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Abstract
Weengineer the fast rotation of an effectively one-dimensional ion trap for a predetermined rotation
angle and time, avoiding the final excitation of the trapped ion.Different schemes are proposedwith
different speed limits that depend on the control capabilities.We alsomake use of trap rotations to
create squeezed states withoutmanipulating the trap frequencies.

1. Introduction

Amajor challenge inmodern atomic physics is to develop a scalable architecture for quantum information
processing. A proposed scheme to achieve scalability is based on shuttling individual ions or small groups of ions
among processing or storing sites [1–6]. Apart from shuttling [7–11] othermanipulations of the ionmotion
would be needed, such as expansions or compressions of the trap [12, 13] separating ormerging ion chains
[14–16] and rotations [17]. All these basic dynamical operations should fulfill two seemingly contradictory
requirements: they should be fast, but free fromfinalmotional excitation. Shortcuts to adiabaticity for ‘fast and
safe driving’ have been proposed for several of these elementary operations [7–13, 15] and have also been
implemented experimentally [18, 19].

In this paperwe study rotations of a single ion as depicted infigure 1. Our aim is to inverse engineer the time-
dependence of the control parameter(s) to implement a fast process, free from final excitations.We assume for
simplicity that the ion is trapped in a linear, harmonic trap, tightly confined in a radial direction so that itmoves
effectively along a one-dimensional (1D) axial direction, hereafter ‘the line’. The trapping line is set horizontally
and is rotated in a time tf up to an establishedfinal angle (q p= 2f in all examples)with respect to a vertical axis
that crosses the center of the trap. Such an operationwould be useful to drive atoms through corners and
junctions in a scalable quantumprocessor [20, 21]. It is also a first step towards themore complicated problemof
rotating an ion chain [17, 20, 22], whichwould facilitate scalability in linear segmented traps, and be useful to
rearrange the ions, e.g. to locate a cooling ion at the right position in the chain [17].

We shall first find the classicalHamiltonian. Let s denote a point on the line. smay take positive and negative
values. A time dependent trajectory s(t) has Cartesian, laboratory frame components =x x s t,( ), =y y s t,( )

q q= =x s y scos , sin , 1( ) ( ) ( )
where q q= t( ) is the rotation angle. The kinetic energy is = +K m x y1

2
2 2( ˙ ˙ ), wherem is the ionmass, and the

potential energy is assumed by now to be harmonic, wm s1

2 0
2 2 (this will be relaxed below and in section 2), where

w0 is the angular frequency of the external confining trap in the (longitudinal) direction of the line. This gives the
Lagrangian

w= -L ms m s
1

2

1

2
, 22 2 2˙ ( )

w w q= - . 32
0
2 2˙ ( )
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Note that the angular velocity of the rotation q̇must be real but could be negative, whereas w2 may be positive or
negative,makingωpurely imaginary in the later case. Unless stated otherwise, the following physicallymotivated
boundary conditions are also assumed: the initial and final trap should be at rest, andwe also impose continuity
of the angular velocity

q q q= =t0 0, , 4f f( ) ( ) ( )

q q= =t0 0, 5f˙ ( ) ˙ ( ) ( )

w w w= =t0 , 6f 0( ) ( ) ( )

where the last line follows from the second one using equation (3). By a Legendre transformationwefinally get
theHamiltonian5

w=
¶
¶

- = +H s
L

s
L ms m s

1

2

1

2
. 72 2 2˙

˙
˙ ( )

At this point, we quantize thisHamiltonian by substituting mṡ by themomentumoperator p and by considering
s as the position operator, which becomes a c-number in coordinate representation

w= +H
m

p m s
1

2

1

2
. 82 2 2 ( )

Wewill fromnowonworkwith this quantumHamiltonian (possibly with amore general potential) and
corresponding quantum states. It represents formally a harmonic oscillator with time-dependent frequency, but
there are significant differences with an actual harmonic oscillatorwhen the inverse engineering of w t( ) is
considered. For an actual harmonic oscillator a fast and safe expansion or compression in a time tf should take
the system from an initial value to afinal value ofωwithout final excitation, in principle without further
conditions. By contrast, in the rotation process, according to equation (6), the initial and final effective
frequencies are the same, but the conditions in equations (4) and (5)must be satisfied. This implies an integral
constraint onω

ò òq q w w= ¢ = - ¢t t td d , 9
t t

f
0 0

0
2 2 1 2

f f( ) ˙ [ ] ( )

where the square root branch should be chosen to satisfy continuity. One further difference is that in a physical
expansion/compression w t( ) is controlled directly whereas in the rotation there are several options. If w0 is
constant, only q t˙ ( ) is controlled, so that w t( ) is an ‘effective’ frequency. In general both w0 and q̇ could be
controlled as time-dependent functions, see the next section. As for the final excitation, the expression for the
energy of a state that begins in the nth eigenstate of the trap at rest can be foundmaking use of the Lewis–
Riesenfeld invariants [12, 23] see the corresponding time-dependent wave function in the appendix

⎛
⎝⎜

⎞
⎠⎟

�
w

w
w

á ñ =
+

+ +H t
n

b t b
b

2 1

4 0

0
. 10n

2 2 2
2

2
( ) ( )

( )
˙ ( ) ( ) ( )

Here b is a scaling factor, proportional to thewidth of the invariant eigenstates, that satisfies the Ermakov
equation

Figure 1. Schematic representation of the rotation process. The ion is confined along a line (where it is subjected to an effective one-
dimensional-longitudinal-potential), which is rotated by an angle θup to qf in a time tf, so that the final state is not excited.

5
This is easily generalized for a potentialU(s), not necessarily harmonic, as q= + -H ms U s m s1

2
2 1

2

2 2˙ ( ) ˙ .
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w
w

+ =b t b
b

¨ 0
. 112

2

3
( ) ( ) ( )

To avoid anyfinal excitation, it is required that

= =b t b t1, 0 12f f( ) ˙ ( ) ( )
for the initial conditions = =b b0 1, 0 0( ) ˙ ( ) . The boundary conditions for b and equations (4)–(6) imply that

=H H t0 f( ) ( ) commutes with the corresponding Lewis–Riesenfeld invariant [23], so that the nth initial
eigenstate is dynamicallymapped onto itself (but rotated) at time tf. In equations (10) and (11) both the
excitation energy and thewave packet width aremass independent, so that inverse-engineered rotation
protocols will be independent of the species. In the following sections we shall analyze differentmethods to
perform the rotationwithoutfinal excitation.

2. Control of trap frequency and angular velocity

If both the trap angular frequency w0 and the angular velocity q̇ are controllable functions of time, a simple
family of solutions to the inverse problem is found by setting a q t˙ ( ) that satisfies equations (4) and (5), and
compensating the time dependence of q2˙ with a corresponding change in w t0

2 ( ), so that w w=t 02 2( ) ( ) remains
constant during thewhole process. From the point of view of the effective harmonic oscillator ‘nothing happens’
throughout the rotation, so that the effective state remains unexcited at all times.

Wemay apply the Lewis–Leach theory of quadratic inmomentum invariants [24, 25] to extend the above
results to arbitrary potentials6. The family ofHamiltonians

⎜ ⎟⎛
⎝

⎞
⎠= + W +H

p

m
m s

b
U

s

b2
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2

1
, 13

2
2 2

2
( )

whereU is an arbitrary function, andΩ depends on time, has the invariant

⎜ ⎟⎛
⎝

⎞
⎠

p
= + W +I

m
m s U

s

b2

1

2
, 14

2

0
2 2 ( )

where p = -bp mbs˙ , and W0 is a constant, provided the Ermakov equation

+ W =
W

b b
b

¨ 152 0
2

3
( )

is satisfied. Consider the simple case W = 00 , i.e., from equation (15)

W = -t
b

b

¨
. 162( ) ( )

If we set =b t 1( ) as a constant for all times, it follows that W =t 0( ) . However, as we saw in the previous
section, the rotation of a linewith the potentialU(s) produces in the line frame a centrifugal term q- s m 22 2˙ . To
cancel the total harmonic term, we have to add to the trap potential a compensating harmonic term, w s m 2c

2 2 ,
such that w q=c

2 2˙ . In other words, w qW = - = 02
c
2 2˙ . The resultingHamiltonian and invariant (in this case

they are equal) are simply

= = +H I
p

m
U s

2
, 17

2

( ) ( )

i.e., time independent. No excitation occurs at any time in spite of the fact that a rotation is taking place.
For some applications itmay be interesting to consider in equation (13) themore general case inwhich b

depends on time (for example to achieve a squeezed state), and w w q= -2
c
2 2˙ , corresponding to an auxiliary

harmonic term and the centrifugal term. The inverse engineering in this case proceeds by designing q t( ), so that
q q= =t0 0f
˙ ( ) ˙ ( ) , and then b(t) obeying the boundary conditions

= =b b t0 1, 18f( ) ( ) ( )
= =b b t0 0, 19f

˙ ( ) ˙ ( ) ( )
= =b b t¨ 0 ¨ 0, 20f( ) ( ) ( )

(ormore generally g=b tf( ) ) that guarantee the commutation between invariant andHamiltonian at boundary
times.Once θ and b are setwe design the auxiliary harmonic termconsidering, as before,W = 00 in equation (15)

6
The theorywasfirst formulated for classical systems in [24] but is applicable to quantum systems aswell [25]. Incidentally thismeans that

the rotation protocols designed in this paper—in this and the following sections—are valid for classical particles as well. The difference
appears onlywhen considering which states are valid or not for classical and quantumparticles, e.g., when using phase-space formulations of
quantum states and classical ensembles.

3
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w q q= W + = - +
b

b

¨
. 21c

2 2 2 2˙ ˙ ( )

The auxiliary harmonic term vanishes at both boundary times according to the boundary conditions imposed
on b̈ and q̇. In fact W2 vanishes aswell at the boundary times so that before and after the rotation the atom is
confined only in the potentialU(s). This type of protocols, where both the rotation speed and the potential have
to be controlled (the latter in space and time)may be quite demanding experimentally. In the rest of the paperwe
shall assume the simpler scenario inwhich only the rotation speed q̇ is controlled, and the trap potential is purely
harmonic with constant angular frequency w0.

3. Bang–bang

It is possible to perform rotationswithout final excitation satisfying equations (4) and (5) keeping q̇ constant or
piecewise constant. Herewe consider the simplest one-step case

⎧
⎨⎪
⎩⎪

-
-

.
q = <t

t
c t t

t t

0, 0,
, 0 ,

0, .
22f

f

˙ ( ) ( )

Note that equations (5) and (6) are only satisfied now as one-sided limits. A bang–bang approachmay admitedly
be difficult to implement because of the sharp changes involved, but it sets a useful, simple reference for orders of
magnitude estimates of rotation speedswhichmay be compared to smoother approaches that will be presented
later. Integrating q̇ wefind

q = ct . 23f f ( )

For a constant q = c˙ ,ω remains constant from t=0 to =t tf , and equal to w w= - c1 0
2 2 1 2( ) , whereas

w w= 0 in the initial andfinal time regions. For this configuration, and < <t t0 f

w w
w

w=
-

+b t tsin 1 , 240
2

1
2

1
2

2
1( ) ( ) ( )

w w w w
w

=
-

b t
t t

b t

sin cos
, 251 1 0

2
1
2

1

˙ ( ) ( ) ( )( )
( )

( )

to satisfy the boundary conditions =b 0 1( ) , =b 0 0˙ ( ) . The shortestfinal time to satisfy the conditions (12) at tf
is p w1. From equation (23) this gives the value of cneeded

q w
p q

=
+

c , 26f 0
2

f
2 1 2[ ]

( )

whereas

p
w

p

w

p
w

= =
-

=t
c

f , 27f
1 0

2 2 0
( )

q
p

+f 1 . 28f
2

2
≔ ( )

As w<c 0 the effect of this bang–bang protocol is to expand the effective trap during the rotation time interval. b
increasesfirst and then decreases during half an oscillation period of the effective trap. This does not in general
coincidewith half oscillation period of the actual non-rotating trap p w0 because of the f factor, but it is not too
different for relevant values of qf . In particular, for q p= 2f , f=1.118. Themaximumof b(t) at t 2f is
precisely f. For example, for a frequency w p =2 2 MHz0 ( ) , this implies afinal time tf=0.28μs.

4.Optimal control by Pontryagin’smaximumprinciple

While the previous bang–bangmethodwith just one time segment provides a simple guidance, we are also
interested in knowing the absolute timeminimum that could in principle be achieved (even if the ‘optimal’
protocol ends up being hardly realizable). Unlike ordinary expansions/compressions, the shortest time protocol
for bounded control is not of a bang–bang form. Tofind it wefirst rescale the timewith w0 by setting s w= t0

for Ît t0, f[ ]. Nowwe set the variables

4

New J. Phys. 18 (2016) 043014 MPalmero et al



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ò

s
s
w

s
w

s
w

s t t

= =

=

=
s

x b t b

x b

x u

,

1
,

d , 29

1
0

2
0 0

3
0

( ) ( )

( ) ˙

( ) ( ) ( )

where s w q= =
w

u u t t0
1

0
( ) ( ) ˙ ( )with s wÎ t0, 0 f[ ]. Then, we canwrite a control systemdescribing the

Ermakov equation (15) and the constraints in (4)–(6), and formulate the time-optimal control (OC) problem for
rotation of a quantumparticle on a line as

ò t=

¢ =

¢ = + -

¢ =

J

x x

x
x

u x

x u

min 1d ,

such that ,
1

1 ,

, 30

u

T

0

1 2

2
1
3

2
1

3

( )

( )

where w=T t0 f and the prime is a derivative with respect toσ, with the boundary conditions

q

= =
= =
= =

x x T
x x T
x x T

0 1, 1,
0 0, 0,
0 0, . 31

1 1

2 2

3 3 f

( ) ( )
( ) ( )
( ) ( ) ( )

Note that we assume that the boundary conditions for u at t=0 and =t tf can be fulfilled by the use of a sudden
switch.

4.1. Unbounded control
Weapply the Pontrygin’smaximumprinciple [26] to solve the time-OCproblem (30), where theHamiltonian is
given by

⎡
⎣⎢

⎤
⎦⎥l l l l l= + + + - +H t x u x

x
u x u, , ,

1
1 , 320 1 2 2

1
3

2
1 3( ) ( ) ( )

inwhich l l l l l= , , ,0 1 2 3( ) and l0 is either 0 or 1. The necessary condition =¶
¶

0H

u
gives

*
l
l

= -u
x2

, 333

2 1
( )

whichminimizes theHamiltonian andwhere the co-states �l l l lT, , : 0,1 2 3 [ ] satisfy l¢ = -¶
¶i

H

xi
,

=i 1, 2, 3, i.e.

⎡
⎣⎢

⎤
⎦⎥l l

l l
l

¢ = - -

¢ = -
¢ =

x
u

3
1 ,

,

0. 34

1
1
4

2
2

2 1

3

( )

( )

Solutions are found by solving the equation system composed by equations (30), (33) and (34)with the boundary
conditions at s = 0 in equation (31).We have the freedomof choosing different initial values for the l 0i ( ) to
satisfy the boundary conditions atT in equation (31).We apply a shootingmethod and numericallyminimize

q- + + -x T x T x T11
2

2
2

3 f
2[ ( ) ] ( ) [ ( ) ] for these parameters usingMATLAB’s ‘fminsearch’ functionwith

q p= =2 1.5708f . The best results obtained are forT=2.2825, which, for the external trap frequency
w p =2 2 MHz0 ( ) used in other examples, implies afinal time tf=0.18μs. The solution found is not exact,

=x T x T x T, , 1.0765, 0.0842, 1.56501 2 3( ( ) ( ) ( )) ( ), whichmight be an indication that the system is not
controllable. Figure 2 (a) shows the time evolution of u for this case following equation (33) but forcing it to be 0
in the boundary times.

4.2. Bounded control
Now, consider a bounded control with s Îu 0, 1( ) [ ] for all s Î T0,[ ]. Because theHamiltonian (32) is
quadratic in u, the optimal control thatminimizesH is of the form

5
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⎧⎨⎩
⎧⎨⎩

⎫⎬⎭
⎫⎬⎭* l

l
= -u

x
min max

2
, 0 , 1 . 35b

3

2 1
( )

The bounded time-optimal control and the resulting optimal trajectory are illustrated infigure 2 (b). The
minimum (dimensionless) time that completes the desired rotation isT=11.9984 and the calculated final state
following the optimal control is =x T x T x T, , 1.0083, 0.0382, 1.57081 2 3( ( ) ( ) ( )) ( ). For w p =2 2 MHz0 ( ) , the
minimal time is 0.95μs. Since s Îu 0, 1( ) [ ], s" Î T0,[ ], from (30)we see that q > 0˙ , and hence the rotation
is always forward. In this case, x3 reaches the desired q p= 2f at s = 11.9028, and the control is turned off.
Then, the states x1 and x2 are oscillating to reach the desired terminal state 1, 0( ). Figure 2 (b) shows the time
evolution of u for this solution.

5. Smooth inverse engineering

An alternative inversion route that provides smooth solutions is depicted in the following scheme

First, q t( ) is designed to satisfy equations (4) and (5)with some free parameters. The corresponding q̇ and final
energy are calculated, and the parameters are changed until theminimumenergy (and excitation) is found.

A convenient choice for θ is afifth order polynomial ansatz q = å = a t tn n
n n

0
5

f . In order to satisfy the
boundary conditions in equations (4) and (5)weneed tofix parameters

q q= + + - - --a a a a a0, 0, 2 3 , 2 3 20 3 4 5 f 4 5 f( ). The other two parameters, a a,4 5, are left free in order to
satisfy the remaining two boundary conditions in equation (12) and suppress thefinal excitation energy. In
practice we solve numerically equation (11) tofind thefinal energy (10) for each pair a a,4 5, and useMATLAB’s
‘fminsearch’ function tofind the values of the free parameters thatminimize the final excitation energy.

Infigure 3 the values of the free parameters that result from this process are given, and infigure 4we depict
the corresponding excess energy with respect to the ideal target state (as in previous examples, w p =2 20 ( )
MHz). Vanishing residual excitations are found for times shorter than half an oscillation period up to a time
~t 0.23f μs, notmuch larger than the unbounded-optimal-controlminimumof 0.18μs. Figure 5 depicts the

difference between the ideal value of b tf( ) and the actual value, andmakes evident the sharp change thatmarks
the shortest time for which a solution exists. Sincewe have limited the possible solutions by imposing a
functional formof the function q t( ), this time is larger than the one found viaOC.Note also that the shortest
final time is slightly better than the one provided by the simple bang–bang protocol. Table 1 summarizes the
results.

6.Wave packet squeezing

Consider now a trap rotationwith constant trap frequency w0 satisfying the conditions (4)–(6), and b satisfying

g
= =

= =

b b

b t b t

0 1, 0 0,

, 0. 36f f

( ) ˙ ( )
( ) ˙ ( ) ( )

Unlike the previous sections, b ends in a value γ different from1.

Figure 2.Time evolution q t˙ ( ) for the optimal unbounded (a) and bounded (b) control. The rotation angle is q = p
f 2

.
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Figure 3.Values of the optimizing parameters a4 (thick blue line) and a5 (dashed red line) for different rotation times tf. The trap
frequency is w p =2 2 MHz0 ( ) , and the final angle q = p

f 2
.

Figure 4. Final excitation energy versusfinal time for the optimized protocol without (solid blue line) andwithfinal squeezing
(g = 32 , dashed red line). The trap frequency is w p =2 2 MHz0 ( ) , and thefinal rotation angle q = p

f 2
. The initial state is the ground

state of the trap.

Figure 5.Difference between ideal and actual value of b at the end of the rotation versus final time for the optimized inverse-
engineered protocol for rotationswithout (solid blue line) andwithfinal squeezing (g = 32 , dashed red line). The trap frequency is
w p =2 2 MHz0 ( ) , and the final rotation angle q = p

f 2
.

Table 1.Minimal rotation times for the differentmethods. Trap frequency
w p =2 2 MHz0 ( ) . In boundedOC, - -q w0 0

˙ .

Bang–bang OC(unbounded) OC(bounded) Inverse engineering

tf (μs) 0.28 0.18 0.95 0.23

7
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According to equation (A3), each initial state f 0n ( )will evolve into fw- +e n g
n

i 1 2
,sq

0( ) at tf, where

ò= = ¢ ¢g g t t b td
t

f 0
2f( ) ( ), and fn,sq is the normalized eigenstate for the trapwith angular frequency

w w g=sq 0
2. (This is a virtual trap, let us recall that the actual trap has angular frequency w0.)

A coherent state at time t=0

åa
a

fñ = ña-

=

¥

n
e 0 , 37

n

n

n
2

0

2∣
!

∣ ( ) ( )∣ ∣

will thus evolve into

åy
a

fñ = ñw a- -

=

¥

t
n

e e , 38g

n

n

nf
i 2 2

0
,sq

0
2∣ ( ) ˜

!
∣ ( )∣ ˜ ∣

where a a= w-e gi 0˜ . This is a coherent state for the virtual frequency wsq and therefore aminimum-uncertainty-
product state. However, since the actual trap has frequency w0, it is also a squeezed coherent state with respect to
the actual trap a ñr,∣[ ˜ ] , see [28], where g= -r ln , up to a global phase factor. Thefinal and initial coordinate
andmomentumwidths are related by gD = Ds t s, ,0f

, gD = Dp t p, ,0f .Wemay rewrite the state at time tf in
terms of the squeezing and displacement operators as

y a a añ = ñ = ñ = ñw w w- - -t S r S r D re e 0 e , , 39g g g
f

i 2 i 2 i 20 0 0∣ ( ) ( ) ∣ ˜ ( ) ( ˜ ) ∣ ∣[ ˜ ] ( )

where = -S r e a ar
2

2 2( ) ( )† , a and a† are annihilation and creator operators for the w0-harmonic trap, and
*= -D z eza z a( ) † is the displacement operator. Note that the phase at tf, aarg( ˜ ), is controllable bymeans of the g-

function that depends on the process history, whereas the squeezing parameter g1 is controlled by the imposed
boundary condition. If necessary, a controlled tilt of the squeezed state in phase space is easy to achieve by letting
it evolve, after its formation at tf, in the fixed, non-rotating trap.

As a simple example let us consider the generation of squeezed vacuum states starting from the ground state
of the initial trap, so that a = 0. To design the squeezing process wemay follow a similar procedure as in the
previous section, butminimizing the cost function

w
w

g

= + +

= - +

F b t t b t
b t

b b

0
,

1, 40

f
2 2

f f
2

2

f
2

˜̇ ( ) ( ) ˜( ) ( )
˜( )

˜ ( )

which isminimal for =b t 1f
˜( ) and =b t 0f

˜̇ ( ) , so that g=b tf( ) and =b t 0f
˙ ( ) .

Since, due to the centrifugal force during the rotation, thewave packet tends to spread first, the squeezed
states with g > 1may be achieved in shorter times than the ones neededwithout squeezing in the previous
section. Figure 6 depicts the free parameters that optimize a rotationwith afinal squeezed state for the same
parameters in the previous subsection, but g = 32 , andfigure 4 the excess energy with respect to the target state.
The excitation in a process with afinalmoderate squeezing is smaller than for the simple rotationwithout
squeezing. Figure 5 depicts the difference between the target value of the function b (proportional to thewidth of
thewavepacket) and its actual value atfinal time for rotationswithout andwith squeezing. Again, the
minimizations change suddenly to a different solution that cannot satisfy the conditions at a critical time, see
alsofigures 3 and 6.

Figure 6.Values of the optimizing parameters a4 (thick blue line) and a5 (dashed red line) for different rotation times to generate a
squeezed vaccum state with g = 32 . The trap frequency is w p =2 2 MHz0 ( ) , and the rotation angle q = p

f 2
.
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7.Discussion

Wehaveworked out different schemes to perform fast rotations of a 1D trapwithout any final excitation of the
confined particle, whichwe have considered to be an ion throughout but could be a neutral particle as well by
setting the proper trapping interaction. Apart from excitation-free rotations it is also possible to generate
squeezed states in a controllable way. For an arbitrary trap, the fast processes could in principle be performed in
an arbitrarily short time if an auxiliary harmonic potential with time dependent frequency could be
implemented. In a simpler setting, where only the rotation speedmay be controlled, the rotation time cannot be
arbitrarily short, as demonstrated by inverse engineering or bang–bang approaches, and confirmed byOC
theory. Bang–bang andOCprotocols provide useful information and time bounds but are difficult to
implement experimentally due to the sudden kicks in the angular velocity of the trap. Smooth protocols
designed by invariant-based inverse engineering have also beenworked out. They achieve negligible excitations
for times close to theminimum times given byOC theory.

The analysismay be generalized for a two-dimensional (2D) trap but it becomes considerablymore involved
[27] andwill be considered separately. The 1D approximation used herewill be valid for total energies well below
the transversal confinement energy �w=^ ^E . For the shortestfinal times considered in our simulations,
excitation energies are never larger than �w2 0 so that w w^ � 0 would be enough for their validity.

Rotations are elementarymanipulations which togetherwith transport, splitting, and expansions,may help
to build a scalable quantum information architecture. In particular, they provide amechanism for connecting
sites by changing transport directions in 2Dnetworks. Rotations have been demonstrated experimentally for
trapped ions [17] and improving the capability to control the parameters involved is feasible with state-of-the-
art trapped-ion technology. To extend the present analysis to ion chains [17], an approach similar to that in
[9, 13, 15] could be applied, working out the dynamicalmodes of the system and taking into account the dipole–
dipole interaction due to the rotation of the charged particles. The present results set a first step towards
accurately controlling rotating ion chains whichwould allow for fast reordering.
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Appendix.Wave functions

The time-dependent wave functions evolvingwith theHamiltonian (8) take the form [7, 12, 23]
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which corresponds to the nth eigenstate of a trapwith angular frequency w b0
2.
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