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A fundamental and intrinsic property of any device or natural system is its relaxation time ⌧

relax

,
which indicates how long equilibrium recovery takes after a sudden change of a control parameter
[1]. Epitomized by the charge of a capacitance or the thermalisation of a material, examples abound
from physics to biology, and from engineering to chemistry. The reduction of ⌧

relax

, which is fre-
quently desired and necessary, is often obtained by a complex feedback process. To overcome the
limitations of such an approach, alternative methods based on an appropriate driving have been
recently demonstrated [2, 3], for isolated quantum and classical systems [4–9]. Their extension to
open systems in contact with a thermostat is a stumbling block for applications. Here, we design
a protocol of Engineered Swift Equilibration (ESE) that shortcuts time-consuming relaxations, and
we apply it to a Brownian particle trapped in an optical potential whose properties can be controlled
in time. We implement the ESE process experimentally, showing that it allows the system to reach
equilibrium 100 times faster than the natural equilibration rate. We also estimate the increase of the
dissipated energy needed to get such a time reduction. Beyond its fundamental interest, the ESE
method paves the way for applications in micro and nano devices, where the reduction of operation
time represents as substantial a challenge as miniaturization [10].

PACS numbers:

The concepts of equilibrium and of transformations
from an equilibrium state to another, are cornerstones
of thermodynamics. A textbook illustration is provided
by the expansion of a gas, starting at equilibrium and
expanding to reach a new equilibrium in a larger vessel.
This operation can be performed either very slowly by a
piston, without dissipating energy into the environment,
or alternatively quickly, letting the piston freely move to
reach the new volume. In the first case, the transforma-
tion takes a long (virtually infinite) time to be completed,
while the gas is always in a quasi-equilibrium state. In
the second case instead, the transformation is fast but the
gas takes its characteristic relaxation time ⌧

relax

to reach
the new equilibrium state in the larger volume. This
is the time required for the exploration of the new ves-
sel. More generally, once a control parameter is suddenly
changed, the accessible phase space changes too [1, 11];
the system adjusts and needs a finite time to reach the
final equilibrium distribution. This equilibration process
plays of course a key role in out of equilibrium thermo-
dynamics.

An important and relevant question related to opti-
mization theory is whether a targeted statistical equilib-
rium state can be reached in a chosen time, arbitrarily
shorter than ⌧

relax

. Such strategies are reminiscent of
those worked out in the recent field of Shortcut to Adi-
abaticity [2, 3]; they aim at developping protocols, both
in quantum and in classical regimes, allowing the system
to move as fast as possible from one equilibrium posi-
tion to a new one, provided that there exist an adiabatic
transformation relating the two [12–14]. So far, proof of
principle experiments have been carried out for isolated

systems [4–9] and for photonics circuit design [15–18].
Yet, the problem of open classical systems is untouched.
We solve here this question by putting forward an accel-
erated equilibration protocol for a system in contact with
a thermal bath. This is a key step for a number of appli-
cations in nano oscillators [19], in the design of nanother-
mal engines [20], or in monitoring mesoscopic chemical or
biological processes [21], for which thermal fluctuations
are paramount and an accelerated equilibration desirable
for improved e�ciency. We dub the method Engineered
Swift Equilibration (ESE).

However, an arbitrary reduction of the time to reach
equilibrium will have unavoidable consequences from an
energetical point of view [22]. The question of the cor-
responding cost is relevant as such, but also for applica-
tions, for example in nano-devices [10] where the goal is
the size and execution time reduction of a given process.
Here, beyond the theoretical derivation of the proce-
dure, we develop an experimental demonstration of ESE,
studying the dynamics of a colloidal particle within an
optical potential. The energetics of the system will also
be analyzed in depth, shedding light on the inherent con-
sequences of time-scale reduction.

Our experimental system consists of a microsphere im-
mersed in water [23]. The particle is trapped by an
optical harmonic potential U(x, t) = (t)x2

/2, where x

is the particle position and (t) is the sti↵ness of the
potential which can be controlled by the power of the
trapping laser [20]. The system is a↵ected by thermal
fluctuations; its dynamics is overdamped and described
by a Langevin equation (see Methods). Our Brownian
particle has a relaxation time defined as ⌧

relax

= �/,
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where � is the fluid viscous coe�cient. At equilib-
rium, the probability density function (pdf) ⇢(x) of x

is Gaussian ⇢

eq

(x) = 1/
p
⇡�

2

x

exp(�x

2

/(2�2

x

) with vari-
ance �2

x

= k

B

T/ as prescribed by the equipartition the-
orem. Here k

B

is the Boltzmann constant and T the bath
temperature. In this system, we consider the compres-
sion process sketched in Fig. 1, in which the sti↵ness is
changed from an initial value to a larger one. The evo-
lution of the system during the relaxation towards the
new equilibrium state is monitored through the position
pdf ⇢(x, t), which is Gaussian at all times (see Methods).
Thus, the distribution ⇢(x, t) is fully characterized by
the time evolution of its mean and its standard deviation
�

x

(t). The main question is now that of finding, pro-
vided it exists, a suitable time evolution of the sti↵ness
(t) (our control parameter), for which the equilibration
process is much faster than ⌧

relax

. This question can be
a�rmatively answered using a particular solution of the
Fokker-Planck equation (see Methods).

σx(ti )

U(ti )

ESE

Relaxation

σx(tf )

x(nm) 200
100

0
-100

-200
x(nm) 200

100
0

-100
-200

U(tf )

FIG. 1: Sketch of the process. At initial time t

i

, the
particle is at equilibrium, confined in a potential of sti↵-
ness 

i

(black line), and ⇢(x) (blue histogram) has variance
�

2

x

(t
i

) = k

B

T/

i

. After a long relaxation where  is gradually
increased, the particle is at time t

f

at equilibrium in a sti↵er
potential (black line). Since 

f

> 

i

, the variance �

2

x

(t
f

)
of position (red histogram) is smaller than its initial coun-
terpart. The goal is to work out a protocol with a suitable
dynamics (t), that would ensure equilibrium at an arbitrary
chosen final time t

f

, no matter how small.

In this Letter, two methods are compared. On the one
hand, at a given instant t

i

= 0, we suddenly change 

from the initial value 

i

to the final value 

f

. During
this protocol, referred to as STEP, the particle mean po-
sition does not change while the spread �

x

equilibrates
to the new value

p
k

B

T/

f

in about 3 relaxation times
⌧

relax

= �/

f

. On the other hand, following the ESE pro-
cedure, (t) is modulated in such a way that �

x

is fully
equilibrated at t

f

⌧ ⌧

relax

. The protocol which meets
our requirements is given by eq. (8) (in Methods). In
the experiment, we select 

i

= 0.5 pN/µm and 

f

= 1.0
pN/µm in such a way that ⌧

relax

' 15 ms. Furthermore,
in order to have a well defined separation between time
scales, we choose t

f

= 0.5 ms, which is roughly 100 times

smaller than the thermalization time in the STEP pro-
tocol. Both protocols are displayed in Fig. 2a where we
can appreciate the rather complex time dependence of
the ESE control procedure. This is a necessity to allow
for a quick evolution to the new equilibrium state. The
faster the evolution (smaller t

f

), the sti↵er the transient
confinement must be, (the maximum sti↵ness reached in
Fig. 2a is 37

i

). In order to study the evolution of
⇢(x, t) for the two protocols, we perform the following
cycle. First, the particle is kept at 

i

for 50 ms to ensure
proper equilibration. Then, at t = 0 ms we apply the
protocol (either STEP or ESE) and x(t) is measured for
10 ms in the case of ESE and 100 ms for STEP. Finally,
the sti↵ness is set again to 

i

and this cycle is repeated
N times. The evolution of �

x

(t) for t > 0 is obtained by
performing an ensemble average over N =2 104 cycles.

The results are shown in Fig. 2b, where �
x

(t) is plotted
as a function of time for the two protocols, from one
equilibrium configuration to the other. It appears that
the engineered system reaches the target spread precisely
at t

f

and subsequently does not evolve. On the other
hand, the STEP equilibration occurs after a time close
to 3⌧

relax

. Figure 2 c-d represent the complete STEP and
ESE dynamics of ⇢(x). The Gaussian feature is confirmed
experimentally during ESE, even far from equilibrium,
since the kurtosis isK = (3.00±0.01). The results of Fig.
2 clearly show the e�ciency of ESE, driving the system
into equilibrium in a time which is 100 times shorter than
the nominal equilibration time 3⌧

relax

.
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FIG. 2: Dynamics of the system along the STEP and

ESE protocol. a- Experimental protocols: STEP route
(red) and ESE route (blue). The system starts with 

i

= 0.5
pN/µm at t = 0 to finish with 

f

= 1.0 pN/µm. In all fig-
ures, the vertical solid line at t = t

f

indicates the end of the
ESE protocol. b- Normalized standard deviation �

x

(t) of the
particle’s trajectory along the STEP (red circles) and ESE
protocol (black squares). The blue solid line represents the
theoretical prediction of the variance evolution, Eq. (7). c-
Time evolution of the position pdf. The color map of ⇢(x, t) is
plotted after an instantaneous change of the sti↵ness at t = 0
(STEP). d- ESE counterpart of panel c.
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We now turn our attention to the energy required for
achieving such a large time reduction. Developments in
the field of stochastic thermodynamics [24] endow work
W and heat Q with a clear mesoscopic meaning, from
which a resolution better than k

B

T can be achieved ex-
perimentally (see Methods for an explicit definition). In
Fig. 3, the complete energetics of our system is shown for
the ESE and STEP protocols. The evolution of the mean
cumulative work hW (t)i reveals the physical behavior of
the system undergoing ESE. In the first part of the proto-
col (t < 0.2ms), confinement is increased which provides
positive work to the system. In the subsequent evolution
(0.2 < t < 0.5ms), work is delivered from the system to
the environment through the decrease of the sti↵ness. In
striking contrast with an adiabatic transformation, the
value of heat increases monotonically, as the system dis-
sipates heat all over the protocol. In the inset of Fig. 3,
hQi and hW i are shown for the STEP process. Notice
how the work exerted on the system is almost instanta-
neous, while heat is delivered over a wide interval of time,
up to complete equilibration. Quite expectedly, there is
a price to pay for ESE. A significant amount of work is
required to speed up the evolution and beat the natu-
ral time scale of our system [22]. It can be shown that
the cost hW (t

f

)i behaves like ⌧

relax

/t

f

for t
f

! 0. More
precisely, this amounts to a time-energy uncertainty re-
lation: t

f

hW (t
f

)i ⇠ 0.106 ⌧
relax

k

B

T . If instead, one
proceeds in a quasi-static fashion (t

f

� ⌧

relax

), the cost
reduces to the free energy di↵erence, k

B

T log(
f

/

i

)/2
which is 0.35 k

B

T when 

f

= 2
i

. For the ESE exper-
iments shown, we have hW (t

f

)i ' 3.5 k
B

T , about 10
times larger.
Our results show the feasibility and expediency of ac-

celerated protocols for equilibrating confined Brownian
objects. The ESE path allowed to gain two orders of
magnitude in the thermalization time, as compared to
an abrupt change of control parameter (STEP process).
The associated energetic cost has been assessed. Fi-
nally, while an over-damped problem has been solved
here, generalizing the ESE protocol to non-isothermal
regimes for under-damped systems, such as an AFM tip,
vacuum optical traps, or to transitions between non-
equilibrium steady states, constitutes a timely challenge
in this emerging field.
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Methods

Experimental setup. Silica microspheres of radius
1µm were diluted in milliQ water to a final concentration
of a few spheres per milliliter. The microspheres were
inserted into a fluid chamber, which can be displaced in
3D by a piezoelectric device (Nanomax TS MAX313/M).
The trap is realized using a near infrared laser beam
(Lumics, �=980 nm with maximum power 500mW) ex-
panded and inserted through an oil-immersed objective
(Leica, 63⇥ NA 1.40) into the fluid chamber. The trap-
ping laser power, which determines the trap sti↵ness, is

modulated by a external voltage V



via a Thorlabs ITC
510 laser diode controller with a switching frequency of
200 kHz . V



is generated by a National Instrument card
(NI PXIe-6663) managed by a custom made Labview pro-
gram. The detection of the particle position is performed
using an additional HeNe laser beam (�=633nm), which
is expanded and collimated by a telescope and passed
through the trapping objective. The forward-scattered
detection beam is collected by a condensor (Leica, NA
0.53), and its back focal-plane field distribution projected
onto a custom Position Sensitive Detector (PSD from
First Sensor with a band pass of 257 kHz) whose sig-
nal is acquired at a sampling rate of 20 kHz with a NI
PXIe-4492 acquisition board.
Energetic measurement. From the experimental

observables, the sti↵ness  and the particle position x,
it is possible to infer the energetic evolution of our sys-
tem within the stochastic energetics framework [24]. The
notion of work W is related to the energy exchange stem-
ming from the modification of a given control parame-
ter, here the trap sti↵ness. Alternatively, heat Q per-
tains to the energy exchanged with the environment,
either by dissipation or by Brownian fluctuations.The
work W (t) and dissipated heat Q(t) are expressed as

W (t) =
R
t

0

@U

@

� d

dt

0 dt0, Q(t) = �
R
t

0

@U

@x

� dx

dt

0 dt0 where
� denotes Stratonovich integral and U is the potential
energy. Under this definition, the first law reads as
�U(t) = W (t) � Q(t), where W (t), Q(t) and �U(t) are
fluctuating quantities. Since T is fixed, both ESE and
STEP processes share the same value h�U(t

f

)i = 0 be-
tween the initial and the final state. As a consequence,
we have hW (t

f

)i = hQ(t
f

)i.
ESE protocol. The dynamics of the system is ruled

by the Langevin equation

ẋ = �(t)

�

x+
p
D⇠(t) (1)

where a dot denotes time derivative and x is for the po-
sition of the Brownian particle. The friction coe�cient
� = 6⇡⌘R is here constant, ⌘ being the the kinetic viscos-
ity coe�cient and R the radius of the bead. The di↵usion
constant then reads as D = k

B

T/�. The sti↵ness  has
an explicit dependence on time and ⇠(t) is a white Gaus-
sian noise with autocorrelation h⇠(t)⇠(t + t

0)i = 2�(t0).
Eq (1) is over-damped (there is no acceleration term in
ẍ), which is fully justified for colloidal objects [25]. The
Langevin description (1) can be recast into the following
Fokker-Planck equation for the probability density[26]:

@

t

⇢(x, t) = @

x




�

x⇢

�
+ D @

2

x

⇢ (2)

At initial and final times (t
i

and t

f

), ⇢(x, t) is Gaussian,
as required by equilibrium. A remarkable feature of the
ESE (non-equilibrium) solution is that for intermediate
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times, ⇢(x, t) is Gaussian as well, of the form

⇢(x, t) =

r
↵(t)

⇡

exp
⇥
�↵(t)x2

⇤
. (3)

We demand that

↵(0) =


i

2k
B

T

and ↵(t
f

) =


f

2k
B

T

. (4)

Combining eq. (2) with eq. (3), we obtain


↵̇

2↵
� ↵̇x

2

�
⇢ =



�

�
1� 2↵x2

�
⇢� 2

k

B

T

�

↵

�
1� 2↵x2

�
⇢.

(5)
Requiring that the equality holds for any position x, the
equation is simplified into:

↵̇

↵

=
2

�

� 4k
B

T↵

�

. (6)

We supplement our description with the constraints
↵̇(0) = ↵̇(t

f

) = 0, as a fingerprint of equilibrium for
both t < 0 and t > t

f

.
Next, the strategy goes as follows. We choose the time

evolution of ↵, complying with the above boundary con-
ditions. To this end, a simple polynomial dependence of

degree 3 is su�cient. Other more complicated choices
are also possible. Introducing the rescaled time s = t/t

f

,
we have

↵(s) =
1

2k
B

T

⇥


i

+�(3s2 � 2s3)
⇤
, (7)

where � = 

f

� 

i

. Finally, eq. (6) has be be satisfied,
from which we infer the appropriate evolution (t) that
is then implemented in the experiment:

(t) =
3�� s(1� s)/t

f



i

+�(3s2 � 2s3)
+ 

i

+�(3s2 � 2s3). (8)

The analysis, restricted here to the one dimensional
problem, can be easily recast in three dimensions. It is
also straightforward to generalize the idea to account for
a time-dependent temperature T (t), which can be real-
ized experimentally [20]. In this latter situation, the key
relation (6) is una↵ected, and therefore indicates how 

should be chosen, for prescribed ↵(t) and T (t). This
highlights the robustness of the ESE protocol.


