
by K , the quantum dynamics depends on both K and h̄e (the
semiclassical regime is defined by h̄e ≪ 1). In the cold-atom
community, an important energy scale is the characteristic en-

ergy scale of the lattice potential EL = h̄2k2/(2m).1 It is easy
to see that K = sh̄2

e/4, where s = 2V0/EL is the dimensionless
lattice depth of the kick potential. It is interesting to note that
one can control independently the classical parameter K and
the quantum parameter h̄e, for instance by varying T0 while
maintaining V0T

2
0 constant.

The quantum behavior of the KR stands in marked contrast
with the classical behavior: the classical diffusive transport
freezes after a characteristic time τ known as the Heisenberg
time (or break time). This is the hallmark of the dynamical
localization phenomenon, i.e., Anderson localization in mo-
mentum space. Then, the expansion of a wave packet, initially
peaked around p = 0, saturates to a stationary exponential
distribution, as observed experimentally [37].

C. Quantum dynamics via stroboscopic quantum maps

Like its classical counterpart, the quantum dynamics is best
captured by using successive snapshots of the system right after
each kick. This stroboscopic movie is generated by iterating
the evolution operator U over one period,

U = UxUp = eiK cos x/h̄e e−ip2/2h̄e , (3)

which is itself the product of the free evolution operator Up and
the kick operator Ux . Because the potential is space periodic
with period 1, one can expand Ux =

∑
n fn(K/h̄e) einx in

Fourier components. Using the generating function of Bessel
functions, one finds fn(K/h̄e) = in Jn(K/h̄e), where the Jn

are Bessel functions of the first kind [51]. According to
Bloch’s theorem, any momentum state can be expressed as
|p⟩ = |(l + β)h̄e⟩ ≡ |l,β⟩, where l is an integer and β ∈ [0,1)
is the quasimomentum. The resolution of identity then reads

∑

l∈Z

∫ 1

u

dβ |l,β⟩⟨l,β| = 1, (4)

and the matrix elements of U in momentum space are

⟨l′β ′|U |l,β⟩ = e−iαl fl′−l(K/h̄e) δ(β ′ − β), (5)

with αl = h̄e(l + β)2/2. We find that the stroboscopic quantum
map U conserves the quasimomentum β. As one can see,
the kick operator Ux plays the role of a hopping amplitude
coupling the momentum states |l,β⟩ to their “lattice neighbors”
|l′,β⟩, the hopping range being essentially restricted by the
exponential decrease of the Bessel function to |l′ − l| ! K/h̄e

[51]. We see that K/h̄e ≡ ℓs plays the role of an effective
scattering mean free path. The phase factors e−iαl associated
with the free evolution operator play the role of the random
on-site energies of the Anderson model, the average over
disorder realizations being replaced here by an average over
initial quasimomenta β. They have indeed a pseudorandom
character: when h̄e is incommensurate with 2π , the free
evolution phases αl are uniformly distributed on the circle
[52]. This means that, in contrast to other systems where the
amount of disorder can be varied, the QKR system always

1Note that EL = 4ER , where ER is the recoil energy associated
to the absorption of one photon from one of the counterpropagating
beams generating the one-dimensional optical lattice.
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shows “maximal disorder,” even if, at the same time, the
scattering mean free path can be changed at will. As an
approximation (random QKR model), one can thus simply
forget about the exact expression of the αl , consider them as
true random numbers uniformly distributed over [0,2π ], and
average over them.

D. Localization length and Heisenberg time

From a mathematical point of view, statements about the
localization properties of the Floquet eigenstates |φi⟩ of the
evolution operator over one period

U |φi⟩ = eiωi |φi⟩, (6)

with (real) quasienergies ωi ∈ [0,2π ), can be related to
theorems about products of unimodular random matrices
and their Lyapunov exponents [34,53,54]. From a physical
point of view, Fishman et al. found an important connection
between the QKR and a 1D Anderson model with quasirandom
on-site disorder [55]. Using field-theoretic methods, it was
later shown that the correspondence with quasi-1D wires is
exact [56]. In fact, simple and appealing theoretical arguments
give the expected expression of the localization length [57].
In the direct lattice space labeled by the momentum integers
n, the diffusion constant is Dcl/h̄

2
e . Since the diffusive growth

is stopped after the break time τ , it means that the kicks
can only excite a finite number ξ of lattice states, which
identifies with the localization length in the direct space.
Since disorder is maximal, the associated quasienergies ωi

are uniformly distributed over 2π and their mean level
spacing within the localization volume ξ is thus δE ∼ 2π/ξ .
Diffusion will continue until the discreteness of the spectrum
is resolved around the time τ ∼ 2π/δE ∼ ξ . The number of
levels effectively involved is then

√
2Dclτ/h̄e ∼ ξ , leading to

the scaling relations [57,58]

ξ ∼ τ ∼ Dcl/h̄
2
e ∼ K2

4h̄2
e

∼ ℓ2
s /4. (7)

The exact numerical prefactors cannot be determined from
such heuristic arguments but these results show that the QKR
is similar to a quasi-1D disordered system with N⊥ ∼ ℓs

transverse channels. It is noteworthy that ξ, τ , and ℓs do not
depend on energy. This salient feature is a key advantage of
the QKR over other disordered systems.

E. Orthogonal and unitary class

As is well known, the localization properties of a system
depend on its symmetry properties [6]. An important symmetry
is time reversal (TR) with the twist that, compared to usual
disordered systems, space and momentum exchange their role
for the QKR. This implies that the TR symmetry is in fact
here given by t → −t, x → −x, and p → p, that is by the
usual time-reversal symmetry followed by space inversion (see
[47]). As one can readily see, the QKR Hamiltonian (2) is TR
symmetric in this sense and is said to belong to the orthogonal
class [59]. This also means that TR for the QKR can be
conveniently broken by breaking space inversion, in which
case the system falls into the unitary class. Following [60], this
can be done by replacing the kick potential Vkick(x) = cos x in

(2) by a bichromatic superlattice [61,62]

Ṽkick(x) =
[

cos
(πq

2

)
cos x + 1

2
sin

(πq

2

)
sin(2x)

]
, (8)

with a parameter taken to be q = 0.5 in our numerical
simulations. In the following we theoretically investigate the
CFS and CBS properties of the QKR both for the orthogonal
and unitary classes, leaving other possible symmetry classes
like the symplectic one for future studies.

The localization length in the unitary class is known to be
twice the localization length in the orthogonal class, at fixed
diffusion constant ( i.e., at fixed K and h̄e here) [60,63,64]:

ξu = 2ξo. (9)

Since we will study below CFS and CBS in both the unitary
and orthogonal class, and to avoid any kind of confusion, we
will henceforth use the following notational conventions: ξu

and τu denote the localization length and Heisenberg time in
the unitary class, whereas ξo and τo denote the same quantities
in the orthogonal class.

III. CBS AND CFS PEAKS FOR THE RANDOM QKR

A. Qualitative discussion

If the direct space is defined as the space where Anderson
localization occurs, then the CBS-CFS peak structures appear
in the associated reciprocal space. For the QKR system, local-
ization occurs in momentum space and the reciprocal space
is then the space of positions. From an experimental view,
by adiabatically loading an interaction-free and sufficiently
cold atomic gas into a deep optical lattice, one can prepare
the ground state of the system which consists of a comb of
states, each being localized in the wells of the optical lattice
[65]. As an idealized version, we consider in the following an
infinite initial wave packet |ψ0⟩ ∼

∑
n∈Z |x0 + 2πn⟩ peaked

at periodic positions and normalized within each well to∫ π

−π
|ψ0(x)|2 dx/(2π ) = 1. We then numerically compute the

state after t kicks, |ψt ⟩ = Ut |ψ0⟩, and analyze its averaged
spatial distribution on the unit cell x ∈ [−π,π ], n(x,t) =
|⟨x|ψt ⟩|2 normalized according to

∫ π

−π
n(x,t) dx/(2π ) = 1

(probability conservation). Since the entire model is space
periodic, it is enough to look at the density in a single unit cell.
To avoid spurious effects related to the quasirandom character
of the QKR, we will first consider the random QKR model
mentioned at the end of Sec. II C and then treat the more
realistic deterministic model of Eq. (2). We further choose
sufficiently large K values so that the Heisenberg time is
always much larger than the kick period, our unit of time.

Figure 1 represents the time evolution of our initial wave
packet for x0 = −π/2 in the orthogonal class. It is easily seen
that the spatial distribution after one kick is uniform in the unit
cell, n(x,t=1) = 1. The CBS peak appears at x = −x0 = π/2
at the second kick with a contrast already close to 1. This
is easily understood because the scattering mean free time
τs identifies here with the kicking period, i.e., τs = 1. As t
increases, the CBS contrast reaches 1 very quickly, and its
width decreases and saturates at σCBS = 1/ξo, the inverse of
the localization length, for t ≫ τo. The CFS peak at x = x0
appears only at longer times t ∼ τo ≫ τs and rises with a time
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FIG. 1. Time evolution of the real-space density starting from a
wave packet initially peaked at x = x0 = −π/2 for the random QKR
model in the orthogonal class described by Eq. (2). The parameters
are K = 20, h̄e = 2.89, the Floquet basis size is N = 8192, and
from bottom to top at x = −π/2: t = 1 (black), t = 11 (red), t = 21
(blue), t = 52 (brown), and t = 399 (violet). Just after the first kick,
at time t = 1, the spatial distribution n(x,t) = |⟨x|ψt ⟩|2 is uniform
over [0,2π ]. At times t " 2, a CBS peak forms at x = −x0 = π/2
with contrast close to 1, while the CFS peak at x = x0 develops
after a larger time scale τo ≈ 16. At times t ≫ τo the two peaks are
symmetric copies of each other, a direct signature of time-reversal
symmetry in the orthogonal class.

scale ∼τo. For t ≫ τo, it becomes the exact twin of the CBS
peak with a width σCFS = σCBS = 1/ξo [25,27,28].

Figure 2 represents the time evolution of the same initial
wave packet in the unitary class, that is subjected to Ṽkick(x),
Eq. (8). As predicted, only the CFS peak is visible at long
times t ≫ τu while the CBS contrast remains zero at all times
[33]. Indeed, while both CBS and CFS effects rely crucially
on subtle quantum interference effects, the first one is highly

-π -π/2 0 π/2 π
x

1

1.2

1.4

1.6

1.8

n(x,t)

t=1
t=11
t=21
t=52
t=399

FIG. 2. Same as Fig. 1 but for the random QKR in the unitary class
described by Eq. (8). Compared to the orthogonal class, the absence
of the CBS peak highlights the absence of time reversal symmetry.
Nevertheless, the CFS peak at x = x0 still appears on a time scale
τu ≈ 12. The CFS peak is thus a genuine signature of localization
surviving the breaking of time reversal symmetry. The width of the
CFS peak is smaller in the unitary class than in the orthogonal class,
in accordance with the theoretical prediction Eq. (9).

sensitive to time-reversal symmetry, but the second one relies
only on Anderson localization, a phenomenon surviving the
breaking of time-reversal symmetry. These two peak structures
are therefore interesting markers of the presence or not of
time-reversal symmetry in Anderson localization: a system
in the unitary class presents only CFS, while a system in
the orthogonal class presents both CFS and CBS. As a
consequence, only CFS is a genuine marker of Anderson
localization.

B. Theoretical description

A detailed theoretical description of the dynamics of the
CFS peak for spatial disorder in 1D systems was given
in [25,33]. Here, using the Floquet eigenbasis, the spatial
distribution at time t reads

n(x,t) =
∣∣∣
∑

i

eiωi t φ∗
i (x0)φi(x)

∣∣∣
2
. (10)

Since the CBS and CFS peaks are due to interference
effects, they should disappear in the presence of dephasing
processes, leaving just the so-called incoherent background
nI (x), which is time-independent as soon as t ≫ τs . We then
write n(x,t) = nI (x) + nC(x,t) to distinguish the coherent
contribution nC(x,t) from the incoherent one.

It can be shown [23,25] that the incoherent contribution
reads

nI (x) =
∫

dE

2π

A(x,E)A(x0,E)
2πν(E)

, (11)

where A(x,E) is the disorder-averaged spectral func-
tion and ν(E) is the disorder-averaged density of states.
Since, by definition,

∫
A(x,E) dx/(2π ) = 2πν(E) and∫

A(x,E) dE/(2π ) = 1, the incoherent contribution by itself
already satisfies probability conservation on the unit cell,∫

nI (x) dx/(2π ) = 1. Note that here, since our system is both
space and time periodic, the relevant integration ranges for x
and E are over 2π .

For matter waves scattered by a spatially random potential,
the spectral function is far from constant, both as function of
energy and momentum (see, e.g., Refs. [19,20]). This induces
a nontrivial annular shape of the incoherent background in
momentum space [24] that complicates the precise observation
of coherence peaks. By contrast, one of the main advantages of
the QKR is that transport properties are insensitive to energy,
and that the background density (11) is flat, nI (x) = 1. Indeed,
for the QKR we have

ν(E) = lim
N→∞

1
N

N∑

i=1

δ(E − ωi), (12)

where N is the Floquet basis size. Since the quasienergies
are uniformly distributed on the circle, ν(E) is independent
of E, and, from

∫
ν(E) dE = 1, one finds ν(E) = 1/(2π ).

Furthermore, one can show that

A(x,E) = lim
N→∞

2π

N

N∑

i=1

δ(E − ωi) |φi(x)|2 (13)

is also just a constant, A(x,E) = 1. Indeed, its double Fourier
transform to momentum and time, A(p,t), is given by very
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simple matrix elements of Ut averaged over disorder:

⟨p|Ut |p′⟩ = 2πδ(p − p′) δ0t . (14)

As a consequence, the incoherent background of Eq. (11)
is spatially uniform, nI (x) = 1, as we have duly checked
numerically (results not shown here).

Our figure of merit then is the contrast CF/B(t) =
nC(±x0,t)/nI of the coherence peaks at time t , i.e., the
height of the coherent contribution relative to the background,
evaluated at +x0 for the CFS peak and at −x0 for the CBS
peak. Since both the total density n(x,t) and the background
are normalized to 1 on each unit cell, the coherent contibution
must satisfy

∫
nC(x,t) dx = 0. As a consequence, the coherent

contribution nC(x,t) cannot feature only positive peaks, but
must as well take negative values somewhere in the unit cell.

The coherence peak contrasts are then

CB(t) = n(−x0,t) − 1, (15)

CF (t) = n(x0,t) − 1. (16)

At very long times t ≫ τ, n(x,t) reaches the stationary spatial
distribution

nS(x) = lim
N→∞

N∑

i=1

|φi(x)|2|φi(x0)|2 (17)

given by the diagonal term in Eq. (10). The converged,
stationary contrasts are thus

C∞
B = nS(−x0) − 1, (18)

C∞
F = nS(x0) − 1. (19)

As shown in [25] for correlated spatial disorder, one has
C∞

F = 1 when the localization length is much larger than
ℓs but C∞

F < 1 when the two length scales are comparable.
For the QKR, we thus get C∞

F = 1 for K ≫ h̄e. Furthermore,
for systems belonging to the orthogonal class, it can be
shown that time-reversal invariance enforces C∞

B = C∞
F . In

the orthogonal class, the CBS and CFS peaks are then mirror
images of each other in the long-time limit. In the unitary class,
the CBS peak is absent while the CFS peak persists.

C. Scaling behavior

1. Unitary class

The time dependence of the CFS contrast in the unitary
class has been predicted in Ref. [33] to be of the form CF (t) =
C∞

F F (t), with

F (t) = I0(2τu/t)e−2τu/t , (20)

where I0 is the modified Bessel function of order zero [51] and
where τu is the Heisenberg time in the unitary class. Using the
kicking potential Eq. (8), we have performed the first numerical
check of this prediction for the unitary class. Figure 3 shows
the numerical results obtained for the temporal evolution of
the CFS contrast in the unitary class and its comparison to
Eq. (20). Our results are in perfect agreement with this
theoretical prediction provided the onset is shifted by a certain

100 101 102 103 104 105
t

0

0.2

0.4

0.6

0.8

1

C
F
(t

)

0 100 200 300 400
K

10

12

14

16

18

tu

10 100 1000
K

101

102

103

104

τu

FIG. 3. Dynamics of the CFS peak in the unitary class. Upper
panel: temporal evolution of the CFS contrast Eq. (16) for the
random QKR run with Eq. (8) and h̄e = 2.89. Numerical curves
from left to right: K = 25, 50, 100, and 200. The Floquet basis size
N varies from 8192 to 32768. At long times t ≫ τu, CF (t) tends to
a constant value C∞

F which gets closer to 1 as K gets larger. Using
this stationary contrast together with the Heisenberg time τu and the
delay time tu as fitting parameters, perfect agreement is found with
the theoretical prediction Eq. (21) (dashed orange lines) over several
orders of magnitude. Lower panel: plot of the fit parameters tu and
τu as a function of K . Left lower panel: the behavior of tu is well
fitted by tu = a1 × ln(a2K/h̄e)/ ln(a3K) with a1 = 34, a2 = 0.62,
and a3 = 22 (red dashed line), a logarithmic behavior reminiscent
of an Ehrenfest time tE , Eq. (22). Right lower panel: the behavior of
the extracted Heisenberg time τu follows closely the scaling relation
Eq. (23) (red dashed line).

delay time tu depending on K and h̄e:

CF (t) = C∞
F F (t − tu). (21)

Indeed, using C∞
F , τu, and tu as fit parameters, Eqs. (20)

and (21), are able to reproduce accurately the temporal
dynamics of the CFS from early times t = tu to large times
t ≫ τu. The physical origin of this delay time tu might be
related to a Ehrenfest time effect. Indeed, it has been argued in
[66] that dynamical localization should be delayed by a time
scale given by the Ehrenfest time tE of the system:

tE = ln(K/h̄e)
2 ln(K/2)

. (22)

In Fig. 3, we have plotted the numerically found delay times
tu as a function of K at h̄e = 2.89 and compared them to
the fit function a1 × ln(a2K/h̄e)/ ln(a3K). The agreement is
reasonable and tends to support a logarithmic dependence of tu
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FIG. 4. Spatial scaling behavior of the CFS peak at infinite
time in the unitary class. Upper panel: averaged spatial distri-
bution n(x0 + .x,t) around the initial position x0 obtained at a
time t ≫ τu for the random QKR run with Eq. (8) and h̄e =
2.89. From broader to narrower peaks: K = 25, t = 104; K =
50, t = 2 × 104; K = 100, t = 105; K = 200, t = 105. The Flo-
quet basis size N ranges from 8192 to 32768. Lower panel:
spatial scaling behavior of the CFS contrast at long times
around x0: K = 25 (small black ◦), 50 (blue ×), 100 (green ⋄), and
200 (open violet △). When .x is rescaled by 1/ξu with ξu = τu =
K2/(4h̄2

e), the CFS peak shapes collapse beautifully onto a single
scaling curve. The dashed red line is the function C1 in Eq. (24)
and taken from [33] (no fitting parameter). Very good agreement is
found at large K when negative wings of the CFS peak, required by
probability conservation, are negligible.

on the stochasticity parameter. We have also plotted τu against
K and found a perfect agreement with the scaling relation:

τu = K2

4h̄2
e

. (23)

The theory developed in [33] also predicts the shape of the
CFS peak at infinite times. For the QKR, it reads

CF (.x) ≡ lim
t→∞

n(x0 + .x,t) − 1 = C∞
F C1(.x ξu). (24)

The function C1 is defined by an integral whose analytical
expression can be looked up in Ref. [33]. We have tested the
accuracy of this prediction for the peak shape by using the
values previously found for C∞

F . The results are shown in
Fig. 4, with good agreement provided we choose ξu = τu [see
Eq. (7)]. Obvious deviations can be ascribed to negative wings
of the CFS contribution that are not accounted for by the
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FIG. 5. Dynamics of the CBS-CFS contrast in the orthogonal
class. Upper panel: unscaled temporal evolution of the CBS-CFS
contrast (dashed-full lines). From left to right: K = 20, 40, 100,
and 200. The Floquet basis size N ranges from 8192 to 32768,
and h̄e = 2.89. CF (t) tends to CB (t) at long times t ≫ τo, with τo

the Heisenberg time in the orthogonal class. Lower panel: scaling
behavior of CF (t) following Eq. (21) with two new characteristic
times, τo and to = 2tu/3 (see text). The contrasts collapse for different
K values to a universal curve that deviates slightly, but systematically
from the theoretical prediction Eq. (20) for the unitary class (not
shown). The Heisenberg time τo has been determined independently
from the dynamics of a wave packet in momentum space. The inset
shows that it compares well with the theoretical prediction Eq. (23)
(red dashed line).

theoretical prediction [33]. We remind the reader that
these negative wings are necessary to ensure normaliza-
tion: they cancel the positive peak contribution around x0.
Since this positive excess is concentrated over the width 1/ξu,
the negative wings get shallower when ξu increases with
increasing K , which is indeed what we observe.

2. Orthogonal class

Figure 5 shows the temporal evolution of the CBS and
CFS contrasts, Eqs (15) and (16), in the orthogonal class.
While CB(t) is already a constant C∞

B (close to 1 for K large
enough) at t " 2, CF (t) reaches C∞

F = C∞
B only at large times

t ≫ τo, with τo the Heisenberg time in the orthogonal class.
To the best of our knowledge, there is no theoretical prediction
for the CFS contrast and peak shape in the orthogonal class.
Despite a behavior similar to the unitary case, the predictions
Eqs. (20) and (21) fail to accurately reproduce the observed
time dependence of the contrasts; see [25] for a similar
observation in systems with spatial disorder. Nevertheless, as
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FIG. 6. Scaling spatial behavior of the CFS peak at infinite time
in the orthogonal class. The distance .x to the initial position x0

is here rescaled by 1/ξo, where ξo = τo/2 is the localization length
in the orthogonal class (see text). The CFS peaks for the differ-
ent values K = 20 (small black ◦), 40 (blue ×), 100 (green ⋄), and
200 (open violet △) (with h̄e = 2.89) collapse onto a single scaling
curve. The red dashed line shows the theoretical prediction obtained
directly from the unitary result Eq. (24) by just replacing ξu by ξo.
Surprisingly good agreement is found at large K values where the
probability-conserving wing contributions are negligible.

shown in the lower panel of Fig. 5, all curves still collapse onto
a single curve if we use a scaling similar to the unitary class
and plot the contrasts against (t − to)/τo, where to is the delay
time in the orthogonal class. Following the analogy between tu
and the Ehrenfest time tE in the unitary class, and accounting
for the known Ehrenfest time effects on weak localization
discussed in [66], we set to = 2tu/3 in the orthogonal class
[compare Eqs. (5) and (102) in [66]]. Moreover, we have
independently determined τo from the dynamics of a wave
packet in momentum space and found good agreement with
the relation τo ≈ τu = K2/(4h̄2

e) when K is large enough (see
inset in the lower panel of Fig. 5). The lower panel of Fig. 5
shows a good collapse of the curves for different values of K
over a large range of times. On the contrary, not taking into
account to results in significant deviations at short times (data
not shown). This confirms the importance of the delay time
and its analogy with the Ehrenfest time.

Finally, the CFS peak shape at large times t ≫ τo is shown
in Fig. 6. Again, a scaling behavior is observed when the
distance .x to the initial position x0 is rescaled by 1/ξo,
where ξo = τo/2 is the localization length in the orthogonal
class. The factor 1/2 in the definition of ξo can be understood
from Eq. (9) and from the previously found relations τo ≈
τu = ξu = K2/(4h̄2

e). Quite surprisingly, the function C1 found
for the unitary class, Eq. (24) from [33], describes accurately
the spatial dependence of the CFS peak in the orthogonal case.
Deviations are again observed when K is not large enough due
to negative wings in the CFS peak, arising from probability
conservation constraints.

IV. PROPOSED EXPERIMENTAL PROTOCOL TO
OBSERVE THE CFS AND CBS PEAKS

Even though the CBS and CFS properties do not depend
on energy, a direct experimental observation of these peak

structures with the QKR is difficult because it requires one to
measure atomic densities on spatial scales significantly smaller
than the lattice constant of the kick potential. One can however
bypass this bottleneck by performing a phase-space rotation
(as explained below), converting hereby the spatial structures
of the CBS and CFS peaks into well-defined and more easily
measurable signatures in the momentum distribution. Such a
method has been recently experimentally demonstrated [67].

A. Initial state

To prepare a realistic initial state as close as possible to
a comb of Dirac δ functions, one can adiabatically load a
sufficiently cold and noninteracting atomic gas into a deep
optical lattice. This preparation lattice should have the same
lattice spacing as the kick potential used later, and should have
a very large dimensionless depth si = 2Vi/EL ≫ 1. For such
a deep optical lattice, the initial prepared state is essentially the
coherent superposition of the ground states of the local har-
monic wells, i.e., a periodic comb of minimal Gaussian wave
packets ψ(X) = e−X2/2a2

0 /(πa2
0)1/4, where a0 =

√
2s

−1/4
i /k

is the local harmonic length. Using the dimensionless units
imposed by the lattice, the initial spatial distribution in
each well is given by n(x,t = 0) = e−x2/2σx

2
/(σx

√
2π ). Direct

inspection shows that σx = s
−1/4
i , so the deeper the lattice, the

better localized the atoms. Actual values of si depend on the
atomic species and on the power and waist of the laser beams
available to create the optical lattice. If values up to si = 50
can be easily achieved [68], going beyond si = 100 proves
somewhat difficult.2 This means that it is difficult to achieve
widths σx much less than unity. In the following, we choose
si = 80 for which σx ≈ 1/3. Once the initial state is prepared,
one can then simply change the dimensionless lattice strength
from si to a new value s and start the kick sequence with the
desired time period T0. By a convenient choice of both, one can
achieve the desired values of K and h̄e. For example, K = 5
and h̄e = 2.89, as used in the following, yield s = 2.4, which
is readily achieved with moderate laser intensities [67].

In Fig. 7 we plot the average density n(x,t) at large times
for this initial state as a function of the initial width σx . At long
times, we observe a convolution of the CBS/CFS peaks, of size
1/ξo, by the initial state of spatial width σx . Large contrasts,
close to 1, are only observed when σxξo ≪ 1, whereas for
σxξo ≫ 1 the peak structures are smoothed out (see also [33]).
Experimentally, we thus need to have at least σxξo < 1 for a
clear observation of the CBS and CFS peaks.

B. CBS and CFS peaks for the atomic kicked rotor

Another aspect that needs to be taken into account for
an experimental study of the CBS and CFS peaks with KR
systems is the fact that the phases e−iαl are not random but
given by e−ih̄e(l+β)2/2. This means that, in an actual experiment,

2In practice, the lattice depth scales as I/δ, where I is the intensity
and δ the detuning from the resonant line, and the spontaneous rate
as I/δ2. There is therefore a trade-off between intensity and detuning
for a given depth to minimize the deleterious effect of spontaneous
emission.
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FIG. 7. Convolution effect of the spatial width of an initial
state on the CBS and CFS peak structures of the random QKR
in the orthogonal class. The initial state is a periodic comb of
Gaussian wave packets with spatial width σx and centered at x0 =
−π/2 mod[2π ]. Upper panel: spatial distribution n(x,t) obtained
at large time t = 400 ≫ τo ≈ 16 for different values of σx at
K = 20 and h̄e = 2.89 (ξo ≈ 8). From narrower to broader peaks:
σx = 5 × 10−4, 0.05, 0.1, 0.2, and 0.5. As σx increases, the CBS
and CFS peaks are smoothed out by the convolution with the initial
state. Lower panel: scaling behavior of C∞

F as a function of σxξo

for K = 20 (black ◦), 40 (blue #), and 60 (green ⋄). The contrast is
close to one when σxξo ≪ 1, whereas it vanishes for σxξo ≫ 1.

the spatial distribution n(x,t) is not averaged over the phase
disorder but over the initial conditions, i.e., over the initial
quasimomenta β ∈ [0,1). Far from quantum resonances, when
h̄e/(2π ) is sufficiently irrational [69], the correlations present
in these pseudorandom phases have no dramatic impact on
the expansion of a wave packet in momentum space. They
essentially renormalize the initial diffusion coefficient [57,70].

However, when considering interference signatures in re-
ciprocal space, such as the CBS and CFS peaks, these correla-
tions have important effects. We observed that they affect both
the dynamics of the CFS contrast and the spatial distributions
of the CBS and CFS peaks. We have not systematically studied
these fluctuations and leave this for further studies. We rather
provide here a means of mitigating these effects.

A way to circumvent these fluctuations is to consider the
following modulated KR Hamiltonian:

Hmod = p2

2
− K(1 + ε cos ω2t) cos x

∑

n

δ(t − n), (25)
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FIG. 8. Time evolution of the spatial distribution of a wave
packet initially peaked at x0 = −π/2 subjected to the modulated
KR, Eq. (25). The plot is obtained for experimentally accessible
parameters (ω2 = 2π 64

25 , h̄e = 2.89, K = 6, and ε = 0.8) but for an
unrealistic vanishing initial width σx ≪ 1/ξo. The modulation period
is T = 25 kicks. With this choice of parameters, the Heisenberg
time τo of the system is of the same order as T . At short times,
t = 100 = 4T , one observes the formation of a CBS peak at x =
−x0 = π/2 and significant fluctuations are observed. They do not
vanish when averaging over the initial quasimomentum β. At long
times t = 10000 = 400T , the CFS peak at x = x0 is clearly visible,
and duplicates the CBS peak. The fluctuations have also vanished.

where ε is the modulation amplitude and ω2 the angular
modulation frequency. The motivation for this choice is
twofold. First, a periodic modulation of the kick amplitude
(with period T ) allows to simulate a quasi-1D configuration
with T channels.3 This allows one to increase significantly
the localization length ξo → T × ξo without resorting to
prohibitively large K values as done in the previous section.
Second, the fluctuations observed in position outside the CBS
and CFS peaks are also significantly reduced because the
different channels induce an additional averaging washing
out the effects of the correlations of the pseudodisorder at
long times. This is particularly apparent in Fig. 8, which
shows the time evolution of a wave packet in the space of
positions for a set of parameters which is experimentally
accessible [67], namely h̄e = 2.89,K = 6, ε = 0.8, and ω2 =
2π 64

25 . With these parameters, the effective Heisenberg time is
τo ≈ T = 25. Starting from a wave packet initially peaked at
x0 = −π/2 (but not taking into account the width of a realistic
initial state; see below) one observes a CBS peak appearing at
−x0 = π/2 after a few kick periods (t = 102 = 4T ). At much
longer times (t = 104 = 400T ), a CFS peak replicating the
CBS peak at x0 is clearly visible.

C. Phase-space rotation

The spatial distribution of the final state shows a CBS
and a CFS peak of extension 1/ξo ≪ 2π along x, a pattern
which repeats itself along x with period 2π . While the direct

3Note that if ω2 is incommensurable with 2π , the KR becomes
quasiperiodic in time and its dynamics is effectively 2D [38,40,77].
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observation of these structures, which have a characteristic size
much smaller than the wavelength of the kick potential, is not
realistically conceivable, it is possible to rotate these peaks in
phase space. If the phase-space pattern did not repeat along x, a
very natural rotation would be achieved by subjecting the wave
packet to a harmonic potential for a quarter of an oscillation
period, as in the δ-kick cooling method [71,72]. Since the
phase-space distribution for the QKR is periodic, we propose
instead to subject the system to a standing wave. Indeed, this
standing wave can be approximated by a harmonic potential
around each of its minima. The phase-space rotation should
thus be imprinted identically for each unit cell pattern of the
periodic QKR distribution. We therefore consider the evolution
of the final wave packet under the influence of a standing wave
with the same spatial period as the kick potential. It is described
by the Hamiltonian of a pendulum:

Hr = p2

2
− γ cos(x − xr ), (26)

where γ is the dimensionless amplitude of the standing wave
and xr is the spatial offset of the standing wave relative to the
stationary kick potential Vkick(x) used in Eq. (2).

Around each of the minima x = xr mod[2π ], the period
of (weak-amplitude) oscillations of the pendulum is Tr =
2π/

√
γ . Let us consider a wave packet localized at x =

0 mod[2π ]. Its phase-space distribution is a periodic pattern,
along the x axis, of lines parallel to the p axis. If we turn on
the standing wave during a quarter of the pendulum period Tr ,
the wave packet will start to move and go down the harmonic
wells until it reaches its minima at the time when the standing
wave is switched off [67]. The wave packet will thus rotate by
π/2. As a consequence, the resulting phase-space distribution
is obtained by rotating the initial one by π/2 and is thus peaked
around p = 0 and delocalized along the x axis.

We now apply the Hamiltonian Eq. (26) onto the final
state obtained with the QKR during Tr/4 and perform the
phase-space rotation. We show in Fig. 9 the result of such
a rotation on the CBS and CFS peaks originally obtained in
the reciprocal space; see Fig. 8. The momentum distribution
nr (p,xr,t), normalized such that

∫ π

−π
nr (0,xr ,t) dxr/(2π ) = 1,

is represented as a color plot for different values of the spatial
offset xr . At small times where only the CBS peak is present,
mainly a single line of equation p ≈ √

γ (xr + x0) is observed.
At large times, a second line is present at p ≈ √

γ (xr − x0)
which is a signature of the CFS peak at x0. In particular, in
Fig. 10 we plot the momentum density nr (0,xr ,t) obtained at
zero momentum as a function of the offset distance xr of the
standing wave. We observe two peaks at xr = ±x0. Changing
the offset xr therefore allows one to reconstruct in momentum
space the two CBS and CFS peaks observed in the spatial
distribution. As one can see, the evolution of nr (0,xr ,t) as a
function of xr gives a particularly faithful picture of the spatial
distribution.

D. Realistic set of parameters

As seen in the previous subsections, the main limitations
to an experimental observation of the CBS and CFS peaks are
the preparation of the initial state and the amplitude of the
stationary wave used to perform the phase-space rotation. In
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FIG. 9. Momentum distribution obtained after phase-space rota-
tion as a function of the spatial shift xr of the standing wave. The
standing wave is applied to the spatial distributions shown in Fig. 8.
Its amplitude γ = 5000 has been chosen (unrealistically) very large
in order to distinguish most clearly the two momentum structures
corresponding to the CBS and CFS peaks. Upper panel: at short times
t = 100 = 4T , the modulated KR, Eq. (25), shows a single CBS peak
at x = −x0 = π/2 which manifests itself in the color plot as a single
high-amplitude (bright green) line of equation p ≈ √

γ (xr + x0).
Lower panel: at longer times t = 104 = 400T , an additional high-
amplitude (bright green) line of equation p ≈ √

γ (xr − x0) appears
and is a signature of the CFS peak which has emerged at x = x0.

both cases, the important parameter is the depth of the standing
wave which is reachable experimentally.

As discussed previously, well-contrasted peak structures
are obtained when σxξo < 1. Since σx ≈ 0.33 can be reached
experimentally for s ≈ 80, this limits the possible values of the
localization length to ξo < 3. We therefore chose to work with
the periodic KR, Eq. (2), at K = 5 and h̄e = 2.89 such that the
localization length ξo ∼ 1 is small. In Fig. 11, we have plotted
the CBS and CFS peaks obtained at long times t = 500 ≫
τo. As one can see they still have a significant contrast. We
then rotate these spatial structures with the standing wave Eq.
(26) with γ = sh̄2

e/4 = 100 (corresponding to s = 50 for h̄e =
2.89). The zero momentum class after rotation (shown in the
upper panel of Fig. 11) gives a faithful picture of the original
spatial distribution. Note, however, that the finite width σx and
the limited value of γ do not allow one to perfectly separate
the two structures corresponding to the CBS and CFS peaks;
see the lower panels of Fig. 9 and Fig. 11 for a comparison.
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FIG. 10. Zero momentum class nr (p = 0,xr ,t) obtained after
phase-space rotation of the CBS and CFS peaks, as a function of
the spatial shift xr of the standing wave. Solid black line: momentum
class obtained at t = 4T . Dashed red line: momentum class obtained
at t = 400T . The data correspond to Fig. 9. We get a particularly
accurate picture of the corresponding spatial distributions shown in
Fig. 8.

V. CONCLUSION

With this paper we propose to use the 1D quantum kicked
rotor to observe the coherent forward-scattering (CFS) peak of
strong localization together with its twin brother, the coherent
backscattering (CBS) peak of weak localization. Whereas
CBS has already been observed in numerous systems, a
direct experimental observation of CFS has not been reported
yet. For systems with spatial disorder, localization occurs in
real space and one experimental bottleneck is the dramatic
energy spread induced by the disorder on an initial state.
On the contrary, localization for the kicked rotor occurs in
momentum space and the CBS and CFS structures appear in
real space. As the relevant transport observables of the kicked
rotor (localization length, Heisenberg time, scattering mean
free path, diffusion constant, etc.) are energy-independent,
the experimental observation of coherence peaks should be
facilitated. Another advantage of the kicked rotor system is
that time-reversal invariance can be broken by breaking space
inversion, which is easily implemented in experiments. This
allows one to study and compare CFS and CBS in the orthog-
onal class (time-reversal invariant systems) and in the unitary
class (systems with broken time-reversal invariance). We have
analyzed their time dynamics and confronted our numerical
results to known theoretical predictions; in particular, we have
conducted the first tests of the CFS peak in the unitary class and
found very good agreement with the predictions of Ref. [33].
The primary experimental challenge is how to observe narrow
peaks in real-space densities at scales significantly smaller
than the lattice period, and how to prepare a sufficiently narrow
initial state that prevents the coherence peaks to be flattened
by convolution. We propose to avoid this bottleneck via a
phase-space rotation similar to the δ-kick cooling method,
thus transforming peak structures in real space into peak
structures in momentum space. We have proposed a realistic
experimental protocol to achieve this goal and we conclude
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FIG. 11. Upper panel: CBS and CFS peaks for the periodic KR,
Eq. (2), with a realistic initial state. After phase-space rotation, the
population of the zero velocity class nr (p = 0,xr ,t) (dashed red
line) as a function of the spatial shift xr shows a good agreement
with the averaged spatial distribution n(x,t) (black solid line).
Realistic parameters have been chosen to maximize the CBS and
CFS contrasts, i.e., σxξo < 1 (see Fig. 7), K = 5, h̄e = 2.89, t =
500, σx ≈ 0.33, and γ = 100. Lower panel: momentum distribution
after phase-space rotation as a function of the phase shift xr . The
CBS and CFS peaks at x = ±x0 in the original spatial distribution
are represented by two thick lines of equations p = √

γ (xr ∓ x0).

that an observation of CBS and CFS with the kicked rotor is
within reach of present-day cold-atom experiments.

As possible future studies to be conducted with the quantum
kicked rotor, we foresee CFS and CBS in other universality
classes, in particular the symplectic one, CBS and CFS for
pseudointegrable systems and mimicking higher dimensions
using frequency modulation. One could then target the 3D
Anderson transition in various universality classes and study
the impact of multifractal aspects, as observed at the critical
point, on CBS and CFS [28]. Another fascinating perspective
would be to probe the effects of interaction on the CBS and
CFS peaks [73–76].
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