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Fast transitionless expansion of cold atoms in optical Gaussian-beam traps
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We study fast expansions of cold atoms in a three-dimensional Gaussian-beam optical trap. Three different
methods to avoid final motional excitation are compared: inverse engineering using Lewis-Riesenfeld invariants,
which provides the best overall performance, a bang-bang approach, and a fast adiabatic approach. We analyze
the excitation effect of anharmonic terms, radial-longitudinal coupling, and radial-frequency mismatch. In the
inverse-engineering approach these perturbations can be suppressed or mitigated by increasing the laser beam
waist.
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I. INTRODUCTION: DRIVEN EXPANSIONS
OF COLD ATOMS

Driving the expansion of a Bose-Einstein condensate or,
more generally, of a cold atom cloud in a controlled way
by implementing a designed time dependence of the trap
frequency is a common and basic operation in a cold-atom
laboratory. The expansion may be aimed at different goals,
such as decreasing the temperature [1,2], adjusting the density
to avoid three-body losses [3], facilitating temperature and
density measurements [3], or changing the size of the cloud
for further manipulations [4]. Expansions, isolated [5] or as
part of refrigeration cycles [6], are also important from a
fundamental point of view to quantify the third principle of
thermodynamics.1 In general, changes of the confining trap
will excite the state of motion of the atoms unless they are
done very slowly or, in the usual quantum-mechanical sense of
the word, “adiabatically,” but slow-change processes are also
prone to perturbations and decoherence or are impractical for
performing many cycles. Engineering fast expansions without
final excitation is thus receiving much attention recently,
both theoretically and experimentally [5–22]. Most theoretical
treatments so far are for idealized one-dimensional (1D)
systems, but the implementation requires a three-dimensional
(3D) trap [11,14,15], in principle with anharmonicities and
couplings among different directions.

In this paper we address these important aspects to
implement the expansion in practice. Specifically, we shall
model a simple physical realization based on an elongated
cigar-shaped optical dipole trap with cylindrical symmetry;
see Fig. 1. Far-off-resonance optical confinement has many
advantages: it enables the manipulation of spinor condensate

1Compressions may also play a role in many experiments, but their
treatment is similar to expansions, so we shall not deal with them
here explicitly.
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FIG. 1. (Color online) Schematic view of the optical trap.

[23,24] and can be applied to atoms with no permanent
magnetic moment [25], which is particularly interesting for
metrology. The optical trap in this paper is formed by a single
laser that is red detuned with respect to an atomic transition
to make the potential attractive (Sec. II) and is characterized
in the harmonic approximation by longitudinal and radial
frequencies. While magnetic traps allow for an independent
control of longitudinal and radial frequencies [11,14,15], this
is not the case for a simple laser trap that therefore requires
a special study. We assume that the time dependence of the
longitudinal frequency is engineered to avoid final excitations
with a simple 1D harmonic theory (Sec. III) and analyze
the final fidelity in the actual trap. Even though for full
3D results we resort to a purely numerical calculation in
Sec. V, an understanding of the effects involved is achieved
first by analyzing separately longitudinal and radial motions
in Sec. IV. Conclusions and open questions are drawn in
Sec. VI.

II. THE MODEL

The intensity profile of a Gaussian laser beam in the paraxial
approximation is given by

I (r,z,t) = I0(t)e−2r2/w2(z) 1

1 + z2/z2
R

, (1)

where r and z are the radial and longitudinal coordinates,
respectively, and the variation of the spot size w with z is
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given by

w(z) = w0

√
1 +

(
z

zR

)2

,

where zR = πw2
0/λ is the Rayleigh range, w0 is the waist, and

λ is the laser wavelength. The paraxial approximation is valid
for waists larger than about 2λ/π .

If an atom is placed in this field with a detuning δ that is
large with respect to the Rabi frequency � and the inverse
of the lifetime of the excited state � = τ−1 but small with
respect to the transition frequency, internal excitations and
counterrotating terms are negligible, and the potential that the
ground-state atoms feel due to the dipole force is proportional
to the laser intensity,

V (r,z,t) � h̄�2

4δ
= h̄�

8

�

δ

I

Isat
, |δ| � �,�, (2)

and inversely proportional to δ. Isat = πhc/(3λ3τ ) is the
saturation intensity.2 Combining Eqs. (1) and (2) and adding
for convenience in later expressions the physically irrelevant
term V0(t), the potential takes finally the form

V (r,z,t) = −V0(t)e−2r2/w2(z) 1

1 + z2/z2
R

+ V0(t), (3)

where V0(t) = I0(t)h̄�2/(8δIsat). The analysis carried out here
is not restricted to a two-level atom. Indeed, the dipole force
is always proportional to the intensity for a multilevel atom
but with a coefficient that depends on the level structure and
the light polarization [26]. As an example of the magnitudes
involved in practice, for rubidium-87 atoms, a Gaussian beam
linearly polarized with a waist of 8 μm, power P = 30 W,
and a wavelength of 1060 nm provides a longitudinal trap
frequency ω0z/2π � 2500 Hz. We shall use these or similar
values in numerical examples below.

In this work we shall assume small enough densities
and times so that a one-particle Schrödinger description for
the atomic motion neglecting collisions is valid. Extensions
to Tonks-Girardeau gases or condensates are possible as in
[7,8,14]. We shall also assume that the longitudinal axis lies
horizontally and neglect the effect of gravity, either because it
is artificially compensated or because the radial confinement
is tight.3

To solve the time-dependent Schrödinger equation associ-
ated with the potential in Eq. (3),

ih̄
∂


∂t
= − h̄2

2m
∇2
 + V 
, (4)

2Indeed, other regimes could be used as well [26]. For larger
detunings counterrotating terms become important, but the dipole
potential is still proportional to the laser intensity. In the extreme
limit of quasielectrostatic traps the frequency of the trapping light is
much smaller than the resonance frequency, precluding the possibility
of a potential sign change from attractive to repulsive; this change is,
in principle, allowed by Eq. (2) by changing the sign of the detuning
across resonance, but see the discussion below.

3This requires that the vertical shift of the trap center in the gravity
field is small with respect to the waist, or g � w0ω

2
R , where ωR is

the radial angular frequency and g is the acceleration due of gravity.

we use cylindrical coordinates,

∇2 ≡ 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂φ2
+ ∂2

∂z2
.

With the standard separation of variables 
 = F(r,z,t)�(φ),
we find

− h̄2

2m

[
1

r

(Fr

F + r
Frr

F

)
+ 1

r2

�φφ

�
+ Fzz

F

]
+ V = ih̄

Ft

F
(the simple and double subscripts denote first and second
derivatives, respectively), whereas the equation for � reads

�φφ

�
= −ν2 ν ∈ Z, (5)

where ν is a magnetic quantum number determining the con-
served angular momentum component along the z direction.
This is solved by eiνφ , so we shall concentrate on F(r,z,t).
Defining now 
̃(r,z,t) = √

rF(r,z,t), we get

ih̄
∂
̃

∂t
= − h̄2

2m
∇̃2
̃ + Ṽ 
̃, (6)

where

∇̃2 ≡ ∂2

∂r2
+ ∂2

∂z2
, (7)

Ṽ ≡ h̄2

2m

(
ν2 − 1/4

r2

)
+ V (r,z,t), (8)

and V (r,z,t) is given by Eq. (3). The task is now to design
V0(t) so as to achieve a fast expansion without final excitation.

III. EXPANSION PROTOCOLS

In this section we briefly present three expansion protocols
for a one-dimensional harmonic trap. They are chosen mostly
because they have been realized experimentally [1,11,14,27].
Their simplicity will help us to identify relevant physical
phenomena that will affect also other protocols. No claim
of completeness or global optimization is made, and there
is certainly room for investigating other protocols.

The objective is to expand the trap from an initial frequency
ω0/2π to a final frequency ωf /2π in a time tf , without
inducing any final excitation in the adiabatic or instantaneous
basis for which the Hamiltonian is diagonal. Note that transient
excitations are generally allowed.

A. Inverse engineering with Lewis-Riesenfeld invariants

Lewis-Riesenfeld invariants may be used to engineer
efficient expansion protocols as explained in [5,7,8,11]. We
refer the reader to these works for the details and give here
only the elements required for a practical application. For any
harmonic oscillator expansion and, in fact, for any potential
with the structure

V (q,t) = m

2
ω2(t)q2 + 1

b2(t)
U

(
q

b(t)

)
, (9)

where the function U is arbitrary, there is a quadratic-in-
momentum invariant operator of the form

I(q,p,t) = 1

2m
[b2p2 − mḃb(qp + pq) + m2ḃ2q2]

+1

2
mω2

0

(
q

b

)2

+ U

(
q

b

)
, (10)
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where q and p are generic position and momentum operators
(particularized later for longitudinal or radial directions) and
b = b(t) is a scaling function that satisfies the Ermakov
equation

b̈ + ω2(t)b = ω2
0/b

3. (11)

To inverse engineer the trap frequency, b(t) is designed
to satisfy the boundary conditions that guarantee no final
excitations and continuity of the trap frequency,

b(0) = 1, ḃ(0) = 0, b̈(0) = 0,

b(tf ) = γ, ḃ(tf ) = 0, b̈(tf ) = 0,
(12)

where γ = √
ω0/ωf . Finally, ω(t) is deduced from Eq. (11).

When these conditions are satisfied, the nth eigenstate of
H (0) = p2/(2m) + V (q,0) evolves as an “expanding mode,”
which is the time-dependent nth eigenvector of the invariant
times a “Lewis-Riesenfeld” phase factor eiαn , where αn(t) =
−(n + 1/2)ω0

∫ t

0 dt ′/b2, until it becomes an nth eigenvector
of the final Hamiltonian H (tf ) = p2/(2m) + V (q,tf ).

Discontinuities in b̈ may, in principle, be allowed, but they
amount to performing finite jumps of the trap frequency. This
is an idealization, but it can be approached up to technical
limits. Discontinuities in ḃ have more serious consequences,
as they imply δ functions for b̈ and infinite trap frequencies
at the jumps. Thus their approximate physical realization is
even more difficult, but they are useful for finding bounds for
physical variables of interest, as in [5] or in Appendix A. There
are many b(t) that satisfy Eq. (12). A simple smooth function
is a quintic polynomial with six coefficients,

b(t) = 6(γ − 1)s5 − 15(γ − 1)s4 + 10(γ − 1)s3 + 1, (13)

where s := t/tf . More sophisticated choices are possible
to minimize the process time, the average energy, or other
variables with or without imposed constraints (“bounded
control”) on the allowed trap frequencies [12,28].

In principle this method allows for arbitrarily small values
of tf , but for very small process times the potential becomes
transitorily repulsive [8]. With a laser beam, a repulsive
potential could be achieved by means of a positive (blue)
detuning. However, the validity of Eq. (3) requires a large
detuning, so care should be exercised when crossing the
resonance. In this work the numerical examples are restricted
to positive trap frequencies since the transient passage from
attractive to a repulsive interaction could involve unwanted
effects such as radiation pressure. We shall, in any case, point
out in the figures the minimum value of tf for which the
potential stays attractive for all times with the quintic b(t).

B. Bang bang

Bang-bang methods are those with a stepwise constant
behavior of some variable. The simplest one to avoid final
excitations consists of using a constant intermediate trap
frequency, the geometric average of the initial and final
frequencies,

ωbang =

⎧⎪⎨
⎪⎩

ω0, t � 0,

(ω0ωf )1/2, 0 < t < t
bang
f ,

ωf , t � t
bang
f = π/[2(ω0ωf )1/2],

(14)

during a fourth of the corresponding period. Optimal bang-
bang trajectories with two intermediate frequencies and
arbitrary final times are also possible [6,8], but they are not
considered here. To arrive at Eq. (14), one may use a classical
argument [27] or proceed as follows: the solution of the
Ermakov equation for t > 0 assuming a constant intermediate
angular frequency ω1 with initial boundary conditions b(0) =
1, ḃ(0) = 0 is

b(t) =
√[(

ω2
0 − ω2

1

)
/ω2

1

]
sin2(ω1t) + 1. (15)

Then, if we solve for tf and ω1 the two equations implied by
the final boundary conditions,

b(tf ) = γ, ḃ(tf ) = 0, (16)

the values in Eq. (14) are found.

C. Fast adiabatic protocols

“Fast” and “adiabatic” may appear to be contradictory
concepts. A fast adiabatic protocol seeks to perform a process
as quickly as possible while keeping it adiabatic at all times.
For harmonic oscillator expansions the adiabaticity condition
reads ω̇/ω2 � 1, so making ω̇/ω2 constant from t = 0 to tf [1]
and solving the resulting differential equation for ω(t), we
get [8]

ωadi(t) = ω0

1 − (ωf − ω0) t
tf ωf

. (17)

IV. LONGITUDINAL AND RADIAL MOTIONS

By expanding the potential in Eq. (3) in a double Taylor
series around (z = 0,r = 0),

V (r,z,t)

� −V0(t)

(
− 2r2

w2
0

− z2

z2
R

+ 2r4

w4
0

+ z4

z4
R

+ 4r2z2

w2
0z

2
R

+ · · ·
)

,

(18)

we see that the first coupling term between radial and
longitudinal motions is of fourth order, proportional to r2z2.
If we could neglect this and higher-order coupling terms,
longitudinal and radial motions would be independent. The
approximation that considers longitudinal and radial motions
to be completely uncoupled is useful to analyze several
effects separately and gain insight. Not only that, as we shall
confirm later with full 3D calculations, this is also a good
approximation numerically for low-energy levels.

A. Longitudinal motion

To study the motion in the longitudinal direction we
consider first the full longitudinal Hamiltonian [putting r = 0
in Eq. (3)]

H (z,t) = − h̄2

2m

∂2

∂z2
− V0(t)

(
1

1 + z2/z2
R

− 1

)
. (19)
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To characterize this potential in terms of a longitudinal
frequency consider the harmonic approximation

Hhar(z,t) = − h̄2

2m

∂2

∂z2
+ V0(t)

z2

z2
R

= p2
z

2m
+ mω2

z (t)z2

2
, (20)

where pz = −ih̄∂/∂z and

ω2
z (t) = 2V0(t)

mz2
R

. (21)

We may now apply the methods described in Sec. III. We shall
add a subscript z, for longitudinal, to the trap frequencies and
take q → z. For an imposed ωz(t) and fixed waist and laser
frequency, Eq. (21) determines the time dependence of the
laser intensity.

Figure 2 shows for the ground state, n = 0, the “longitudinal
fidelity” FL = |〈Zn(tf )|Uz(tf ,0)|Zn(0)〉|, where Zn(z,0) and
Zn(z,tf ) are the initial and final nth eigenstates of the full
longitudinal Hamiltonian, Eq. (19), for frequencies ω0z and
ωf z, respectively, and Uz(tf ,0) is the evolution operator with
Eq. (19). As in all figures hereafter the initial longitudinal
frequency of the trap is ω0z/2π = 2500 Hz, and the wave-

(a)

0 1 2 3 4 5
0.7

0.8

0.9

1

t f ms

F
L

(b)

0 1 2 3 4 5
0.4

0.6

0.8

1

t f ms

F
L

FIG. 2. (Color online) Longitudinal fidelity for Eq. (19) versus
final time tf for two different final frequencies: in (a) ωf z/2π =
250 Hz; in (b) ωf z/2π = 25 Hz. In both plots ω0z/2π = 2500 Hz,
λ = 1060 nm, and the initial state is the ground state. All curves have
been calculated for two different waists, w0 = 10 μm and w0 = 3 μm,
but the results are indistinguishable. V0(t) is chosen according to
the three protocols: inverse engineering, using Eq. (13) in Eq. (11)
(solid red line), bang-bang (circles for w0 = 10 μm and triangles
for w0 = 3 μm), and the fast adiabatic method (long-dashed blue
line). The green vertical lines denote the minimum tf for which V0(t)
remains positive for all t in the inverse-engineering approach with a
quintic b(t).

length is taken as λ = 1060 nm, which is characteristic of
Neodymium-doped lasers. The vertical green lines in Fig. 2
and the following figures correspond to the minimum tf value
for which ωz(t) is positive for all t using the quintic b(t).
Of course this limit only applies to the inverse engineering
approach.

The three methods are compared for two different final
frequencies [in Fig. 2(a) ωf z/2π = 250 Hz and in Fig. 2(b)
ωf z/2π = 25 Hz] and two different waists; see the caption for
details. Actually, the effect of the waist change is negligible in
the scale of Fig. 2. Globally, the inverse-engineering method
outperforms the others. The bang-bang approach provides a
good fidelity, but only for a specific final time, and the fast
adiabatic method fails, in fact, to be adiabatic at short times.
This is very evident for the smaller final frequency in Fig. 2(b):
the opening of the trap is faster and the level spacings are
smaller than for the larger final frequency, so the state cannot
follow an adiabatic behavior.

For small tf and/or large γ the transient excitation energy
during the inverse-engineering protocol may be high, giving
the atoms access to the anharmonic part of the potential.
This could lead to a decay of fidelity as tf decreases, but
the effect is not seen in the scale of Fig. 2. The small effect
of anharmonicity is enhanced by increasing the vibrational
number; see Fig. 3. It can be avoided by increasing the
waist, which reduces the anharmonic terms, as demonstrated
in Fig. 3. Appendix A provides a perturbation theory analysis
of longitudinal anharmonicity. A first-order approach gives
analytical lower bounds for the fidelity, and the possibility to
maximize them by other choices of b(t). More accurate results
are found at second order; see Fig. 3.

B. Radial motion

To study radial motion we define the radial Hamiltonian by
setting z = 0 in Eq. (3), and we add the “centrifugal term” (an

x
x

x

x

x

x

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

n

F
L

FIG. 3. (Color online) Longitudinal fidelity versus level number
n. For w0 = 3 μm [blue (dark gray) symbols], fidelity FL =
|〈Zn(tf )|Uz(tf ,0)|Zn(0)〉| with inverse engineering computed for
Eq. (19) and a quintic b(t) (open triangles), first-order bound in
Eq. (A9) (crosses), and second-order approximate fidelity computed
with Eqs. (A11) and (A12) for the quintic b(t) (solid triangles).
For a larger waist, w0 = 10 μm [red (light gray) symbols], the
corresponding values (open circles, pluses, and solid circles) are
very nearly1 and are indistinguishable. In all cases ωf z/2π = 25 Hz,
ω0z/2π = 2500 Hz, λ = 1060 nm, and tf = 2.5 ms.
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attractive one for ν = 0),

H (r,t) = − h̄2

2m

∂2

∂r2
− V0(t)

(
e−2r2/w2

0 − 1
)

+ h̄2

2m

(
ν2 − 1/4

r2

)
. (22)

In the harmonic approximation we take

− V0(t)
(
e−2r2/w2

0 − 1
) ∼ mω2

R(t)r2

2
, (23)

where

ω2
R(t) ≡ 4V0(t)

mw2
0

(24)

defines the radial frequency of the trap ωR(t)/(2π ).
We assume that V0(t) is set to satisfy the designed

longitudinal expansion according to Eq. (21). Substituting this
into Eq. (24) gives the relation between radial and longitudinal
frequencies,

ωR(t) =
√

2πw0

λ
ωz(t), (25)

which is key to understanding the behavior of the radial wave
function. The waist value w0 = λ/(

√
2π ) would make both

frequencies equal, but for such a small waist the paraxial
approximation fails, and the present theory could not be
applied [29].

Now we define the ground-state “radial fidelity” as FR =
|〈φ0(tf )|UR(tf ,0)|φ0(0)〉|, where UR(tf ,0) is the radial evolu-
tion operator for H (r,t) and φ0(r,0) and φ0(r,tf ) are ground
states of the initial and final radial traps for Eq. (22), with V0(t)
given by Eq. (21). In Fig. 4 the radial fidelity is depicted for
the three protocols explained above and ν = 0. The bang-bang
trajectory causes much excitation and gives a rather poor

FIG. 4. (Color online) Radial fidelity for different final times.
Parameters: ν = 0, ω0z/2π = 2500 Hz, ωf z/2π = 250 Hz, and
λ = 1060 nm. Protocols: inverse engineering, quintic b, w0 = 10 μm
(solid red line); inverse engineering, quintic b, w0 = 3 μm (short-
dashed black line); bang bang, w0 = 10 μm (open circle); bang bang,
w0 = 3 μm (open triangle); fast adiabatic, w0 = 10 μm (long-dashed
blue line); fast adiabatic, w0 = 3 μm (dotted orange line). In the
inset, the corresponding red triangles, black squares, blue circles,
and orange diamonds are the approximate fidelities from adiabatic
perturbation theory using Eq. (28). The green vertical line near
0.4 ms is the minimal final time tf for which the quintic-b inverse-
engineering protocol implies positive frequencies at all transient
times.

fidelity in the radial direction (see the big open symbols).
This is because, even though the “correct” transient radial
frequency ω

bang
R (t) = (

√
2πw0/λ)ωbang

z (t) is implemented (as
the geometric average of initial and final radial frequencies),
the time tf is adjusted for the longitudinal not for the radial
frequency; compare t

bang
f z to t

bang
f R := λt

bang
f z /(

√
2πw0).

The behavior of the other two methods is much more
robust, as shown by their fidelities in Fig. 4, where the inset
amplifies the small-tf region. The fast adiabatic approach (blue
long-dashed lines in Fig. 4) gives an excellent radial fidelity.
A detailed calculation shows that the adiabaticity condition
for the radial Hamiltonian (see Appendix B) takes, in spite
of the centrifugal term, the same form as for the ordinary
harmonic oscillator, namely, ω̇R/ω2

R � 1. If ω̇z/ω
2
z is constant,

the ratio ω̇R/ω2
R will be constant too, but smaller by a factor

λ/(
√

2πw0), so that the radial dynamics will be, in general,
more adiabatic. Indeed, comparing the blue long-dashed lines
in Figs. 2 and 4, we see that the radial fidelity is better than
the longitudinal one, as the confinement is tighter radially than
longitudinally, and the energy levels are more separated.

For the inverse-engineering protocol with a quintic b

(red solid and black short-dashed lines in Fig. 4) the radial
excitation is small, the fidelity being nearly 1 for tf > 1
ms in the scale of Fig. 4. This could be surprising since
the radial frequency does not behave according to an ideal
inverse-engineering dependence

ω2
Rinv(t) = 2π2w2

0

λ2

ω2
0z

b4
− b̈

b
, (26)

where we have used the Ermakov equation and γ =
(ω0z/ωf z)1/2 = (ω0R/ωf R)1/2, so the function b is the same
for the longitudinal and radial directions. Instead, the actual
radial frequency varies according to Eq. (25),

ω2
R(t) = 2π2w2

0

λ2

(
ω2

0z

b4
− b̈

b

)
. (27)

The difference between Eqs. (26) and (27) may be quite
significant, as the example in Fig. 5 shows, so the radial state
does not really follow the expanding modes corresponding
to Eq. (26). As a consequence, a perturbative approach
based on Eq. (26) as the zeroth order fails completely, even
for qualitative guidance. (Further evidence is provided in

0 0.09 0.18 0.27 0.36
0

2

4

6

8

10

t ms

10
8 Ω

R2
4Π

2
H

z2

FIG. 5. (Color online) Square of radial frequency vs time: Eq. (27)
based on a quintic b (red solid line); fast adiabatic protocol, Eq. (25)
with Eq. (17) for ωz (blue long-dashed line); and Eq. (26) (black
short-dashed line). Parameters: λ = 1060 nm, ω0z/2π = 2500 Hz,
ωf z/2π = 250 Hz, w0 = 3 μm, and tf = 0.36 ms.
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0.85

0.9

0.95

1

t ms

ov
er

la
p

FIG. 6. (Color online) Modulus of the overlap integral between
the state evolving from the ground state with the radial Hamiltonian,
using the actual radial frequency in Eq. (27) and (i) the instantaneous
eigenstate in harmonic approximation (red solid line) or (ii) the
expanding mode in harmonic approximation for the radial frequency
in Eq. (26) (dashed blue line). Parameters: ν = 0, ω0z/2π = 2500 Hz,
λ = 1060 nm, ωf z/2π = 250 Hz, w0 = 3 μm, and tf = 0.6 ms.

Fig. 6.) Instead, a valid perturbation theory analysis may
be based on the zeroth order of the adiabatic modes, which
are instantaneous eigenstates of the radial Hamiltonian. The
physical reason for the relatively good radial behavior of
the invariant-based inverse-engineering protocol is thus the
adiabaticity in that direction. When tf approaches the critical
lower value, ωR(t) becomes too steep at small values of ωR

(see Fig. 5), and adiabaticity breaks down, which explains the
fidelity decrease there. To mitigate this problem, a larger waist
may be used to increase ωR(t) for a given ωz(t) [see Eq. (25)],
making the radial process more adiabatic and improving the
fidelity, as shown in Fig. 4. Keep in mind that to implement a
given ωz(t) an increase of waist has to be compensated by an
increase of laser intensity.

Inserting a wave-function expansion in an
adiabatic basis (instantaneous eigenstates) ψ(r,t) =∑

k ak(t)〈r|φk(t)〉e−i
∫ t

0 Ek(t ′)dt ′ into the radial Schrödinger
equation provides a set of coupled differential equations.
Integrating formally for ak(t) and assuming that for zeroth
order a

(0)
k (t) = δ0,k , we get for first order [30,31]

a
(1)
1 (t) = −

∫ t

0
dt ′〈φ1(t ′)|φ̇0(t ′)〉e− i

h̄

∫ t ′
0 dt ′′[E0(t ′′)−E1(t ′′)]

= −
∫ t

0
dt ′

ω̇R(t ′)
2ωR(t ′)

e2i
∫ t ′

0 dt ′′ωR(t ′′), (28)

where the second line follows by applying, in addition, the har-
monic approximation. All other first-order amplitudes (for k �
2) are zero, so the radial fidelity at tf can be calculated in this
approximation as FR(tf ) = [1 − |a(1)

1 (tf )|2]1/2. This is, in fact,
correct up to second order, and it provides good agreement with
the exact results, as shown by the symbols in the inset of Fig. 4.

V. FULL 3D ANALYSIS

Finally, we study numerically the actual coupled dynamics
driven by the exact full potential, Eq. (3), combining all the
effects considered so far and the longitudinal-radial coupling.
The 3D fidelities are also compared with simpler 1D fidelities.

FIG. 7. (Color online) Fidelity for the 3D ground state vs different
final times. Parameters: ν = 0, ω0z/2π = 2500 Hz, λ = 1060 nm,
and ωf z/2π = 250 Hz. Protocols: inverse engineering, quintic b,
w0 = 10 μm (red solid line), and radial fidelity (red solid triangles);
inverse engineering, quintic b, w0 = 3 μm (black short-dashed line),
and radial fidelity (solid squares); bang bang, w0 = 10 μm (open
circle in inset), and radial fidelity (solid circle); bang bang, w0 =
3 μm (open triangle in inset), and radial fidelity (solid triangle in
inset); fast adiabatic, w0 = 3 μm, and w0 = 10 μm (blue long-dashed
line), and longitudinal fidelity (blue diamonds). The green vertical
line marks the threshold for positive trap frequencies in the inverse
engineering, quintic-b protocol.

Before discussing the results a remark on the technicalities
of the numerical calculations of the time-dependent wave
functions is in order. To solve the longitudinal time-dependent
Schrödinger equation we approximate the evolution oper-
ator UL using the split-operator method (SOM) [32] and
fast Fourier transform (FFT) [33,34]. For the radial time-
dependent Schrödinger equation, we have used instead the
finite-difference Crank-Nicholson scheme [34]. In this way
the singular point r = 0 can be excluded, imposing a zero of
the wave function there for all t . For the 3D calculation we use
similarly the Crank-Nicholson scheme with operator splitting
for multidimensions (the radial and longitudinal directions)
[34].

We calculate, starting from the ground state of the initial
trap for ν = 0, the fidelity of the final state with respect to
the ground state of the final trap using the three expansion
protocols. Figure 7 clearly shows that the inverse-engineering
protocol provides the best overall performance, with a fidelity
decay at smaller times that can be avoided by increasing the
waist. The radial-longitudinal quartic coupling does not play
any significant role for the parameters of the example, and in
any case it may also be suppressed by a waist increase.

As for the simple bang-bang approach, it fails in three
dimensions, as expected, due to its poor radial behavior. (The
radial fidelity alone is close to the 3D fidelity.) The results
for fast adiabatic and inverse-engineering methods are not
too different from each other for the chosen expansion, but
the fast adiabatic method will fail sooner for more demanding
expansions with smaller final frequencies, as clearly illustrated
in Fig. 2(b), due to its inability to remain really adiabatic
for the longitudinal direction. The main limitation of the
inverse-engineering method is instead the possible failure of
adiabaticity in the tighter radial direction, so it is intrinsically
more robust than the fast adiabatic one. Note that the 3D
fidelity is mimicked accurately by the 1D radial fidelity for
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inverse engineering and by the 1D longitudinal fidelity for the
fast adiabatic approach.

VI. DISCUSSION AND OUTLOOK

In this work we have analyzed the practical implementation
of a transitionless expansion in a simple Gaussian optical
dipole trap, taking into account anharmonicities, radial-
longitudinal couplings, and the radial-longitudinal frequency
mismatch. Three different protocols for expansions have been
examined, which previously had been implemented in very
different settings. We have compared their properties in this
common physical implementation in a Gaussian optical dipole
trap, and we have shown how to control difficulties due to
three-dimensional effects.

The main conclusion of the study is that the transition-
less expansions in optical traps are feasible under realistic
conditions. Despite the relation between the longitudinal and
transversal trapping frequencies through the intensity, the
different time scales enable us to design fast expansions
with high fidelities with respect to the ideal results using
the invariant-based inverse-engineering method, which is
particularly suitable compared to the two other approaches
examined. Our detailed analysis of radial and longitudinal
motions reveals the weakest points of each approach: for
the inverse engineering, the main perturbation is due to the
possible adiabaticity failure in the radial direction, which can
be suppressed or mitigated by increasing the laser waist. This
waist increase would also reduce smaller perturbing effects due
to longitudinal anharmonicity or radial-longitudinal coupling.
The simple bang-bang approach fails because the time for the
radial expansion is badly mismatched with respect to the ideal
time, and the fast adiabatic method fails at short times because
of the adiabaticity failure in the longitudinal direction.

Complications such as perturbations due to different noise
types and consideration of condensates, gravity effects, and
the transient realization of imaginary trap frequencies are left
for separate works. Other extensions of the present analysis
could involve the addition of a second laser for further control
of the potential shape or alternative traps. Optical traps based
on Bessel laser beams, for example, may be interesting to
decouple longitudinal and radial motions. Transport protocols
are also amenable to a similar 3D analysis. Finally, the com-
bination of invariant-based inverse engineering with optimal
control theory to optimize the frequency design is also a
promising venue of research [12,28].
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APPENDIX A: PERTURBATIVE TREATMENT OF
LONGITUDINAL ANHARMONICITY

To quantify the effect of anharmonicity in the inverse-
engineering method let us first expand the longitudinal
Hamiltonian retaining the quartic term,

V (z) = − V0(t)

1 + z2/z2
R

+ V0(t) ≈ V0
z2

z2
R

− V0
z4

z4
R

= 1

2
mω2

z (t)z2︸ ︷︷ ︸
:=Vu

−1

2
mω2

z (t)
z4

z2
R︸ ︷︷ ︸

:=V1

. (A1)

The harmonic term is the unperturbed potential, and the
quartic term is the perturbation. A further simplification
to evaluate the fidelities FL = |〈Zn(tf )|Uz(tf ,0)|Zn(0)〉| is
to substitute the initial and final exact eigenstates |Zn(0)〉
and |Zn(tf )〉 by corresponding eigenstates of the harmonic
oscillator |ψn(0)〉 and |ψn(tf )〉; see the expressions below.
This is an excellent approximation for the lower eigenstates.
In Fig. 3, for example, the overlap probability between exact
and approximate states is 0.997 in the worst possible case
(n = 5, w0 = 3 μm, and ωf z = 25 Hz). In other words, the
perturbation does not imply any significant deformation in the
initial and final states. Its potential impact is instead at transient
times where the energy may be high.

We thus expand the overlap 〈ψn(tf )|UL(tf ,0)|ψn(0)〉 as 1 +
f (1)

n,n + f (2)
n,n + · · · in powers of V1 to write

FL = ∣∣1 + f (1)
n,n + f (2)

n,n + · · · ∣∣. (A2)

The first-order correction is given by

f (1)
n,n = −i

h̄

∫ tf

0
dt ′〈ψn(t ′)|V1(t ′)|ψn(t ′)〉

= im

2h̄z2
R

∫ tf

0
dt ′ω2

L(t ′)〈ψn(t ′)|z4|ψn(t ′)〉, (A3)

and the unperturbed wave function corresponds to the known
harmonic evolution of an expanding mode under the time-
dependent frequency ωz(t) from an eigenstate of the initial
harmonic oscillator [8],

〈z|ψn(t ′)〉 = e
im
h̄

ḃz2

2b

(b2nn!)1/2
e
−i(n+1/2)ω0z

∫ t ′
0

dt ′′
b2(t ′′ )

×
(

mω0z

πh̄

)1/4

e
− mω0zz2

2h̄b2 Hn

(√
mω0z

h̄

z

b

)
. (A4)

This is nothing but the eigenvector of the quadratic invariant
times the Lewis-Riesenfeld phase factor.

Using the triangular inequality |x + y| �
∣∣|x| − |y|∣∣, FL �

1 − |f (1)
n,n + f (2)

n,n + · · · | and assuming that the perturbative
corrections satisfy |f (1)

n,n| >> |f (2)
n,n|, then

FL � 1 − ∣∣f (1)
n,n

∣∣. (A5)

The relevant matrix element in Eq. (A3) can be calculated
explicitly,

〈ψn(t ′)|z4|ψn(t ′)〉 =
(

h̄

mω0z

)2 3b4

4
[(n + 1)2 + n2]. (A6)
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Using this result and the Ermakov equation,∣∣f (1)
n,n

∣∣ = 3h̄

8mz2
R

[(n + 1)2 + n2]

(
tf − 1

ω2
0z

∫ tf

0
b̈b3dt

)
.

(A7)
To bound − ∫ tf

0 b̈b3dt subjected to the imposed constraints on
b at t = 0 and tf we follow closely the method applied in [5] to
bound the average energy. We integrate first by parts applying
ḃ(0) = ḃ(tf ) = 0 and minimize the resulting positive integral∫ tf

0 b2ḃ2dt , using the Euler-Lagrange equation b̈b + ḃ2 = 0
for b(0) = 1, b(tf ) = γ . These two conditions are fulfilled
for a set of functions larger than the subset of functions that
satisfy all boundary conditions in Eq. (12), so the minimization
sets a lower bound for the later subset. The solution is b =
[t(γ 2 − 1)/tf + 1]1/2, and with it the integral becomes∫ tf

0
b2ḃ2dt = (γ 2 − 1)2

4tf
. (A8)

This b is not as such a physically valid solution, as the
derivatives would jump at the edges, but it maximizes the
fidelity lower bound,

FL � 1 −
{

3h̄λ2

8mπ2w4
0

[(n + 1)2 + n2]

[
tf + 3(γ 2 − 1)2

4tf ω2
0z

]}
.

(A9)

Take note that there is an optimal tf value and that the
fidelity deteriorates when increasing the quantum number and
improves by increasing the waist.

Using for b the quintic polynomial in Eq. (13), we get,
instead of Eq. (A8),∫ tf

0
b2ḃ2dt = 10(γ 2 − 1)2

24871tf
(1101 + 1351γ + 1101γ 2).

(A10)
This tends to 0.44γ 4/tf for γ � 1, which, up to the constant
factor, is the same dependence found for the optimal function.

The first-order analysis provides analytical results and some
qualitative guidance, but for more accurate results we should
resort to a second-order calculation. Instead of Eq. (A2) we
may also write the fidelity for the nth state in terms of the
corresponding probability as FL = (1 − ∑

n�=n′ Pn′ )1/2, where
Pn′ is the probability to find the system in the n′th state at
tf . This is approximated to second order using first-order
nondiagonal terms,

FL =
√

1 −
∑
n�=n′

∣∣f (1)
n,n′

∣∣2
, (A11)

where

f
(1)
n,n′ = −i

h̄

∫ tf

0
dt ′〈ψn(t ′)|V1(t ′)|ψn′(t ′)〉

= ih̄λ2

2π2mw4
0ω

2
0z

αn,n′βn,n′ (t)√
π2n+n′

n!n′!
, (A12)

αn,n′ =
∫ ∞

−∞
dy e−y2

Hn(y)Hn′ (y)y4, (A13)

and

βn,n′ (t) =
∫ t

0
dt1 b4(t1)ω2

z (t1)e
−i(n′−n)ω0z

∫ t1
0

dt2
b2(t2) . (A14)

APPENDIX B: THE CONDITION OF ADIABATICITY

Consider a time-dependent Hamiltonian Ĥ0(t), with instan-
taneous eigenstates and energies given by

Ĥ0(t)|i(t)〉 = Ei(t)|i(t)〉. (B1)

The adiabaticity condition is given by [30]

|〈i(t)|∂tj (t)〉| � 1

h̄
|Ei(t) − Ej (t)|, i �= j. (B2)

Now we apply this general expression to get the adiabaticity
condition on the longitudinal and radial frequencies of the
Gaussian-beam trap. In the harmonic approximation the
longitudinal Hamiltonian is given by Eq. (20),

Hhar(z,t) = − h̄2

2m

∂2

∂z2
+ mω2

z (t)z2

2
, (B3)

whereas the radial Hamiltonian is given, according to
Eqs. (22), (23), and (24), by

Hhar(r,t) = − h̄2

2m

∂2

∂r2
+ mω2

R(t)r2

2
+ h̄2

2m

(
ν2 − 1/4

r2

)
.

(B4)

The instantaneous eigenstates and energies of the Hamiltonian,
Eq. (B3), are

〈z|n(t)〉 =
(

mωz

πh̄

)1/4
√

1

2nn!
e− −mωzz2

2h̄ Hn

(√
mωz

h̄
z

)
,

En(t) =
(

n + 1

2

)
h̄ωz, n = 0,1, . . . ,

where ωz = ωz(t) and Hn is the Hermite polynomial. To
get the adiabaticity condition for the ground state i = 0 of
the longitudinal Hamiltonian we insert these expressions for
the eigenstates and energies in Eq. (B2). The overlap of the
ground state with the first excited state j = 1 is 0, so the first
nonvanishing overlap of the ground state is with the j = 2
state. The adiabatic condition is satisfied if

√
2ω̇z

8ω2
z

� 1. (B5)

For the radial Hamiltonian, Eq. (B4), the instantaneous
eigenstates and energies for ν = 0 are [35]

〈r|k(t)〉 =
√

2mω
R
r

h̄
e− −mω

R
r2

2h̄ L0
k

(
mω

R

h̄
r2

)
,

Ek(t) = (2k + 1)h̄ω
R
, k = 0,1, . . . ,

with k being the radial quantum number and L0
k being the

generalized Laguerre polynomial. Again ωR = ωR(t). To get
the adiabaticity condition for the radial direction we insert
these expressions for i = 0 and j = 1 in Eq. (B2),

ω̇R

4ω2
R

� 1. (B6)
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