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Abstract. In this letter, we report a measurement of the Aharonov-Casher (AC) geometric phase with our
lithium atom interferometer. The AC phase appears when a particle carrying a magnetic dipole propagates
in a transverse electric field. The first measurement of the AC phase was done with a neutron interferometer
in 1989 by Cimmino et al. [Phys. Rev. Lett. 63, 380 (1989)] and all the following experiments were done
with Ramsey or Ramsey-Bordé interferometers with molecules or atoms. In our experiment, we use lithium
atoms pumped in a single hyperfine-Zeeman sublevel and we measure the AC-phase by applying opposite
electric fields on the two interferometer arms. Our measurements are in good agreement with the expected
theoretical values and they also provide a further test of the independence of the AC phase with the atom
velocity.

1 Introduction

In 1984, Aharonov and Casher [1] discovered the geomet-
ric phase which is called by their name. This phase ap-
pears when a particle with a magnetic dipole interacts
with an electric field perpendicular to both the parti-
cle velocity and to the magnetic dipole. This phase had
also been discussed by Anandan [2], who did not re-
mark its unusual properties. The Aharonov-Casher (AC)
phase is the second example of a geometric phase, after
the Aharonov-Bohm phase [3]. A third geometric phase
has been predicted in 1993/1994 by He and McKellar [4]
and by Wilkens [5] and is now named the He-McKellar-
Wilkens (HMW) phase. We have recently measured this
phase [6,7]. This phase appears, if an electric dipole trav-
els in a magnetic field B and if the mixed product of the
dipole, B and the velocity vectors is not zero. All these
phases belong to the general class of geometric phases dis-
cussed by Berry in 1984 [8,9] and they are very interesting
because they strongly differ from dynamical phases: geo-
metric phases modify the wave propagation in the absence
of any force on the particle; they are independent of the
modulus of the particle velocity but they change sign if
the velocity is reversed.

In the present letter, we describe measurements of the
AC phase shift with a separated-arm 7Li atom interferom-
eter using Bragg diffraction on laser standing waves. The
internal quantum state of the atom is the same in the two
interferometer arms and we apply opposite electric fields
and a common magnetic field on the two interferometer
arms. The atom fringes are phase shifted by both the AC
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and the HMW phases. The AC phase is proportional to
the atom magnetic dipole moment, thus depends on the
magnetic sublevel, while the HMW phase is independent
of the sublevel. By combining measurements made with
the 7Li atoms pumped in the sublevels of the F = 2 level,
either in mF = +2 or in mF = −2, we can extract both
phases. In the present paper, we focus on the AC phase
measurements. As explained below, our experiment is the
first phase measurement performed with atoms which is
able to test the topological nature of this phase. The sen-
sitivity of our atom interferometer has enabled us to verify
the velocity dependence of this phase.

2 Previous measurements
of the Aharonov-Casher

Since its theoretical discovery, the AC phase has been
tested in five different experiments [10–15]. We recall in
Table 1 the main parameters of these experiments.

The first experiment done in 1989 by Cimmino
et al. [10] was performed with a neutron interferometer
operating with unpolarized neutrons and supplementary
phase shifts of magnetic and gravitational origins were
needed in order to measure a spin-dependent phase with
unpolarized neutrons. The measurement of such a small
phase shift with a neutron interferometer was a real tour
de force which allowed to demonstrate for the first time
the AC phase within 24% of accuracy.

The four following experiments were based on Ramsey
or Ramsey-Bordé interferometry with atoms or molecules.
In these experiments, the atom or molecule propagates in
a quantum superposition of internal states with different
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Table 1. Measurements of the AC phase. μ is the magnetic dipole moment and μB the Bohr magneton. Emax is the maximum
electric field strength, ϕAC,max is the maximum AC phase and v is the particle velocity. References [14,15] did not probe the
same quantum superposition configuration, which explains the larger ratio ϕAC,max/Emax of [15].

Species μ/μB
Emax ϕAC,max error v

(MV/m) (mrad) (%) (m/s)

n [10] 1.0 × 10−3 30 2.19 24 2680
TlF [11] 1.4 × 10−3 3 2.22 4 220–340
TlF [12] 1.4 × 10−3 2 2.42 2 188–366
85Rb [13] 1/3 0.9 150 1.4 300–650
40Ca [14] 3/2 1 35 2.2 643–698
40Ca [15] 3/2 4.4 314 2.9 650, 810

7Li (this work) 1 0.9 68 2.1 744–1520

magnetic moments and the AC phase shift appears di-
rectly as a shift of the fringe signal.

We do not use such quantum superpositions in our
experiment: the atom is in the same internal quantum
state in the two interferometer arms.

3 Theoretical value of the Aharonov-Casher
phase

The AC phase is given by [1]:

ϕAC = − 1
�c2

∮
[E (r) × µ] · dr (1)

where µ is the particle magnetic dipole and E the elec-
tric field. Klein [16] remarked that, at first order in v/c,
the AC phase can be interpreted as the interaction of
the magnetic moment µ with the motional magnetic field
Bmot ≈ − (v × E) /c2 seen by the particle in its rest frame
moving with the velocity v. In the presence of a magnetic
field B, the particle interacts with the total field B+Bmot

and this interaction induces a phase shift ϕZ+AC due to
the sum of the Zeeman and AC phase effects:

ϕZ+AC(F, mF ) = −1
�

∮
EF,mF (|B + Bmot|)dt (2)

where EF,mF (|B + Bmot|) is the energy of the (F, mF )
sublevel in the presence of the field. We measure the AC
phase by measuring the variation of ϕZ+AC due to the
presence of Bmot. In our experiment, Bmot ≤ 10−8 T is
always considerably smaller than B ≥ 10−5 T, and the
AC phase can be written as:

ϕAC(F, mF ) = −1
�

∮
∂EF,mF

∂B
(Bmot · êB) dt (3)

where êB is a unit vector parallel to B, êB = B/B: only
the component of Bmot parallel to B contributes to the
AC phase. For the F = 2, mF = ±2 sublevels of 7Li, no
spin decoupling occurs and ∂E2,±2/∂B is very close to the
Bohr magneton moment ∓μB.
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Fig. 1. Schematic top-view of our atom interferometer (not
to scale): a supersonic lithium is optically pumped, collimated
and crosses three laser standing waves, which diffract the atom
waves in the Bragg regime. A coil, mounted at mid-distance be-
tween the first standing waves produces a compensating mag-
netic field gradient. The interaction cell is mounted just before
the second laser standing wave (see Fig. 2 for details).

4 Our experimental setup

4.1 The atom interferometer

Our Mach-Zehnder atom interferometer has been de-
scribed in detail [17] and it is schematically represented in
Figure 1. The atomic beam is produced by a supersonic
expansion of natural lithium seeded in a large excess of
a noble gas which fixes the mean beam velocity vm of
the lithium atoms: vm scales like 1/

√
M , where M is the

noble gas atomic mass (see Tab. 2). The beam velocity
distribution is well described by a Gaussian [18,19] with
a 1/e half-width equal to vm/S‖ where S‖ is the parallel
speed ratio. S‖ depends on the source parameters (nozzle
diameter, pressure, temperature, carrier gas): in our ex-
periments, its typical value is S‖ ≈ 7, which corresponds
to a distribution with a FWHM of 24%.

The lithium beam is first optically pumped and colli-
mated. Then, it crosses three laser standing waves which
diffract the atom wave in the Bragg regime: first-order
diffraction is used to split, reflect and recombine the
atomic waves. The laser used to produce the standing
waves is a single frequency dye laser. Its wavelength λL

is chosen on the blue side of the 2S1/2 → 2P3/2 transition
of 7Li at 671 nm: this choice and the natural abundance of
7Li (92.5%) explain the fact, that only 7Li contributes to
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Table 2. The mean lithium beam velocity vm, the mean signal
intensity I0, the fringe visibility V and the phase sensitivity
ϕmin measured with the three carrier gases. I0 is large with
neon and argon but considerably smaller with krypton, while
V has opposite variations. ϕmin has comparable values with
neon and argon and is about half as much with krypton.

Carrier gas vm I0 V ϕmin

M (a.m.u.) (m/s) (103 c/s) % mrad/
√

Hz
Ne: 20.2 1520 ± 38 56 60 7.0
Ar: 39.9 1062 ± 20 33 75 7.3
Kr: 83.8 744 ± 18 7 80 14.9

the interferometer signal [20]. This signal can be written
as:

I = I0 [1 + V cos (ϕd + ϕp)] (4)

where I0 is the mean signal intensity and V the fringe
visibility. ϕd is the diffraction phase, ϕd = 4π(x1 − 2x2 +
x3)/λL with xi the position of the mirror Mi (i = 1, 2,
3), and ϕp the phase due to various perturbations. For one
second data recording, the phase sensitivity (the minimum
detectable phase) is proportional to ϕmin = 1/(V√I0).
Table 2 summarizes the typical values of I0, V and ϕmin

as a function of the carrier gas used in our experiment.
The lithium de Broglie wavelength is λdB = 5.7 ×

10−8/vm, with λdB in m and vm in m/s, and the first
order diffraction angle is θ = 2λdB/λL ≈ 0.17/vm rad,
for example, with argon as a carrier gas, λdB ≈ 54 pm
and θ ≈ 160 μrad. The distance between the interferome-
ter arms, which is maximum at the second laser standing
wave, is approximately equal to 143 (krypton), 100 (ar-
gon) and 70 μm (neon), which is sufficient to introduce a
septum [21] between the two interferometer arms.

4.2 The interaction cell

We have built the present experiment to measure the
HMW phase shift, using an arrangement inspired by the
ideas of Wei et al. [22], with opposite electric fields on
the two interferometer arms and a common homogeneous
magnetic field [6,23]. Figure 2 shows the interaction cell.
It consists of a double plane capacitor used to produce
the needed electric fields and the capacitor assembly is in-
serted in a support which holds two coils producing the
magnetic field.

The two capacitors share the septum as a common,
grounded electrode. The electric field vector lies on the
horizontal plane, with opposite values on the two interfer-
ometer arms and a magnitude of Emax ≈ 0.7 MV/m for
the maximum applied voltage V = 800 V and it extends
over a 48 mm length. Each high voltage electrode is sep-
arated by 1 mm-wide gaps from two 5 mm-long grounded
guard electrodes, in order to have well defined fringing
fields.

The two coils produce a magnetic field B along the ver-
tical axis. With the largest current used in the present ex-
periments, I = 40 A, the field is equal to Bmax = 22.4 mT.
This magnetic field is needed for the observation of the

μ
μ
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V         V=0               V ±I

±I

B

Li              Li

      

x

y
z

Fig. 2. Schematic drawing of our interaction cell (not to scale).
A double capacitor produces opposite electric fields E (blue)
in the horizontal plane. The high voltage electrodes are sur-
rounded by grounded guard electrodes (light blue). Two coils
(yellow) produce a vertical magnetic field B. The magnetic
dipole (red) µ is parallel or antiparallel to the magnetic field,
depending on the pumped level. Each interferometers arm
(green) passes through a different capacity.

HMW effect but its presence is also important for the ob-
servation of the AC phase, as discussed in equation (3) and
also because the magnetic moment of a hyperfine-Zeeman
sublevel is parallel or antiparallel to the local magnetic
field.

The magnetic field produced in the interaction re-
gion has a small gradient along the x-direction so that
it has slightly different values on the two interferometer
arms. This difference induces a Zeeman phase shift equal
to 18 rad for the largest magnetic field. As this phase
shift is a function of the atom velocity v, proportional
to v−2, the velocity dispersion of our atom beam reduces
the fringe visibility to a very low value when B = Bmax:
with our velocity distribution (S‖ ≈ 7), the visibility and
therefore the phase sensitivity are reduced by a factor of
about 20. It is possible to compensate this Zeeman phase
shift by applying an opposite gradient at another place in
the interferometer: this is done by a compensator coil lo-
cated at mid-distance between the first two laser standing
waves (see Fig. 1). We are thus able to cancel the Zeeman
phase shift and to keep a large value of the fringe visibility.
It is not necessary to obtain an exact cancellation of the
Zeeman phase shift as our acquisition protocol described
below rejects the residual Zeeman phase shift.

4.3 Optical pumping of the lithium atoms

The lithium atoms are optically pumped in one Zeeman-
hyperfine sublevel F = 2, mF = +2 (or mF = −2) of their
2S1/2 ground state [24]. The optical pumping is performed
before beam collimation in order to avoid heating the
transverse motion by exchange of photon momenta. We
control the magnetic field in the pumping region by three
pairs of square Helmholtz coils. The D1 line of lithium is
used because its hyperfine components are better resolved
than those of the D2 line, due to the larger hyperfine split-
ting of the 2P1/2 state and this is a favorable condition for

http://www.epj.org


Page 4 of 7 Eur. Phys. J. D (2014) 68: 168

Table 3. The measured population P (F = 2, mF ) after optical
pumping for different atom velocities vm [24].

vm (m/s) mF P (F = 2, mF )
744 +2 (96 ±6) %

−2 (93 ±7) %
1062 +2 (100 ±13)%

−2 (95 ±11)%
1520 +2 (90 ±1) %

−2 (94 ±2) %

a very efficient optical pumping. Two circularly polarized
laser beams are tuned to the 2S1/2, F = 1 → 2P1/2, F = 2
and the 2S1/2, F = 2 → 2P1/2, F = 2 transitions. The
first laser beam empties the F = 1 level, while the sec-
ond one pumps the atoms into the F = 2, mF = ±2 level,
depending on the chosen circular polarization and on the
magnetic field direction.

As discussed below, we separate the HMW and AC
phases by reversing the mF value which is obtained by
reversing the magnetic field in the pumping region. The
mF value measured on an axis parallel to the local mag-
netic field is conserved along the atom propagation, if the
condition for an adiabatic transport is fulfilled. This con-
dition is verified experimentally with our measurements of
the pumping efficiency. This pumping efficiency has been
characterized by an atom interferometric method and we
have found that the pumped sublevel has a fraction of
the total population near 95 ± 5% [24]. Our results are
recalled in Table 3.

5 Measurements of the AC phase shift

5.1 The topological nature of the AC phase

As pointed out by Cimmino and Klein [25] the experi-
ments with atoms and molecules quoted in Table 1 do not
test the topological nature of the AC phase. In a recent
publication, McKellar et al. [26] discussed the three crite-
ria which must be fulfilled to test the topological nature
of the AC phase:

1. ∇×(µ×E) = 0 must be verified on the interferometer
arms.

2. There must be an excluded region between these arms
where ∇ × (µ × E) �= 0.

3. The phase shift should be velocity independent.

The two last criteria are fulfilled by all experiments with
atoms or molecules quoted in Table 1, but only the neu-
tron experiment of Cimmino et al. [10] satisfies the first
criterion. In our set-up the magnetic moment orientation
is the same on both interferometer arms. The electric field
is orthogonal to the magnetic moment, it is parallel to the
interferometer plane and ∇ × (µ × E) is zero in the arm
region. A small difference from zero may arise from exper-
imental imperfections of the capacitors and magnetic field
geometries. The second criterion is also satisfied and the
third one is verified by our experimental results as shown

in Section 6.2. Consequently, our experiment fulfills all
three criteria given above and can prove the topological
nature of the AC phase.

5.2 Measurement protocol

As explained in our previous papers [6,7,23], we eliminate
interferometer phase drifts by alternating several configu-
rations of the electric and magnetic fields in the interaction
cell. These configurations are characterized by the voltage
V applied to the capacitor and by the current I circulat-
ing in the coil and we use 6 different configurations (V, I),
(V, 0), (0, I), (−V, 0), (−V, I) and (0, 0), each one being
applied 8 times during each 20 seconds-long fringe scan.
Least-square fits are used to extract the phase ϕ(V, I, mF )
corresponding to each field configuration and to an optical
pumping in the F = 2, mF = +2 sublevel. We reduce the
statistical uncertainty by averaging the results of about
80 similar fringe scans. Successive experiments are made
with opposite values of the current I and the mF value.

5.3 Extraction of the AC phase shift

Five effects contribute to the measured phase shifts. Two
of them are the residual phases due to the Stark effect and
to the Zeeman effect: these phases are produced by the dif-
ferences of electric fields and magnetic fields on the two
interferometer arms. The third contribution is the HMW
phase ϕHMW (V, I) and the last two contributions are the
AC phases ϕAC(V, I) and ϕAC(V, I = 0), the latter is
due to the residual laboratory magnetic field. It is easy to
verify that the residual Stark and Zeeman phases are elim-
inated by the following combination of measured phases:

ϕEB(V, I, mF ) = ϕ(V, I)−ϕ(V, 0)−ϕ(0, I)+ϕ(0, 0). (5)

ϕEB(V, I, mF ) is solely due the HMW and AC phases and
it is equal to:

ϕEB(V, I, mF ) = ϕHMW (V, I) + ϕAC(V, I, mF )
− ϕAC(V, I = 0, mF ). (6)

Following equation (3), ϕAC(V, I = 0, mF ) is sensitive to
the laboratory residual magnetic field Blab when I = 0.
Blab is about 35 μT and the field is mainly oriented down-
wards along the y-axis. If we apply a coil current I ≥ 5 A,
the coil magnetic field Bcoil is always larger than 2.8 mT
and B = Bcoil + Blab is nearly perfectly vertical. As the
HMW phase does not depend on mF while the AC phase
changes sign with mF , we extract the contributions due
to the AC phase thanks to the linear combination:

ϕexp
AC (V, I) = [ϕEB(V, I, 2) − ϕEB(V, I,−2)] /2. (7)

Following equation (6), ϕexp
AC (V, I) should be equal to the

theoretical value:

ϕexp
AC (V, I) = ϕAC(V, I, 2) − ϕAC(V, I = 0, 2). (8)
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Fig. 3. The AC phase ϕexp
AC (V, I) defined by equation (7) is

plotted as a function of the applied current for two voltages
V = ±550 V. The sign ϕAC(V, I,mF ) is related to the sign of
I and its absolute value is larger than ϕAC(V, I = 0, mF ), due
to the better verticality of B, as shown by equation (3).

5.4 Effects of the laboratory residual magnetic field

Figure 3 shows typical measurements of the AC phase
ϕexp

AC (V, I) for two voltages V = ±550 V as a function
of the current I. For a given sense of I, ϕexp

AC(V, I) does
not vary significantly with the current as expected but
ϕexp

AC (V, I) changes sign when we reverse the current I and
the magnetic field B. For I ≤ −5 A, B is pointing in a
direction opposite to the one of Blab and ϕAC(V, I, mF )
has a sign opposite to the one of ϕAC(V, I = 0, mF ). As
the modulus of ϕAC(V, I, mF ) is larger than the one of
ϕAC(V, I = 0, mF ), the modulus of ϕexp

AC(V, I) is small but
non vanishing when I ≤ −5 A. For I ≥ 5 A, the situation
is reversed, with ϕAC(V, I, mF ) and ϕAC(V, I = 0, mF )
having the same sign and adding their contributions to
ϕexp

AC (V, I).

5.5 The measured AC phase shift

Using equation (8), the AC phase in the presence of the
applied magnetic field B, ϕAC(V, I, 2), can be extracted
by the linear combination, i.e. the common phase ϕAC

(V, I = 0, 2) is rejected:

ϕAC(V, |I|) =
1
2

[ϕexp
AC (V, I) − ϕexp

AC (V,−I)] (9)

and ϕAC(V, |I|) must be equal to the theoretical value of
the AC phase for the sublevel mF = +2. Figure 4 presents
our measurements ϕAC(V, |I|) as a function of V for an
experiment with a mean lithium velocity vm = 1062 m/s.
We have performed similar experiments and data anal-
ysis with the two other mean velocities of the lithium
beam. The results are collected in Table 4 and plotted
in Figure 5.

Fig. 4. The AC phase ϕAC(V, |I |), defined by equation (9), is
plotted as a function of the applied voltage V for an experi-
ment with a mean lithium velocity vm = 1062 m/s. Each data
point (black circle) is plotted with its 1σ error bar and, for
a given voltage V , there are several points corresponding to
different values of the current |I |. These measurements are in
good agreement with a linear behavior, as shown by the dashed
line which represents the best least-square fit. The fitted slope
is equal to (−8.51 ± 0.18) × 10−5 rad/V while the fitted off-
set, equal to 0.2 ± 1.2 mrad, is compatible with 0, which is
expected as the AC phase vanishes with the electric field.

Table 4. Our measurements of the AC phase slope ∂ϕAC/∂V
in 10−5 rad/V are compared to the theoretical values
∂ϕc

AC/∂V corrected for imperfect optical pumping (see
Eq. (10)). These predicted values show a velocity dependence,
which stems from the velocity dependence of the optical pump-
ing efficiency.

vm (m/s)
∂ϕAC/∂V ∂ϕc

AC/∂V
experiment theory

1520 ± 18 −8.05 ± 0.20 −7.86 ± 0.12
1062 ± 20 −8.51 ± 0.18 −8.51 ± 0.88
744 ± 18 −8.44 ± 0.41 −8.40 ± 0.48

6 Comparison of the measured AC phase
shift with theory

6.1 The theoretical value of the AC phase
for the F = 2, mF = ±2 sublevels

The theoretical value of the AC phase slope versus ap-
plied voltage is deduced from equation (3). When the ap-
plied magnetic field is sufficiently large (in practice when
the current in the coils of the interaction cell verifies
|I| ≥ 5 A), the vector eB which measures the direction
of the total magnetic field is vertical and the motional
magnetic field Bmot is parallel to eB. We must calcu-
late the integral of the electric field over the length of
the capacitor and our procedure was described in a pre-
vious paper [23]. We may recall briefly how we proceed:
the capacitor lengths were measured and found equal to
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Fig. 5. Plot of the slope of the AC phase ∂ϕAC(V )/∂V as
a function of the mean atom velocity vm. The experimental
results (black squares) are compared to the theoretical value
calculated with the assumption of a perfect optical pumping
(blue horizontal band) and to the theoretical values ∂ϕc

AC/∂V
corrected for imperfect optical pumping (blue circles slightly
displaced at the right of the experimental values for better
visibility).

(48 ± 0.5) mm and we deduce the spacing value of each
capacitor from the measurements of the Stark phase shifts
produced by this capacitor and from the theoretical value
of the polarizability of lithium which calculated with a
very high accuracy [27,28]. For F = 2, mF = ±2 sublevel,
no spin decoupling occurs and ∂E2,±2/∂B = −gF mF μB,
where gF is the Landé factor. Taking into account the
nuclear spin I = 3/2, gF = (gJ + 3gI)/4, where gJ is the
Landé factor of the 2S1/2 ground state and gI is the Landé
factor of the nuclear spin. Both factors are known with a
high precision [29,30] and from these values we calculate
gF = −0.4996886. We thus predict an AC phase slope
|∂ϕAC/∂V | = (8.57 ± 0.05) × 10−5 rad/V where the un-
certainty of the AC phase is dominated by the uncertainty
on the capacitor geometry.

6.2 The effect of imperfect optical pumping

However, the optical pumping is not perfect and we must
take this defect into account for a more realistic estimate
of the AC phase. The interferometer signal (Eq. (4)) is
the sum of the contributions of the 8 Zeeman-hyperfine
sublevels:

I = I0

∑
F,mF

P (F, mF )

× [1 + V(F, mF ) cos (ϕd + ϕAC(F, mF ))] (10)

where P (F, mF ) is the normalized population of the F, mF

sublevel and, for simplicity, we have omitted all the pertur-
bation phases except the AC phase. The contributions of

the mF �= ±2 sublevels play a minor role for three reasons:
their populations are small, the AC phase change sign with
the sublevel and the visibility V(F, mF ) of their contribu-
tions should be small, because the compensator produces a
low magnetic field which compensates exactly the Zeeman
phase shift only for the mF = ±2 sublevels for which the
Zeeman effect is purely linear. As a consequence, we con-
sider that the contributions from the mF �= ±2 sublevels
can be neglected and then, a straightforward calculation
shows that our experiment measures a corrected AC phase
given by:

ϕc
AC(mF ) = ϕAC(mF )

P (2, mF ) − P (2,−mF )
P (2, mF ) + P (2,−mF )

(11)

when the optical pumping aims at populating the F = 2,
mF sublevel. We thus get more realistic theoretical esti-
mates of the measured AC phases (see Tab. 4) with errors
bars which take into account the errors on the popula-
tion measurements [24] and on the capacitor geometry.
We want to point out that the velocity dependence of
ϕc

AC(mF ) is solely due to the fact that the measured effi-
ciency of the optical pumping is a function of the atom
velocity. Our measurements are in excellent agreement
with these corrected theoretical values, as illustrated in
Figure 5. Our measurements give a further proof of the
independence of the AC phase with the atom velocity and
an important limitation of this test comes from the lim-
ited accuracy with which we have measured the optical
pumping efficiency.

7 Conclusion

In conclusion, we have measured the Aharanov-Casher
(AC) phase by atom interferometry using optically
pumped lithium atoms. Our separated arm interferometer
operates with atoms in a single internal quantum state and
two opposite electric fields are applied on the interferom-
eter arms to realize the AC measurements. This approach
to measure the AC phase is new, as all previous works used
either unpolarized neutrons [10] or Ramsey or Ramsey-
Bordé interferometers with atoms and molecules [11–15].
Moreover, our experiment is the first one to fully test the
topological nature of the AC phase with atoms.

Our measurements were performed during the study
of the He-McKellar-Wilkens (HMW) phase and we had
not optimized the setup for the measurement of the AC
phase. In particular, a better control of the residual mag-
netic field in the interaction region would have simplified
the analysis. We have verified that the AC phase depends
linearly on the electric field strength. We have performed
AC phase measurements for three different mean veloc-
ities of the atomic beam (744, 1062 and 1520 m/s) and
these measurements are in good agreement with the fact
that this phase does not depend on the atom velocity, a
characteristic of a geometric phase. Our measurements,
with a statistical uncertainty close to 3%, agree with their
theoretical estimates, which have a considerably larger un-
certainty due to their sensitivity to the population distri-
bution over the Zeeman-hyperfine sublevels. The optical
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pumping of the lithium beam is quite efficient, with about
95±5% of the population transferred in the pumped sub-
level, but a better pumping, which is feasible [31], would
reduce the uncertainty on the theoretical values of the AC
phase.
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