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Spatial gaps correspond to the projection in position space of the gaps of a periodic structure whose envelope
varies spatially. They can be easily generated in cold atomic physics using finite-size optical lattice, and provide
a new kind of tunnel barrier which can be used as a versatile tool for quantum devices. We present in detail
different theoretical methods to quantitatively describe these systems, and show how they can be used in one
dimension to realize matter wave Fabry-Perot cavities. We also provide experimental and numerical results that
demonstrate the interest of spatial gap structures for phase space engineering. We then generalize the concept
of spatial gaps in two dimensions and show that this enables one to design multiply connected cavities which
generate a quantum dot structure for atoms or allow one to construct curved wave guides for matter waves. At
last, we demonstrate that modulating in time the amplitude of the periodic structure offers a wide variety of
possible atom manipulations including the control of the scattering of an incoming wave packet, the loading of
cavities delimited by spatial gaps, their coupling by multiphonon processes or the realization of a tunable source
of atoms. This large range of possibilities offered by space and time engineering of optical lattices demonstrates
the flexibility of such band-gap structures for matter wave control, quantum simulators, and atomtronics.
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I. INTRODUCTION

Metamaterials are a fast-developing research field with
a wide variety of applications [1]. A famous example in
optics is provided by photonic band-gap structures that exploit
multiwave interferences [2]. Optical components such as wave
guides, bending light, microresonators or filters can be realized
by introducing periodicity defects at suitably selected spots
within a crystal. By pairing them it is now possible to design
photonic circuits.

Inspired by those developments in optics, a few studies
have proposed to investigate their counterpart in atom optics
[3–7]. The first element that was envisioned was the Bragg or
multilayer dielectric mirror in which the layers were provided
by a laser light interference pattern, i.e., a periodic succession
of dark and bright layers with a typical size of hundreds of
nanometers [3,4]. In contrast with optics, the multiple matter
wave interferences are not used here to improve the reflectivity
but to gain on velocity selectivity and to design ultranarrow and
tunable velocity filters [5,6]. Indeed, many quantum devices
require specific shaping or momentum-selective filter of an
atomic wave packet [8–17].

The experimental realization of such a mirror was per-
formed by studying the scattering of a guided Bose-Einstein
condensate on a one-dimensional and finite-size optical lattice
[18]: The band structure was directly probed and a wide variety
of velocity filters (notch, band pass, high and low pass) has
been demonstrated. The envelope of the optical lattice projects
in real space the gaps of the band structure. The corresponding
spatial gaps generate a new type of atomic tunnel barrier.
Crossing such a barrier in real space amounts to performing a
Landau-Zener transition between two adjacent bands [19,20].
In Ref. [21], a matter wave cavity delimited by two spatial gaps
has been investigated. Among many prospects, the shaping of

the envelope using, for instance, spatial light modulators (see,
e.g., [22]) should offer the possibility to realize a mode-locked
atom laser.

In contrast with structured materials used in optics, the
optical lattice depth can be modified in time. This possibility
was exploited experimentally in Ref. [23] to realize tunable
velocity filters and mirrors. This brings forward a new tool for
the emerging field of atomtronics [9–17,24]: The components
that will be combined to realize an atomic circuit could have
a tunable functionality.

In this article, we detail different methods to calculate in
practice the properties of spatial gaps and propose several
possible applications of this concept, from the implementation
and observation of complex quantum phenomena to the
construction of versatile tools for atomtronics. To this aim, we
study in detail different setups in one or two dimensions using
static or time-modulated potentials. After a short reminder
about the Bloch band formalism (Sec. II A), the Hill’s method
is presented in Sec. II B. This mathematical trick provides the
exact imaginary part of a wave vector κ inside the gaps of a
one-dimensional, infinite, and uniform periodic potential. The
characterization of those evanescent matter wave modes plays
a key role in the understanding of spatial gaps. However, the
exact mathematical treatment is restricted to a one-dimensional
system. In Sec. II C, we use those exact results to validate a
systematic perturbative approach to evanescent modes that
can be readily generalized to higher dimensions. Those results
about evanescent modes are then used to define precisely the
concept of spatial gaps within a locally uniform potential
depth approximation and discuss their properties (Sec. III).
In Sec. IV, we discuss the dynamics of a wave packet in
the presence of two spatial gaps (Fabry-Perot-like device) or
more. We also demonstrate experimentally the interest of such
setups for phase space engineering. In Sec. V we address the
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generalization of the previous ideas to two dimensions leading
to the design of simply and multiply connected matter wave
cavities and of curved wave guides. Section VI is devoted
to the generalization to the time domain of the concept of
spatial gaps. We show how multiple cavities can be designed in
particular in the wing of the envelope of the optical lattice and
how their absolute and relative population can be controlled
by multiphonon processes.

II. GAPS AND EVANESCENT MODES IN
AN OPTICAL LATTICE

A. Bloch formalism

Before tackling the detailed treatment of spatial gaps, we
first provide hereafter a short reminder on the Bloch formalism
for quantum particles evolving in a periodic structure. Consider
a particle of mass m in a one-dimensional periodic potential
of period d, U (z + d) = U (z). The stationary Schrödinger
equation that describes the dynamics in such a potential reads

Hψ(z) =
(

p2

2m
+ U (z)

)
ψ(z) = Eψ(z). (1)

The Bloch theorem states that the eigenstates of a periodic
Hamiltonian may be written as the product of a plane wave
function with wave vector k and a function un,k(z) that has the
same periodicity as that of the potential U [25]:

ψn,k(z) = eikzun,k(z) with un,k(z + d) = un,k(z). (2)

Except for k = 0, these Bloch states are propagating states. The
eigenenergies associated with ψn,k , En(k), are periodic with
period kR = 2π/d: En(k) = En(k + kR). By inserting ψn,k in
Eq. (1), we deduce that the functions un,k are the eigenstates
of an effective k-dependent Hamiltonian:

Hk = (p + !k)2

2m
+ U (z). (3)

Using this eigenvalue equation and the boundary condition
un,k(z) = un,k(z + d), the signification of the band index
becomes clear. En(k) are the eigenvalues of an effective
Hamiltonian in a box with periodic boundary conditions. As
such, we expect a quantification of the energies that correspond
to the discrete band index n. Because of the periodicity
of the Bloch functions un,k , we can limit ourselves to the
first Brillouin zone, i.e., k ∈ [−kR/2,kR/2]. By expanding the
periodic Bloch functions un,k as Fourier series, we get

ψn,k(z) = eikzun,k(z) =
∑

ℓ

vk+ℓkRe
i(k+ℓkR)z. (4)

For a given k, working out the Bloch state ψn,k(z) amounts to
finding the coefficients vk+ℓkR . Similarly, the potential U can
be Fourier expanded:

U (z) =
∑

p

ŨpeipkRz. (5)

Combining Eqs. (4) and (5) with the Schrödinger equation
[Eq. (1)], we infer the following set of coupled equations:

!2

2m
(k + ℓkR)2vk+ℓkR +

∑

p

Ũpvk+(ℓ−p)kR = Evk+ℓkR . (6)

To find the eigenvalues En(k), we truncate this infinite linear
system and solve the resulting finite-size matrix equation.
Consider an attractive lattice of potential,

U (z) = −U0(cos(kRz) + 1)/2, (7)

where the U0 > 0 is the depth of the lattice. The matrix M that
provides the eigenvalues through M · V = EV has a simple
band structure with

M =

⎛

⎜⎜⎜⎜⎝

b−N u
u b−N+1 u

. . .
. . .

. . .
u bN−1 u

u bN

⎞

⎟⎟⎟⎟⎠
, (8)

where u = −U0/4, bℓ = ER(k/kR + ℓ)2 − U0/2, and ER =
!2k2

R/2m. In this way, one finds for each k in the Brillouin
zone, a discrete set of energies En(k). By plotting these
eigenvalues for all values of k, we obtain the energy bands
that are separated by energy gaps. The border of the gaps
are obtained either at k = 0 or k = ±kR/2. In the energy gap
there exist solutions of the eigen-equation for complex values
of the wave vector k. They are associated with evanescent
modes and are usually invoked in solid state physics only when
dealing with surfaces and junctions. They are at the heart of this
article. In the next subsection, we provide a reminder on Hill’s
method to calculate the expression of those complex wave
vectors. We then propose an alternative method to calculate
them approximatively through a perturbative approach. This
latter method has the advantage of being more physical and
can be directly generalized to higher dimensions.

B. Hill’s method

Using the potential (7), the Schrödinger equation is nothing
but a Mathieu equation. Calculating the complex wave vector
associated with an energy lying in a band gap amounts to
calculating the so-called Mathieu characteristic exponent κ ∈
C. In order to determine them, we detail hereafter the Hill
method following [26–28].

The eigenvalue matrix equation can be recast in the form
A(κ; E,U0) · V = 0 with

A(k; E,U0) =

⎛

⎜⎜⎜⎜⎝

1 ξ−N

ξ−N+1 1 ξ−N+1
. . .

. . .
. . .

ξN−1 1 ξN−1
ξN 1

⎞

⎟⎟⎟⎟⎠
, (9)

where ξℓ = (−U0/4ER)/((κ/kR + ℓ)2 − ζ ) and ζ = (U0/2 +
E)/ER. Nontrivial solutions are obtained for '(κ) =
det(A)=0. In the limit N → ∞, '(κ) is periodic with period
kR. We can thus restrict the domain of Re[κ] to the domain: 0 !
Re[κ] ! kR. Since each ξℓ(κ) appears only once per line, ' is
a sum of products of the ξℓ(κ). The ξℓ are analytical functions
of κ except at poles which are of finite order (meromorphic
functions); ' is thus analytical except at κ/kR =

√
ζ − ℓ.

Since each function ξℓ appears only once in ', all the poles of
'(κ) are simple and located at κ/kR =

√
ζ − ℓ.
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The trick of Hill’s solution consists in considering the
function [26],

D(κ) = 1
cos(2πκ/kR) − cos(2π

√
ζ )

, (10)

that has exactly the same poles as '. One can thus choose a
function C(κ) such that the function defined by

((κ) = '(κ) − C(κ) · D(κ) (11)

has no singularities. In the interval [0,kR], ' has only one pole
and the function C can be chosen constant and equal to the ratio
between the residues of the functions ' and D at this unique
pole. With such a choice for C, the function ( is analytical on
the whole complex plane (holomorphic function). It must then
be a constant according to Liouville’s theorem.

To determine the value of C, we use the limit κ → +i∞.
We find D(κ → +i∞) = 0 and '(κ → +i∞) = 1, and de-
duce that ((κ → +i∞) = 1. As a result, we obtain the value
of C = ('(κ) − 1)/D(κ). Using D(0) = 1/(1 − cos(2π

√
ζ )),

we infer its explicit expression,

C = ('(0) − 1)(1 − cos(2π
√

ζ )). (12)

From '(κ) = 0 (nontrivial solution), we finally get the
equation fulfilled by κ for a given energy E (through the
parameter ζ ):

cos(2πκ/kR) = 1 − '(0)(1 − cos(2π
√

ζ )). (13)

Real solutions of this equation provide the equations for the
energy bands E(k), while those with an imaginary part account
for the evanescent modes in the gaps.

C. The perturbative approach

The previous approach is exact but requires one to solve
numerically the nonlinear Eq. (13). It is possible to work
out a perturbative treatment of the evanescent modes, for
two important purposes: to get an explicit formula for the
imaginary wave vector valid in the low lattice depth limit and
to use it as a starting point for obtaining the imaginary wave
vectors for two-dimensional (2D) or three-dimensional optical
lattices.

To investigate perturbatively the first gap, we use the
two-mode approximation for the potential (7). It consists in
reducing the infinite set of equations (6) to two coupled
equations involving the modes at the edge of the Brillouin
zone k = ±kR/2 [29]:

(ER/4 − U0/2)vkR/2 − (U0/4)v−kR/2 = EvkR/2,
(14)

−(U0/4)vkR/2 + (ER/4 − U0/2)v−kR/2 = Ev−kR/2.

Introducing the reduced depth parameter s0 = U0/ER, the
gap borders deduced from the previous set of equations
are given by E± = (ER/4)(1 − 2s0 ± s0). To determine the
imaginary part of wave vectors inside the corresponding band
gap, we set the energy equal to Ex = (ER/4)(1 − 2s0 + s0x)
with −1 < x < 1. We then search for a two-mode solution
with κ± = ±(1 ± iK)(kR/2) where K depends on x and s0:

(ER(1 + iK)2 − ER − xU0)vkR/2 − U0v−kR/2 = 0,
(15)

−U0vkR/2 + (ER(1 − iK)2 − ER − xU0)v−kR/2 = 0.
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0.1

0.15

0.2
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s0 = 0.5

E/ER

FIG. 1. Imaginary part of the wave vector normalized to kR/2,
K(E,s0), in the first band gap for s0 = 0.1, s0 = 0.3, and s0 = 0.5:
exact calculation (solid line), perturbative calculation to the lowest
order (dashed line), and perturbative calculation pushed to the next
order (black square).

This set of equations has a solution if K obeys the equation,

K4 + K2(4 + 2xs0) + s2
0 (x2 − 1) = 0, (16)

whose solution is given by

K(x,s0) =
√

−2 − s0x +
√

4 + s2
0 + 4s0x

≃ s0

√
1 − x2/2, for |s0| ≪ 1. (17)

Figure 1 summarizes the comparison between the exact
method and the perturbative approach detailed above for
different lattice depths s0 = 0.1, s0 = 0.3, and s0 = 0.5. We
observe that the maximum of the bell-shaped curve for K is
indeed on the order of s0/2 as expected from the perturbative
treatment. As expected the accuracy of the perturbative
method based on the two-mode approximation decreases as
s0 increases. In Appendix A, we discuss more systematically
the validity of the two-mode approximation.

The strategy to get a higher accuracy is quite clear; we
have to add extra coupled modes. In the perturbative approach
presented in the previous paragraph we have only taken into
account the coupling between two modes v−kR/2 and vkR/2. To
get a better approximation we can repeat the previous argument
with four modes: v−3kR/2, v−kR/2, vkR/2, and v3kR/2. The result
is shown in Fig. 1 for s0 = 0.5. We already obtain a quite good
agreement with the exact result (relative distance below 1.7%).
Increasing further the number of coupled modes will increase
the convergence towards the exact result. As expected for such
a perturbative approach, to reach a given accuracy the number
of modes that have to be taken into account increases with
the potential depth (s0 parameter). We have also extended this
approach to the second gap in Appendix B.

III. SPATIAL GAPS AS TUNNEL BARRIERS
FOR MATTER WAVES

The spatial variation of the envelope of an optical lattice
projects the band gaps in real space. The latter are therefore
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(s1 () s2)

EE

FIG. 2. Bloch band distributions in the first Brillouin zone for two
different potential depths s1 and s2 > s1. The pseudoenergy (dashed
line) is fixed so that E+(s1) = E−(s2).

referred to as spatial gaps. In the following we consider the first
gap of a lattice for which the scale of variation of the envelope
is large compared to the lattice period. Under this assumption,
one can consider the lattice locally uniform at each position.
For a given pseudoenergy E and potential depth s, we consider
the closest gap at an energy below E. There are two values of
the depth s1 < s and s2 < s such that E+(s1) = E−(s2) = E
with s1 = s(z1) and s2 = s(z2) (see Fig. 2). In the interval
[z1; z2], the Mathieu exponent κ acquires an imaginary part.
The size of the corresponding spatial barrier is δz = |z1 − z2|.
This virtual barrier thus acts as a regular tunnel barrier in
the energy range spanned by the gap. When crossing such a
barrier, the atom undergoes a Landau-Zener transition between
two adjacent bands [19,20].

To calculate the transmission probability T (E), through
the barrier, we shall calculate the value of the imaginary part
Im[κ(z; E)] in the interval [z1; z2]:

T (E) = exp
(

−2
∫ z2

z1

Im[κ(z; E)]dz

)
. (18)

In this interval, the value of the depth s varies with space but
the pseudoenergy E remains fixed. For s in the interval [s1; s2],
the value of x is set by the energy:

E = E−(s) + E+(s)
2

+ x
E+(s) − E−(s)

2
, (19)

where x depends on z through the local depth parameter s(z).
At the scale of the width of the barrier, we can assume that
the envelop varies linearly: s(z) = s(z1) + (z − z1)(∂zs)z1

. We
deduce

T (E) = exp
(

− f (E)
(∂zs)z1

)
, (20)

where f (E) is a function that depends only on the energy:

f (E) = 2
∫ s2

s1

Im[κ(E,s)]ds. (21)

This exact form therefore exhibits a probability of trans-
mission that decreases exponentially with the inverse gradient
of the envelope. The smaller the gradient, the larger the tunnel

barrier width. This gradient therefore appears as a parameter
that can be tuned experimentally to set the transmission tunnel
probability.

This general formalism can be applied in combination
with the perturbative approach of Sec. II C to get explicit
formulas for the transmission probability. In the perturba-
tive limit, we have Im[κ(e,s)] = kR

√
s2 − (4e − 1 + 2s)2/4

[using Eq. (17)], s1 = (1 − 4e)/3 and s2 = 3s1 (where e =
E/ER), and find for e ! 1/4.

f (e) = kR
π

24
√

3
(1 − 4e)2. (22)

It is worth noticing that the energy dependence of this
transmission probability is quite different from that obtained
for a real repulsive potential barrier. This turns out to be
an advantage of this kind of tunnel barrier since one can
achieve transmission of the order of 0.5 for a single barrier
as experimentally demonstrated in Ref. [21]. This is a feature
that is difficult, if not impossible, to obtain using an optimally
focused blue detuned laser to realize a repulsive barrier for
atoms because of the diffraction limit [30].

IV. SPATIAL GAP STRUCTURES IN ONE DIMENSION

The preceding section considered a spatial gap as an isolated
barrier. However, it is quite easy to engineer systems where
several spatial gaps are present at different locations. In this
section, we address the new features that emerge when one
considers a pair of spatial gaps and discuss the case of multiple
barriers. We also show that this type of device enables one to
engineer the phase space distribution of wave packets and
demonstrate it experimentally.

A. Matter wave Fabry-Perot cavity

Consider a periodic potential with a Gaussian envelope as
used experimentally in Ref. [18] [Fig. 3(a)]:

U (z) = −V0(z) sin2
(

πz

d

)
, (23)

with V0(z) = U0exp(−2z2/w2). This Gaussian shape results
from the envelopes of the two Gaussian laser beams that gen-
erate the optical lattice. The parameter U0 > 0 is proportional
to the intensity of the laser beams and the lattice spacing d is
proportional to the laser wavelength. Hereafter, we choose the
typical experimental values w = 140 µm, d = 0.65 µm, and
a potential depth U0 = ER/2.

This potential is symmetric and therefore produces pairs of
symmetric spatial gaps. In this section, we focus our study on
a single pair of spatial gaps. Each spatial gap acts as a matter
wave mirror of energy-dependent reflectivity [see Fig. 3(b)].
As such, the potential experienced by atoms is reminiscent of
that of a Fabry-Perot cavity [21].

The complex amplitude A of the output wave is obtained
by adding the contribution of the multiple reflections of matter
waves inside the cavity and reads [see Fig. 3(a)]

A = t2eiδϕ1 + t2r2eiδϕ2 + t2r4eiδϕ3 + · · · , (24)

with δϕ1 = 2ϕt + ϕ, δϕ2 = 2ϕt + 3ϕ + 2ϕr ,... For sake of
clarity, the letter t (respectively, r) refers to the modulus
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FIG. 3. (Color online) (a) Optical lattice with a Gaussian enve-
lope showing two spatial gap barriers in the spaces [−z2,−z1] and
[z1,z2]. (b) Density plot of Im(k) associated with the potential (23),
as a function of the position and the energy. The solid black lines
correspond to the values of the resonances of this cavity (see text).
(c) (Black line) Exact solution for the transmission TPW, as a function
of the energy E. [Green (gray) line] Transmission TFP calculated by
the semiclassical approach (25) including a global offset (ϕr = π/4).
(Inset) Phase difference (ϕr − π/4) between the semiclassical model
and the exact one as a function of energy.

of the transmission (reflection) amplitude, the corresponding
phase is captured in the term ϕt (respectively, ϕr ) [31].
To determine the transmittance function, TFP = |A|2, of
this Fabry-Perot-like device, we square the modulus of the

amplitude:

TFP(E) =
∣∣∣∣∣t

2e2iϕt eiϕ(E)

(

1 +
∞∑

n=1

r2ne2in(ϕ(E)+ϕr )

)∣∣∣∣∣

2

=
[

1 + 4
(

1
T 2(E)

− 1
T (E)

)
sin2(ϕ(E) + ϕr )

]−1

.

(25)

The transmission probability TFP(E) is related to the transmis-
sion coefficient by T (E) = t2 [an explicit expression is given
in Eq. (18)]. The phase accumulated over the cavity length can
be calculated by a semiclassical approach:

ϕ(E) = 1
2

∮
k dz =

∫ z1

−z1

Re[κ(z; E)] dz. (26)

We consider a single path from the first barrier to the second;
this is the reason why a factor 1/2 appears in the previous
formula. As expected, the phase of the transmission amplitude
ϕt is washed out in the transmission probability. However, the
phase of the reflection wave ϕr is responsible for a correction to
the semiclassical formula that slightly depends on the energy
(see below).

In Fig. 3(c), we compare the transmission TFP(E) obtained
from our semiclassical approach with the transmission TPW(E)
obtained by solving numerically the stationary Schrödinger
equation using plane waves (referred to as the exact result
in the following). To obtain an almost perfect agreement
for the amplitude and without loss of generality, we have
included a global π/4 offset in the phase of the semiclassical
model reminiscent of the so-called Maslov index at a turning
point in the usual semiclassical treatment. A more careful
analysis reveals that a small energy drift of the position of the
transmission peaks remains. The inset of Fig. 3(c) represents
the corresponding energy-dependent phase difference, ϕr −
π/4, between the semiclassical model and the exact solution
of the Schrödinger equation (the shift correction is on the order
of 1% at 0.03 rad per peak). This small residual shift confirms
the good predictability of the semiclassical approximation.

To perform a direct comparison of the energy dependence
of the phase acquired in transmission through the cavity, we
proceed in the following manner: (i) we identify precisely
each transmission peak of the Schrödinger simulation and
(ii) we assign a π phase shift between two successive peaks. In
Fig. 4, we plot the corresponding cumulated phase (black dots)
and compare it with the semiclassical evaluation of the phase
ϕ(E), performed through Eq. (26) using the Hill’s method (see
Sec. II B). We find once again a very good agreement between
the two methods [32]. As intuitively expected, the phase
strongly depends on the waist w of the Gaussian envelope
[Fig. 4(b)]. It is therefore possible to tune the number of
resonances by changing the cavity width, in accordance with
what could be expected from standard phase space volume
arguments. For example, for a waist of 140 µm/32 ≃ 4 µm,
only three resonances remain. Remarkably, the local envelope
approximation at the heart of the semiclassical approach still
holds when the potential contains only a few lattice periods.

In contrast with the usual optical Fabry-Perot cavity, a
cavity based on two spatial gaps has a finesse that strongly
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FIG. 4. (Color online) [Solid green (gray) line] Numerical inte-
gration of the semiclassical phase (26). (Black dots) Position of the
resonances deduced from the exact solution shown in Fig. 3(c). We
compare those two quantities for different potential depths (a) and
widths (b).

depends on the energy:

F(E) = 'E

σE

= π

2

[

arcsin

(
1

2
√

1/T 2(E) − 1/T (E)

)]−1

,

(27)
where 'E accounts for the energy difference between two
successive peaks, and σE is the standard deviation of each
peak. Figure 5 provides a comparison of the finesse calculated
from Eq. (27) with that obtained from the integration of
the Schrödinger equation. The finesse decreases (almost
exponentially) with the energy. The quality of the agreement
is quantitatively evaluated by computing the relative error
'F(E) between the two approaches. The inset of Fig. 5 shows
that this error remains lower than 2%, in the considered energy
range and tends to increase slightly for lower energies.

The semiclassical expression for the transmission provides
a simple way to evaluate the lifetime of a wave packet trapped
in the cavity at a mean energy that coincides with that of
a resonance. Indeed, the expansion of the phase about the
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FIG. 5. (Color online) Inverse of the finesse as a function of the
energy, obtained from the exact solution TPW(E) (black dots) and
from the semiclassical calculation TFP(E) [green (gray) line]. (Inset)
Relative error, 'F(E) = |FPW − FFP|/FFP. The parameters are the
same as in Fig. 3.

resonance (ϕ(E) ≃ π ) reads

sin(ϕ(E) + δϕ(E)) ≈ − ∂ϕ

∂E
δE = τδE

!
, (28)

where δE is the distance to the resonance and the semiclassical
time τ corresponds to the time required to travel back and forth
in the cavity at that energy,

τ = −2!
∫ z1

0

∂Re[κ(z; E)]
∂E

dz = −2
∫ z1

0

dz

v(z; E)
, (29)

where v(z; E) = (1/!)∂kE is the semiclassical velocity. The
expansion of the transmission about the resonance reads

TFP(E) ≃
[

1 + 4
1 − T (E)

τ 2

!2
(δE)2

]−1

, (30)

from which we infer the time decay τ0,

τ0 ≃ !
2δE

√
1 − T (E). (31)

More generally, the size of the cavity provides an energy
scale related to the difference of energy between two suc-
cessive resonances 'E . The finesse of a given resonance has
an energy width equal to !/τ0. For parameters such that the
quality factor, 'Eτ0/!, is large, this system realizes a true
Fabry-Perot cavity for matter waves. Let us finally emphasize
that the level spacing and the decay rate can also be engineered
for a fixed cavity size by renormalization of the mass using
an extra superimposed optical lattice [6]. Such cavities are
good candidates to observe the atom blockade effect in close
analogy with its electronic counterpart (Coulomb blockade)
[33].

B. Multiple barrier landscape

We have represented in Fig. 3(b) the position-dependent
imaginary part of the Mathieu exponent for a lattice having
a Gaussian envelope (w = 140 µm) and for a maximum
potential depth U0 = ER. By increasing the potential depth,
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we increase the number of lateral cavities. This is illustrated in
Fig. 6. In principle, one could implement a more involved
envelope to generate a random distribution of spatial gap
barriers. The physics of Anderson localization could therefore
be revisited in this context [34].

However, one has to be careful with the modification of the
picture for local spatial gaps due to multiple interferences as
already discussed in Sec. IV A. To put forward this point, we
consider the specific case of an optical lattice with a periodic
envelope [see Fig. 7(a)]:

V0(z) = U0

[
1 + ε cos

(
2πz

D

)]
, (32)

where U0 > 0, D " d is the spatial period of the envelope and
ε > 0 the amplitude of the spatial modulation [see Fig. 7(a)
plotted for ε = 0.25, D = 5d]. A naive approach based on the
local envelope approach yields a periodic pattern for the spatial
gaps. Actually, this problem can be solved exactly by noticing
that the expansion of the total potential U (z) contains nothing
but a superposition of four periodic potential of spatial periods
d, D, Dd/(D ± d). For the sake of simplicity, we consider
that the spatial periods are commensurable. In this case, the
corresponding band structure can be readily calculated using
the appropriate Brillouin zone and the polychromatic Hill
method [26,28]. In Fig. 7(b), we have represented the forbidden
band gaps resulting from such a calculation as black bands.
They are completely flat in contrast to the intuition based on
the picture proposed by the local approximation. This feature
results from the fact that the envelope is periodic and therefore
spatially infinite. This shows the limit of the local approach.

C. Phase space engineering

Spatial gaps enable one to generate nontrivial phase space
correlation. We provide a concrete example based on our
experimental results. The experiment has been described
in detail in Ref. [21]. In brief, a rubidium Bose-Einstein
condensate is prepared in a magnetic state F = 1,mF = −1
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FIG. 7. (Color online) (a) Superlattice potential (32) with ϵ =
0.25 and D = 5d . (b) The imaginary part of the wave vector obtained
from the local Mathieu equation is represented with the green (gray)
color code. The exact solution yields flat bands represented as black
bands.

in an off-resonance crossed dipole trap. The vertical beam of
the dipole trap is switched off and the BEC is launched in
the horizontal optical guide provided by the other arm of the
crossed dipole trap at a mean velocity v̄ = 8.2 mm/s using a
magnetic pulse. A finite-size optical lattice having a Gaussian
envelope (w = 140 µm and depth 2.5ER) and centered about
the atomic wave packet is ramped on adiabatically in 1 ms just
after the magnetic launching.

The BEC further propagates in the lattice while being
confined transversally by the horizontal guide. After 20 ms,
a wave packet is emitted in the opposite direction to that set
by the launching procedure. This wave packet originates from
the partial tunneling through a lateral spatial gap of a wave
packet that has been previously partially reflected by the other
symmetric spatial gap [see Fig. 8(a)].

The size of the cavity delimited by the spatial gaps
increases with the energy. The high energy components of the
wave-packet experience a larger cavity than the low energy
components. However, the larger velocity is not sufficient to
compensate for the larger distance. Therefore, the high energy
part of the wave packet is emitted after the low energy part. As
a consequence the emitted wave packet acquires a nontrivial
phase space correlation opposite to the one that would result
from a free expanding wave packet [see the qualitative picture
of this effect in the phase space representation of Fig. 8(a)]. The
experimental signature of this correlation is the focusing of the
packet at a few hundreds of micrometers from the spatial gap
followed by a subsequent defocusing of the packet. Figure 8(b)
summarizes our experimental results in which this effect can
be clearly observed. A good agreement is observed with the
numerical result that includes the finite optical resolution of
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FIG. 8. (Color online) (a) Sketch of the emission of a wave packet
through a spatial gap tunnel barrier. (b) Evolution of the standard
deviation of the size of the emitted wave packet as a function of time:
experimental results (black squares), numerical result (dashed line).
The numerical results take into account the finite optical resolution
of the experimental imaging system (15 µm).

the experiment. The correlation in phase space of the emitted
packet results from the variation of the size of the cavity
as a function of the energy, a parameter that can be tuned
experimentally by shaping the envelope of the lattice [21].
Spatial gaps, therefore, appear here as a way to realize a lens
in time, and provide a new tool for atom optics.

V. SPATIAL GAP STRUCTURES IN HIGHER DIMENSIONS

Up to now, we have studied the presence of spatial gaps and
their applications in one dimension. However, it is possible to
generalize this concept to higher dimensions. In this section,
we show how the walls provided by an appropriate shaping
of the envelope of an optical lattice can be used to design
matter wave cavities in higher dimensions, with new dynamical
features absent in dimension one.

Consider, for instance, a two-dimensional square lattice
potential generated by two pairs of orthogonal and counter-
propagating laser beams [see Fig. 9(a)]. We assume that there
is no phase relation between orthogonal beams. As a result of
the Gaussian envelope of each beam, the potential experienced
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FIG. 9. (Color online) (a) Sketch of the potential (33) for a
square lattice realized with Gaussian beams (see text). The Gaussian
parameters are xR/w0 = yR/w0 = 20. (b)–(e) Spatial gaps (black) for
different values of the pseudoenergy E0 and the potential depth U0:
(b) E0 = 0.05ER and U0 = ER/2, (c) E0 = 0.25ER and U0 = ER/2,
(d) E0 = 0.35ER and U0 = ER, (e) E0 = 0.5ER and U0 = ER/2.

by the atoms reads

U (x,y) = − U0

1 + y2

y2
R

exp

⎡

⎣− 2x2

w2
0

(
1 + y2

y2
R

)

⎤

⎦ sin2
(

πy

d

)

− U0

1 + x2

x2
R

exp

⎡

⎣− 2y2

w2
0

(
1 + x2

x2
R

)

⎤

⎦ sin2
(

πx

d

)
. (33)

Figures 9(b)–9(e) represent different matter wave cavities
(generated by the same laser configuration) delimited by
spatial gaps for different pseudoenergies and potential depths.
To determine the shape of those cavities, we proceed in the
following manner: (i) At each position we calculate the 2D
band diagram associated with the corresponding local depth,
(ii) we fix a pseudoenergy E0, and (iii) we plot a black dot
if the pseudoenergy lies in a gap. This representation gives a
direct insight into the shape of the cavities that can be designed
in two dimensions. Actually in two dimensions the Mathieu
exponent becomes an anisotropic vector at each position and
cannot therefore be plotted on a 2D diagram. Interestingly,
cavities with different topologies can be designed. In Fig. 9,
we give a few examples of simply [Fig. 9(d)] and nonsimply
[Figs. 9(b), 9(c), and 9(e)] connected cavities depending on
the pseudoenergy and potential depth.

Cavities such as the one seen in Fig. 9(d) could be used to
probe effects of complex dynamics and tunneling. Indeed, such
cavities are akin to billiards with barriers instead of infinite
walls. The shape of the cavity is known to control the dynamics,
allowing the possibility of reaching chaotic dynamics in parts
of the phase space, a feature which is not present in dimension
one. This makes such cavities interesting to simulate the effects
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of chaos with cold atoms in a closed two-dimensional system,
in contrast with the studies in Ref. [37] which concerned open
systems where the chaotic effects were limited by the short
time spent in the chaotic region. Beyond the study of quantum
chaos in a new setting, the presence of tunable tunnel barriers
at the frontier of the cavity opens the way to new types of
experimental studies of tunneling in the presence of chaos
(chaotic tunneling, chaos-assisted tunneling) [38]. Such effects
have been demonstrated to be important in real systems but
have been difficult to observe experimentally in full detail.
The versatility of the setup described here could then allow
one to characterize this regime in great detail by varying the
different parameters of the system.

We also emphasize that this technique provides a new
method to generate curved wave guides [15,39,40] as illus-
trated in Fig. 9(d). The geometry of Fig. 9(b) is also well
adapted for designing a matter wave guided structure with two
symmetric paths for interferometric purposes. Interestingly the
quality of the symmetry is here automatically ensured by the
beam shape. Finally, let us point out that the generalization in
three dimensions of cavities delimited by spatial gaps would
correspond in the small size regime to realizing a quantum
dot for atoms, similarly to the quantum dots for electrons in
mesoscopic physics.

VI. TIME-DEPENDENT BAND-GAP STRUCTURES

The studies and applications presented in the preceding
sections used static potentials. However, it is possible to
modulate the potentials in time, leading to new effects with
interesting applications [23,41]. In this section, we discuss in
detail the concept of spatial gaps in an optical lattice with a
periodic time-dependent amplitude:

Utm(z; t) = [1 + α sin2(2πνt)] U (z), (34)

where α ! 1 is the strength of the modulation and ν its
frequency. The solution of the Schrödinger equation can be
expressed locally in terms of the commonly called Floquet-
Bloch function [23]. Physically, the modulation opens new
gaps. In the perturbative regime (small amplitude of modula-
tion), the modulation at a frequency ν generates a new gap
when hν matches the difference 'E of energy between two
different bands of the band diagram obtained in the absence of
modulation. We will consider the scattering of a noninteracting
wave packet onto the time-modulated potential, studying in
turn the case of the wave packet initially outside and then
inside the optical lattice.

A. Initial wave packet outside the modulated optical lattice

In this subsection, we thus consider a wave packet initially
outside the potential (34) with U0 = 2ER and a waist w =
140 µm. The incident wave packet has a mean velocity
v̄ = 0.6vR and a velocity dispersion 'v = 2.34 × 10−4 m s−1

('v ≪ v̄). With such parameters and in the absence of time
modulation (α = 0), the wave packet is totally reflected (the
probability of transmission is lower than 1%). To further
characterize the time evolution of the wave packet, it is
convenient to use the semiclassical picture according to which

the wave packet is described in terms of a fictitious particle
having the same mean velocity [23].

Far from the potential, the mean energy of the fictitious
particle is purely kinetic and equal to mv̄2/2. This sets the
value of the pseudoenergy once inside the lattice. The adiabatic
evolution when the fictitious particle enters the lattice is
represented by the dashed black arrows [Figs. 10(a)–10(c)].
Choosing an appropriate value for the frequency modulation
(ν1 = 0.3 kHz), one can promote the particle to the upper
band in order to feed the main cavity centered about z = 0
[see Fig. 10(c)]. Alternatively, one can use a larger frequency
(ν2 = 3 kHz) to drive the fictitious particle into a lower band
so as to populate a lateral cavity centered about z = −100 µm
for our parameters [see Fig. 10(c)]. The resonance transitions
between bands occur at well-defined positions as a result of the
envelope and lead to the loading of the cavity only in the case
of a negative velocity, i.e., once the atoms have been reflected
by the gap since the transition connects two energy bands with
opposite slopes (the local velocity is directly proportional to
the local slope of the band in the semiclassical picture [23]).

The probability of transition increases with the modulation
amplitude α. According to our numerical simulation, for
ν1 = 0.3 kHz and α = 0.5, 10% of the atoms of the incoming
wave packet are coupled to the main cavity delimited by the
gap between bands II and III. The width of the cavity is
about 200 µm for our parameters. Figure 10(d) shows clearly
the large oscillation amplitude of the packet inside the main
cavity. This oscillation is accompanied with a focusing of the
trajectories that results from the velocity-dependent coupling
to the cavity. With ν2 = 3 kHz, one transfers the atoms in
the small size lateral cavity corresponding to band I [see
Figs. 10(b) and 10(c)]. We observe periodic losses due to the
fact that the modulation is maintained and drives regularly (at
a given position) the outcoupling of atoms from the cavity. By
stopping the modulation (after 75 ms), one could keep many
atoms in the lateral cavity for a very long amount of time
since the spatial gaps are very large and the tunneling rate is
therefore completely negligible.

B. Initial wave packet inside the modulated lattice

We then consider in this subsection the case of a wave
packet [Fig. 11(a)] initially at the center of the time-dependent
potential (34) and with a mean velocity v̄ such that the
corresponding kinetic energy is equal to the one at the middle
of the second band in the vanishing potential depth limit:
mv̄2/2 = 0.562ER. The potential depth is then adiabatically
increased up to its final value U0 = 2ER (A → A′), so that
the pseudoenergy of the fictitious particle is close to −0.3 ER
[Fig. 11(b)].

In the absence of modulation, the wave packet oscillates
inside the cavity delimited by the gap between bands I and
II [Fig. 11(d)]. In the presence of the modulation, the wave
packet propagates inside the cavity with a fixed pseudoenergy
until it reaches the resonant condition for which it can be
promoted to another band. For instance, with a modulation
frequency ν = 5 kHz, the transition occurs at B. About 20%
of the density goes from B to B′. Actually, a more careful
analysis reveals that two different paths can be followed by the
atoms: (i) They are promoted on the cavity delimited by the
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FIG. 10. (Color online) (a) Wave-packet scattering (mean velocity v̄ = 0.65vR) on an amplitude modulated lattice (34) of depth U0 = 2ER.
(b) Band diagram in the vanishing depth limit [green (gray) line] and for a local depth V0(z = −104 µm) = 0.9ER (black line). Green (gray)
dots indicate the transfer between bands induced by the propagation in the presence of modulation. The wave-packet mean energy of the wave
packet is mv̄2/2 = 0.42ER. The solid line black arrows depict the interband resonance transitions. (c) Position-dependent imaginary part of
the Mathieu exponent. The wave-packet scatters on the spatial gap (II → III). (d) and (e) Propagation of a noninteracting wave packet (mean
velocity v̄, velocity width 'v = 2.34 × 10−4 m/s initially at z = −400 µm) obtained from a numerical integration of the Schrödinger equation
based on the split-step Fourier method: (d) with a modulation of frequency ν1 = 0.3 kHz and (e) ν2 = 3 kHz (modulation amplitude α = 50%).

gap that separates bands III and IV. Those atoms oscillate with
the same amplitude but with a smaller time period since they
have more energy and thus a larger velocity than in the original
band; (ii) they are transferred to band III just below the gap (III
to IV) and continue their propagation up to point C where a
new resonance condition occurs. As a result of this resonance,
atoms can be transferred (C to C′) to the lateral cavity on the
lowest band I. Part of the atoms continue their propagation (C
to D) leaving the optical lattice with a mean velocity 1.2vR =
8.49 mm/s, larger than v̄ [these processes are illustrated in
Figs. 11(c) and 11(e)]. As exemplified here, the details of the
atomic wave-packet evolution can be fully understood using

the Bloch diagram combined with interband transitions instead
of the nonperturbative Floquet-Bloch diagram approach.

As illustrated above, the transitions resulting from the
time modulation of the envelope offer a wide variety of
possibilities to manipulate propagating wave packets. In a
scattering experiment with the wave packet initially outside
the lattice, the output channels can be controlled by the
modulation. In the case of a wave packet placed initially at the
center of the optical lattice with a finite velocity, we have shown
how one can load atoms in lateral and/or centered cavities
delimited by spatial gaps. The coupling between the cavities
can be engineered by changing the modulation amplitude
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FIG. 11. (Color online) (a) Wave-packet propagation (mean velocity v̄ = 0.75vR) inside an amplitude modulated lattice (34) of depth
U0 = 2ER. (b) “Position” of the wave packet on the band diagram for different potential depths (i.e., different positions z). (Adiabatic loading)
From U0 = 0 (z = 0) [green (gray) dashed line] to U0 = 2 ER (black dashed line) in t = 1 ms. (Propagation) V0(z ≃ 40 µm) = U0 ≃ 1.7 ER

(black line) and V0(z ≃ 100 µm) = U0 ≃ 0.9 ER [green (gray) line]. The dotted arrow represents the evolution of the pseudoenergy during
the adiabatic loading of the wave packet. The dashed black arrows represent the propagation of the wave packet at a constant pseudoenergy,
and the solid black arrows the possible transitions between two bands induced by the modulation. (c) Position-dependent imaginary part of the
Mathieu exponent. (d) and (e) Propagation of a noninteracting wave-packet (mean velocity v̄, velocity width 'v = 2.34 × 10−4 m/s) initially
at z = 0 µm: (d) in the absence of modulation and (e) in the presence of a modulation at frequency ν = 5 kHz, with α = 33%.

and/or the frequency. Furthermore, a wave packet with a
nonzero momentum trapped in a finite-size optical lattice
can be considered as an atom reservoir. Atoms can then be
outcoupled at will by an appropriate choice of the modulation
frequency of the optical lattice depth. Such a device realizes a
tunable source of atoms with well-defined velocity properties,
an important prerequisite for many quantum devices.

VII. CONCLUSION AND PERSPECTIVES

We have studied in detail the concept of spatial gaps created
by optical lattices with a spatially varying envelope, and

presented several applications for matter wave engineering
and atomtronics. Indeed, we have shown that they correspond
to tunnel barriers with properties difficult to attain by other
techniques. In one dimension, they enable one to build Fabry-
Perot cavities for matter waves with tunable parameters in
direct similarity with optics, to design multiple barrier systems,
and to shape the phase space distribution of a wave packet.
In higher dimensions, we have shown that the generalization
of the concept of spatial gaps makes it possible to engineer
curved wave guides and cavities similar to quantum dots for
matter waves whose properties can be tuned. Such systems
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correspond to different dynamics as the parameters are varied,
and enable the study of complex properties absent in one
dimension such as complex dynamics and chaotic tunneling.
The time modulation of the optical potential adds a new
versatility to this kind of system, enabling one to load cavities
or transfer atoms from one to another through the modulation.
This could allow a precise engineering of matter wave packets,
in particular leading to the possibility of new tunable sources
of atoms with specific velocity properties.

In addition, spatial gaps provide a test bed for studying
the role of dimensionality and interactions on tunnel effect
[42,43]. In particular, the tunnel effect is deeply different
in higher dimensions, enabling one to probe the interplay
of complex dynamics and tunneling such as chaos-assisted
tunneling or chaotic tunneling, phenomena which are absent
in one dimension. The addition of interaction effects has been
the subject of very little work and could lead to new types
of physical effects. One could also envision revisiting, in the
context of a finite-size optical lattice, the dynamical instability
that has been observed with a Bose-Einstein condensate in the
Thomas-Fermi regime, moving in a lattice [44]. This instability
can be explained in terms of four-wave mixing [45] triggered
by the dispersion relation inside the lattice [46–48]. As a result
of such processes, an atom is promoted in the high energy
part of the lower band while another ends up (by energy
conservation) at its bottom. Since the tunneling is favored at
high energy, a cooling by coherent collisional processes could
be observed in this manner. Another perspective could be to
investigate the new possibilities offered by spatial gaps using
spin-dependent optical lattices [49–51].

We therefore think that the spatial gaps created by the
local band-gap structure of optical lattices enable one to
build new types of physical systems which can serve as tools
for the developing field of atomtronics and can lead to the
investigation of new physical effects.
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APPENDIX A: PERTURBATIVE TREATMENT IN THE
WEAK POTENTIAL APPROXIMATION

Here, we work out a first-order perturbation theory valid
inside and outside the first gap which complements Sec. II C.
Consider the lowest gap of a periodic potential. In the weak
potential depth limit, only the first two bands matter for the
dynamics and the eigenvalue problem is equivalent to the two
coupled equations [52]:

Ekvk − (U0/4)vk−kR = Evk

−(U0/4)vk + Ek−kRvk−kR = Evk−kR .

TABLE I. Numerical values of ϵ for various potential depths U0.

U0/ER 0.1 0.3 0.5 1

ϵ 0.008 0.042 0.089 0.276

The solutions of this system are

E
(±)
k = 1

2
(Ek + Ek−kR ) ±

√(
Ek − Ek−kR

2

)2

+ U 2
0

16
, (A1)

with Ek = !2k2/(2m). Using the notation k̃ = k/kR − 1/2 and
s = U0/ER , we can rewrite Eq. (A1) as

E
(±)
k̃

ER
= 1

4
+ k̃2 ±

√

k̃2 + s2

16
,

from which we infer the value of the wave vector as a function
of the energy,

k(±)(E)/kR = 1
2

⎛

⎜⎝1 ±

√√√√1 + 4
E

ER
±

√

16
E

ER
+ s2

⎞

⎟⎠. (A2)

Interestingly this first-order approximation formula gives the
Mathieu exponent in the band gap when an imaginary part
is present. The relative error ϵ between the exact Mathieu
exponent and the first-order approximation is defined by

ϵ = max
0!E!ER

(
Kexact(E) − K(E)

Kexact(E)

)
. (A3)

The essential contribution to ϵ originates from the energies
close to the gap. We report below (Table I) the value of ϵ for
different potential depths U0.

APPENDIX B: PERTURBATIVE TREATMENT
FOR THE SECOND GAP

Here, we extend the treatment of Sec. II C to the second gap.
The lower border of the second gap is located at the center of
the Brillouin zone (k = 0). By symmetry, we shall evaluate
its width by considering three modes v0, vkR , and −vkR . The
energy at the edge of the gaps is obtained at the lowest order
by solving the following coupled mode equations:

(ER − U0/2)v−kR − (U0/4)v0 = Ev−kR

−(U0/4)v−kR − (U0/2)v0 − (U0/4)vkR = Ev0 (B1)

−(U0/4)v0 + (ER − U0/2)vkR = EvkR .

One finds E− = ER(1 − s/2) and E+ = ER(1 − s +√
1 + s2/2)/2. In this case, the energy difference scales as s2:

(E+ − E−)/ER = (
√

1 + s2/2 − 1)/2 ≃ s2/8. To determine
the imaginary part of the wave vector inside the second
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FIG. 12. Imaginary part of the wave vector normalized to kR/2,
K(E,s), in the second band gap for s = 0.5: exact calculation (solid
line), perturbative calculation to the lowest order (dashed line), and
perturbative calculation pushed to the next order (black square).

gap, we shall follow the same method as for the first gap
(see Sec. II C). For a given energy Ex = (E+ + E−)/2 +
x(E+ − E−)/2 with −1 < x < 1 inside the gap, we search
for a solution involving the three following wave vectors
k± = ±(1 ± iK/2)kR and q0 = ikRK/2:

((1 − iK/2)2 − s/2 − ex)v−kR − (s/4)v0 = 0

−(s/4)v−kR + (−K2/4 − s/2 − ex)v0 − (s/4)vkR = 0 (B2)

−(s/4)v0 + ((1 + iK/2)2 − s/2 − ex)vkR = 0,

with ex = Ex/ER. The determinant of this three-mode system
yields a polynomial in K of order 6 whose unique positive
real solution is the imaginary part we are interested in. In
Fig. 12, we represent the corresponding result for s = 0.5.
We have also plotted the result of a five-mode approxi-
mation which is in very good agreement with the exact
result.
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