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Faraday polarization rotators are commonly used in laser experiments. Most Faraday materials have a
nonnegligible absorption, which is a limiting factor for high power laser optical isolators or for intracavity
optical diodes. By using a stronger magnetic field and a shorter length of Faraday material, one can
obtain the same polarization rotation and a reduced absorption. In this paper, we describe two permanent
magnet arrangements that are easy to build and produce magnetic fields up to 1:7T, substantially more
than commonly used. The field homogeneity is largely sufficient for a 30dB isolation ratio. We finally
discuss the prospects for producing even larger fields with permanent magnets. © 2011 Optical Society
of America
OCIS codes: 230.2240, 140.0140.

1. Introduction

Following an original idea of Lord Rayleigh [1,2], op-
tical isolators [3–7] are commonly used in laser ex-
periments in order to prevent perturbations of the
laser by light reflected by the setup. A closely related
device is the optical diode, first described by Schröder
et al. [8], which is used to insure unidirectional oscil-
lation in ring laser cavities (for more detail, see
[9,10]). Both arrangements are based on the Faraday
effect, i.e., the rotation of the polarization plane of a
light beam induced by a magnetic field parallel to its
propagation direction. The angle of rotation θF is
given by

θF ¼ V
Z

BzðzÞdz ≈ VB0L: ð1Þ

Here, V is the Verdet constant and the approximate
form assumes a constant magnetic field B0 over the

length L of the Faraday material. Many efforts have
been made to optimize optical isolators and diodes.
The main problem comes from light absorption by
the Faraday medium and this absorption reduces
the transmitted power. The importance of this effect
was recognized by Robinson [11], who introduced a
figure of merit M for Faraday materials, defined by

M ¼ V
α : ð2Þ

In this equation, α is the absorbance defined by the
transmitted intensity by a slab of material of thick-
ness d, IðdÞ ¼ Ið0Þ expð−αdÞ, where Fresnel reflection
losses are not included.

Another consequence of light absorption is the dis-
tortion of the laser beam wavefront by the thermal
lens effect. Because of the high power densities cir-
culating in a laser cavity, the formation of a thermal
lens in the Faraday material of the optical diode in-
duces supplementary cavity losses, which limits the
laser efficiency. Johnston and Proffitt [9] introduced
another figure of merit M� adapted to this case:
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M� ¼ V
α ×

K
ðdn=dTÞ ; ð3Þ

where K is the thermal conductivity of the Faraday
material and dn=dT is the derivative of its index of
refraction with respect to temperature T. More
recently, the same problem appeared in optical isola-
tors that are used with high power cw lasers, as in
the gravitational wave detectors (LIGO, VIRGO,
etc.) [12,13]. A detailed analysis of the depolarization
in the Faraday material due to thermally induced
birefringence has been developed by Khazanov and
co-workers [14–20] and these authors have demon-
strated how to minimize this effect.

Various other efforts have been made to optimize
these devices.

• The search for better Faraday materials. In the
visible and near-infrared range, one of the best ma-
terials is terbium gallium garnet (TGG), which has a
very large Verdet constant [21–23], V633 ≈ −134 rad=
ðT⋅mÞ at λ ¼ 633nm, and a low absorbance α ≈

0:002 cm−1 in its transparency region [12,13]. Several
other materials with a large Verdet constant have
been recently studied [24–26]: their Verdet constant
as well as their figure of merit M have been
measured and some of them appear to be quite
promising.

• TGG is a paramagnetic material and its Verdet
constant increases rapidly when the temperature T
decreases [27], almost like 1=T. This property has led
to the development of cryogenic Faraday rotators
using TGG or TGG ceramic as the Faraday material
[28–30].

A complementary technique to reduce the effects of
light absorption by the Faraday material is to use a
larger magnetic field B0 and a shorter length L of
Faraday material. Larger magnetic fields will be also
very useful, either in the infrared region where TGG
has a considerably smaller Verdet constant [21–23]
(the Verdet constant decreases rapidly when the
wavelength λ increases, in agreement with Becquerel
equation [31], V ∝ λ∂n=∂λ), or in spectral regions
where one must use materials with a small Verdet
constant or a rather large absorption (this is, for in-
stance, the case in the 9 μm wavelength range where
the available Faraday material has an important ab-
sorption coefficient [32]).

To assign values, a Faraday isolator requires a ro-
tation angle θF ≈ 45°. At a wavelength λ ¼ 633nm,
with TGG (V633 ≈ −134 rad=ðT⋅mÞ), θF ≈ 45° is ob-
tained with B0L ≈ 6T⋅mm. The common magnet de-
sign [33] produces a magnetic field up to about
B0 ≈ 1T and the TGG rod length is L ≈ 6mm. By com-
parison, at λ ¼ 1064nm, V1064 ¼ −40 rad=ðT⋅mÞ at
λ ¼ 1064nm and the rod length becomes L ≈ 20mm.

Thegoal of the currentpaper is to describe twomag-
net assemblies that are rather easy to build and pro-
vide a magnetic field B0 up to 1:7T and a field
homogeneity largely sufficient for a good isolator. In

2008, a patent describing these two magnets was
obtained byCNRS [34]. In 2009,Mukhin et al. [35] de-
scribed a Faraday isolator with a 2:1Tmagnetic field:
the design of this magnet was similar to one of the de-
signs described in the current paper. To produce this
strong field, Mukhin et al. developed software able to
predict the field created by a magnet assembly and
they used this software to optimize their magnet on
the following quantities: magnetic field value and
homogeneity and weight of the magnet. Our work fol-
lows a completely different approach, basedmostly on
analytical calculations that explain how to produce a
large magnetic field and what are the best arrange-
ments; these calculations also provide scaling laws
for the dependence of the field as a function of the
magnet shape parameters. Finally, the isolation ratio
of aFaraday isolator,which depends of the field homo-
geneity, has also been calculated. These theoretical
predictions are in good agreement with the measure-
ments done on the prototypes we have built. Finally,
fromour analytical results,wemay estimate themax-
imum possible field and themagnet geometry needed
to produce this field.

The paper is organized as follows. in Section 2, we
describe the magic sphere of Zijlstra [36], which is
the starting point of our work, and we calculate
the field it produces at its center. In Section 3, we pre-
sent two simpler designs based on the same principle
and an analytic calculation of their main properties.
In Section 4, we describe three prototypes we have
built and the fields they produce. In Section 5, we dis-
cuss the limit on the isolation ratio due to the field
inhomogeneity. In Section 6, we present some con-
cluding remarks.

2. Magic Sphere

Hard ferromagnetic materials, such as samarium-
cobalt (SmCo) or neodymium-iron-boron (NdFeB)
compounds, have very strong magnetization and a
very large coercive field. Moreover, these materials
are very anisotropic so that their magnetization di-
rection is almost fixed as long as they are not demag-
netized. These properties make it possible to produce
very strong magnetic fields with permanent magnets
[37,38]. Several devices have been discussed, among
which the magic sphere is the one of interest here.

A. Calculating the Magnetic Field of a Magic Sphere

This device, proposed by Zijlstra [36] in 1985, pro-
duces a large magnetic field at the coordinate origin
O by using a distribution of magnetization in the sur-
rounding space, with a densityMðrÞ. The contribution
dBz to the field at the origin due to the magnetization
near any point r is given by

dBz ¼
μ0MðrÞd3r

4πr3 × f ðθ;ψÞ; with

f ðθ;ψÞ ¼ 2 cos θ cosψ þ sin θ sinψ ; ð4Þ

where θ is the polar angle. In order to maximize dBz,
MðrÞ is chosen in themeridianplaneandψ is theangle
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between the vectors r andM (the angle between the z
axis andM is θ þ ψ ). In the original design [36,39,40],
ψ ¼ θ and f ðθ;ψÞ, thus, becomes a function of θ only,
given by f ZðθÞ ¼ 1þ cos2 θ. If themagnetizedmaterial
extends between two spheres of inner and outer radii
ri and re and if the magnetization modulus M is con-
stant, the field at the origin O is given by

BzðOÞ ¼ 4
3
μ0M ln

�
re
ri

�
: ð5Þ

The field increases like the logarithm of the geometri-
cal ratio re=ri, and, as shown by Zijlstra [36], the field
is homogeneous inside the internal sphere and
vanishes outside the external sphere. Although the
logarithm increases slowly, Eq. (5) predicts very large
values ofBz with realistic values of the re=ri ratio. μ0M
is equal to the remanent field Br of the magnetic ma-
terial. In this paper, we will consider as an example
NdFeB grades with Br values in the range 1:2 −

1:45T and, in all the numerical examples, we will use
an intermediate value Br ¼ 1:3T. With re=ri ¼ 10,
Eq. (5) gives BzðOÞ ¼ 3:07Br ≈ 4T: this result is
optimistic because some demagnetization will occur
before reaching such a large field, but it is very
encouraging.

A slightly better use of the magnetic material has
been proposed by Bloch et al. [41–43]. The idea is to
choose ψ as a function of θ so as to maximize the
quantity f ðθ;ψÞ and the field BzðOÞ, at the expense
of its homogeneity. This maximum is obtained if ψ
verifies 2 tanψ ¼ tan θ, which leads to f ðθÞ given
by f BCTMðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 cos2 θ

p
. The field BzðOÞ is then

given by an equation similar to Eq. (5), with 4=3 ≈

1:333 replaced by
R
1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3x2

p
dx ≈ 1:380.

B. First Constructions of Magic Spheres

It is practically impossible to produce magnets with a
continuous variation of the magnetization direction
so as to verify a continuous variation of ψ with θ,
but it is possible to approximate this continuous var-
iation by discretizing the structure into blocks of
magnetic materials, each block having an homoge-
neous magnetization vector M. The construction of
magic spheres or cylinders with such blocks was
patented in 1995 by Leupold and Tilak [44] and
two approximations of the magic sphere have been
built in the following way.

• In 1999, Bloch and co-workers [42,43] built an
approximation of the magic sphere made of 12 mer-
idian slices, each of them being built of 16 magnetic
blocks. A 6mm internal diameter polar bore was left
free, without any material, and the external equator-
ial diameter of the magnetic material was 96mm.
This sphere produces a field Bz ≈ 2:5T, and up to Bz ≈

5T if FeCo polar pieces are inserted in the polar bore,
leaving a 150 μm gap.

• In 2000, Leupold and co-workers [39] devel-
oped a sphere producing a field Bz ≈ 1T in a 6:2 cm

long cavity for a traveling wave tube. The sphere ex-
ternal diameter was close to 18 cm and its mass
was 22kg.

These spheres are very complex to build withmany
magnet pieces of complicated shapes and, as NdFeB
material is difficult to machine, their construction is
long and very expensive. These difficulties explain
why magic spheres have not been produced by indus-
try. However, the idea that they could be very useful
for optical isolators was already expressed by
Leupold and Potenziani in their 1987 paper [40].

3. Simpler Designs Relying on the Same Principle

A. General Ideas

The idea of these designs is to keep the logarithmic
increase of BzðOÞ with the ratio re=ri but to use read-
ily available magnets. In practice, it appears that
only two directions of the magnetization MðrÞ are
produced in rings: axial or radial. As in each case,
both orientations are possible; we obtain four differ-
ent relations between ψ and θ. These relations and
the corresponding values of f iðθÞ ¼ f ðθ;ψÞ are listed
below.

• Case 1:MðrÞ parallel to the Oz axis, i.e., ψ ¼ −θ
and f 1ðθÞ ¼ 3 cos2 θ − 1.

• Case 2: MðrÞ antiparallel to the Oz axis, i.e.,
ψ ¼ π − θ and f 2ðθÞ ¼ −f 1ðθÞ.

• Case 3: MðrÞ radial outward, i.e., ψ ¼ π=2 − θ
and f 3ðθÞ ¼ 3 sinð2θÞ=2.

• Case 4: MðrÞ radial inward, i.e., ψ ¼ θ − π=2
and f 4ðθÞ ¼ −f 3ðθÞ.

Figure 1 presents a plot of the f iðθÞ functions as
well as the optimum function f BCTMðθÞ. We limit
these plots and the discussion to the range ½0; π=2�
because of symmetry when θ → ðπ − θÞ (all equations
are written with θ in radians, while numerical θ
values are given in degrees).

The functions f 1ðθÞ and f 2ðθÞ are opposite and van-
ish for θ1;2, verifying cos θ1;2 ¼ 1=

ffiffiffi
3

p
, i.e., θ1;2 ≈ 54:7°.

The strong maximum in θ ¼ 0 is misleading: this
region, which is weighted by sin θ in integration,
provides a minor contribution to the total field.

The function f 3ðθÞ corresponding to a radial out-
ward magnetization is maximum for θ ¼ 45°; this
functionnicely fills thegapbetween the regionswhere
f 1ðθÞor f 2ðθÞ is large.Moreprecisely, f 1 ¼ f 3 ¼ 1:28 for
θ1;3 ¼ 29:3° and f 2 ¼ f 3 ¼ 0:78 for θ2;3 ¼ 74:3°.

B. Design of an “Axial-Only” Cylindrical Magnet

In this design (see Fig. 2), the magnetization M is
either parallel (for 0 < θ < θ1;2 and π − θ1;2 < θ < π)
or antiparallel (for θ1;2 < θ < π − θ1;2) to the Oz axis.
The contribution toBz of thematerial near θ1;2, which
is very weak, has the wrong sign when this border
is crossed. An internal cylinder of radius ri is kept
free for the light beam and, rather than using an ex-
ternal sphere, the magnetic material extends up to a
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cylinder of external radius re, which is not much
more cumbersome in practice. For an infinite cylin-
der along the z direction, the field at the origin O
is given by

Bz;∞ðOÞ ¼ 4

3
ffiffiffi
3

p Br ln
�
re
ri

�
¼ 0:77Br ln

�
re
ri

�
: ð6Þ

This result is similar to the magic sphere result
[Eq. (5)], with the cylinder radii replacing the sphere
radii and the coefficient 0.77 replacing the coefficient
4=3 ≈ 1:33. This substantially lower value is due to
the very small contributions of the regions near θ1;2.
The produced field may nevertheless be quite large:

with re=ri ¼ 10, Eq. (6) predicts Bz;∞ðOÞ ¼ 1:77Br ≈

2:3T. The assumption of an infinite cylinder along
the z direction is not realistic. We can easily calculate
the field of a finite cylinder extending from z ¼ −h to
þh if we assume that h > re tan θ1;2, because, in this
case, all the missing material would be magnetized
along the z axis. The contribution to Bz of the missing
material with jzj > h is δBz, given by

δBzðOÞ ≈ Br

"
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðre=hÞ2

p
#
; ð7Þ

where a correction of the order of ðri=hÞ2 ≪ 1 has
been neglected. With h ¼ 1:5re, δBz ¼ 0:17Br and the
field produced by the truncated cylinder is given by
BzðOÞ¼Bz;∞ðOÞ−δBzðOÞ≈1:60Br ≈2:08T if re=ri ¼ 10.

It is important to evaluate the homogeneity of Bz
near the origin O. We use the Taylor expansion of Bz
up to second order and, thanks to cylindrical sym-
metry, to parity, i.e., Mð−rÞ ¼ MðrÞ and to ∇2B ¼ 0,
we get

Bzðx; y; zÞ ¼ BzðOÞ þ Bz;2
2z2 − ðx2 þ y2Þ

4
; ð8Þ

where Bz;2 is the second derivative of Bz with respect
to z in O. Bz;2 is equal to

Bz;2 ≈
16Br

9
ffiffiffi
3

p
r2i

; ð9Þ

where some minor terms have been neglected.

C. Design of an “Axial & Radial” Cylindrical Magnet

This design is represented in Fig. 3, with four orien-
tations of the magnetization; each one being used
where it is optimum. Here too, we assume that the
magnetic material extends between two cylinders
of radii ri and re. For an infinite cylinder along the
z direction, the field Bz;∞ðOÞ is given by

Bz;∞ðOÞ ¼ 1:23Br ln
�
re
ri

�
: ð10Þ

This result is similar to the magic sphere result
[Eq. (5)] and the coefficient 4=3 ≈ 1:33 is now replaced
by 1.23. The loss with respect to the magic sphere is
small and the field Bz;∞ðOÞ may be very large. With
re=ri ¼ 10, we get Bz;∞ ¼ 2:83Br ≈ 3:7T if Br ¼ 1:3T
(as for the magic sphere, some demagnetization will
reduce the predicted field). If we consider a finite cy-
linder extending from −h to þh, we may use Eq. (7),
provided that all the missing magnetized material is
polarized parallel to the Oz axis, which requires that
h > re= tan θ1;3 ≈ 1:78re. In conclusion, the axial & ra-
dial design is very efficient and produces a field close
to the optimum represented by the magic sphere, but
it is more complex to build than the axial-only
design.

Fig. 2. (Color online) Meridian cut of an axial-only cylindrical
magnet. The magnetized material extends between an internal cy-
linder of radius ri and an external cylinder of radius re. The arrows
indicate the magnetization vector M.

Fig. 1. (Color online) Plot of the functions f iðθÞ as a function of θ
expressed in degrees. The solid black curve is the optimum func-
tion f BCTMðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 cos2 θ

p
, while f 1ðθÞ ¼ 3 cos2 θ − 1 is repre-

sented by the dashed red curve, f 2ðθÞ ¼ −f 1ðθÞ is represented by
the dotted–dashed blue curve, and f 3ðθÞ ¼ 3 sinð2θÞ=2 is repre-
sented by the dotted purple curve. We have plotted these functions
only when they are positive and this explains why f 4ðθÞ does not
appear in this figure.
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D. Scaling Laws

Equations (6) and (7) for the axial-only cylindrical
magnet or Eqs. (10) and (7) for the axial & radial cy-
lindrical magnet prove that the field depends only on
ratio of geometrical parameters; this means that two
similar magnets with the same geometry and same
magnetic material but different scales will produce
the samemagnetic field at their center andalso every-
where if we use scaled coordinates. In particular, as
shown by Eq. (9) for the axial-only cylindrical magnet
(but the result is general), the second derivative of the
field behaves as the size scale power −2. These two re-
marks may be of some practical importance.

4. Construction of Structures Following these Two
Designs

Magnetized rings of NdFeB are commonly produced
with custom design and one may choose the material
grade, with a trade-off between the remanent field Br
and the coercive field Hc. All the devices described
here were built with NdFeB rings produced by the
ChenYang company [45]. The manipulation of these
rings requires great care because of the very large
magnetic forces. A nonmagnetic central rod is used
to guide these rings. Consecutive rings with the same
direction of magnetization, which attract each other,
are assembled first, and the assemblies thus pro-
duced, which repel each other, are compressed in
an aluminum alloy box until they are in contact.

A. Prototypes of the Axial-Only Design

We have built two such prototypes made of a series of
ring magnets and represented in Fig. 4. The ring di-
mensions being given in Table 1.

In prototype 1, our goal was to demonstrate the
feasibility by producing a large field BzðOÞ at the cen-

ter, without any other constraint. The cylinder radii
are ri ¼ 5mm and re ¼ 40mm and the total length is
2h ¼ 110mm. In this prototype, the rings labeled 1–5
are of N42SH grade (Br ¼ 1:35T, Hc ¼ 1:6MA=m)
while rings 6–8 are of N50M grade (Br ¼ 1:47T,
Hc ¼ 0:88MA=m).

In prototype 2, our goal was to produce an optical
diode for a Nd:YVO4 ring laser emitting at 1342nm:
this laser is frequency doubled by an intracavity
LiB3O5 crystal in order to produce 671nm light
(more details in [46]). When using intracavity fre-
quency doubling, it is extremely important to

Fig. 3. (Color online) Meridian cut of an axial & radial cylindrical
magnet. The magnetized material extends between an internal cy-
linder of radius ri and an external cylinder of radius re. The arrows
indicate the magnetization M.

Fig. 4. (Color online) Drawing of our axial-only prototypes: mag-
netization is indicated by arrows. The ring dimensions are given in
Table 1 for the two prototypes. Aluminum alloy rings are placed on
the border line between opposite magnetization.

Table 1. Dimensions (in Millimeters) of the Rings Used for the
Axial-Only Prototypes, Following the Design of Fig. 4

Prototype 1

Ring
Number

Internal
Diameter

External
Diameter Thickness

1 10 80 10
2 10 25 10
3 30 80 10
4 10 50 10
5 60 80 10

6, 7, 8 10 80 10

Prototype 2a

Ring
Number

Internal
Diameter

External
Diameter Thickness

1 6.5 45 7.5
2 6.5 13 3.8
3 15 45 3.8
4 6.5 25 5
5 30 45 5

6, 7 6.5 45 7.5
aThere are no rings number 8 in prototype 2.
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minimize cavity losses and, in particular, absorption
and beam distortion in the TGG crystal. We chose a
TGG crystal length L ¼ 6mm in order to minimize
absorption, and we have made a rough optimization
of the magnet ring dimensions in order to maximize
the field integral on the crystal length. The internal
radius ri ¼ 3:25mm was chosen large enough to in-
sert a 6:35mm diameter Hall probe used to measure
the magnetic field, while the external radius re ¼
22:5mm was limited by available space in the laser
cavity. All the rings are made of N42SH grade.

Using a Hall effect probe, we have measured the
magnetic field component Bz as a function of z for
these two prototypes. The results are plotted in Fig. 5,
as described below.

• For prototype 1, the field at the center of the
cylinder is BzðOÞ ¼ 1:72T and its second derivative
extracted from the fit is Bz;2 ¼ −0:057T=mm2. These
values are reasonably close to the predictions of
Eqs. (6) and (7), which give BzðOÞ ¼ 1:41Br ¼ 1:83T,
and of Eq. (9), which gives Bz;2 ¼ −0:053T=mm2 (we
used Br ¼ 1:3T, although the grades used have a
higher Br value, to account for the small demagneti-
zation due to the assembly). Finally, the integralR
Bzdz over the central 6mm is equal to 9:84T⋅mm.
• For prototype 2, the field at the center of the

cylinder is BzðOÞ ¼ 1:49T and the integral
R
Bzdz

over the central 6mm is equal to 8:25T⋅mm. These
values are reasonably close to our numerical calcula-
tions, BzðOÞ ¼ 1:59T and

R
Bzdz ¼ 8:78T⋅mm. The

predicted value of the second derivative [Eq. (9)],
Bz;2 ¼ −0:126T=mm2, differs from the value ex-
tracted from the fit Bz;2 ¼ −0:072T=mm2, but, be-
cause of the optimization of the magnet ring

dimensions, the design differs noticeably from the
principle of Fig. 2 to which Eq. (9) applies.

B. Prototype of an Axial & Radial Design

We also built a prototype 3 inspired by the axial
& radial design. In 2004, Brillet and Cleva [47] de-
scribed to us the optical isolator used for the VIRGO
experiment at that time and we designed this proto-
type with the same free diameter, 2ri ¼ 22mm. The
disks with radial orientation are produced by
assembling six triangular-shaped parts, with an
homogeneous magnetization, in an external ring of
aluminum alloy. Because these radially magnetized
rings are expensive, we used only one type of such
rings, with the two (inward or outward) directions
of magnetization. This choice explains why our pro-
totype strongly differs from the ideal arrangement of
Fig. 3. In order to refine our design, we made simula-
tions of the magnetic field using Flux2D software
[48], assuming a perfect cylindrical symmetry.

The dimensions of this prototype are the following:
internal radius ri ¼ 11mm, external radius re ¼
55mm, and total length 2h ¼ 152mm (see Fig. 6).
It is made of seven rings: three axial rings with their
magnetization parallel or antiparallel to the z axis
and four radial rings (two with inwardmagnetization
and two with outward magnetization). The axial
rings are 20mm thick, with an external diameter
110mm, and their material grade is N42SH (Br ¼
1:35T, Hc ¼ 1:6MA=m). The radial rings are 23mm
thick, with external diameter 90mm for the mag-
netic material itself and 110mm for the assembled
ring inside an aluminum alloy ring, and their mate-
rial grade is N50M (Br ¼ 1:47T, Hc ¼ 0:88MA=m).
Finally, the aluminum alloy box, not represented

Fig. 5. (Color online) Magnetic field component Bz in Tesla mea-
sured as a function of z for our two prototypes following the two-
orientation design: squares for prototype 1 and dots for prototype
2. In both cases, the data points are fitted by equation BzðzÞ ¼
BzðOÞ þBz;2z2=2þ Bz;4z4=24 (blue curve for prototype 1, red curve
for prototype 2). The values of BzðOÞ and Bz;2 are discussed in the
text; the contribution of the Bz;4 term is almost negligible.

Fig. 6. (Color online) Drawing of our axial & radial prototype 3
(dimensions in millimeters). This magnet is made of three axial
rings and of four radial rings (two with inward magnetization
and two with outward magnetization). Magnetization is indicated
by arrows.
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in Fig. 6, has an external diameter of 130mm and a
total length of 172mm.

Figure 7 presents a plot of the measured value of
Bz in Tesla as a function of z. The maximum mea-
sured Bz value is BzðOÞ ¼ 1:62T, while Flux2D simu-
lation predicted BzðOÞ ¼ 2:08T. We explain a part of
this difference by the fact that the radially magne-
tized rings do not respect the cylindrical symmetry
assumed in the simulation: they are made of six tri-
angular parts of homogeneous magnetization and a
calculation done by Bloch in his dissertation [43]
shows that the on-axis magnetic field due to such
a discretized ring is reduced by 17% with respect
to a purely radial magnetization (we may note that
this reduction factor would be only 5% for a ring
made of 12 triangular parts instead of six). We also
have an indication that some demagnetization oc-
curred: immediately after the assembly, the maxi-
mum field measured was B ¼ 1:71T and this value
decreased to 1:62T a few days later, when the curve
of Fig. 7 was recorded. This demagnetization is prob-
ably due to insufficient values of the coercivity and
anisotropy of the central ring. Finally, the measured
field decreases very slowly when going away from the
center along the z axis, with Bz;2 ¼ −0:0031T=mm2,
while Flux2D simulation predicted an opposite var-
iation. We are not sure of the origin of this difference.

5. Requirements on the Field Homogeneity for
Faraday Isolators

Many different effects [12,18,35,49] limit the perfor-
mance of Faraday isolators. In this section, we discuss
only the effect of the magnetic field inhomogeneity.

A. Theoretical Evaluation

To optimize a Faraday isolator, we must minimize
the transmission of the return laser beam. If θF is

the Faraday rotation angle, the transmission T
averaged over the light beam is given by

T ¼
Z

dS
dP
dS

sin2ðθF − θ0Þ=
Z

dS
dP
dS

: ð11Þ

Here, θ0 is the angle defined by the entrance
polarizer and dP=dS is the power density of the laser
beam which will be assumed to be Gaussian and cen-
tered on the z axis. Then dP=dS is a function of the
radius ρ:

dP
dS

∝ exp
�
−
2ρ2
w2

�
: ð12Þ

dS ¼ 2πρdρ and w is the local radius of the Gaussian
beam (we neglect its variation over the length L of
the Faraday material). In the calculations, the Gaus-
sian beam extends only up to ρ ¼ pw. The Faraday
rotation angle θF is proportional to the integral
IðρÞ ¼ R Bzðz; ρÞdz over the Faraday material, which
extends from z ¼ −L=2 to z ¼ L=2. We assume that
Eq. (8) is sufficient to describe the variations of Bz
and we get

IðρÞ ≈ B0Lþ Bz;2
ðL3 − 6ρ2LÞ

24
≈ I0

�
1 −

Bz;2

4B0
ρ2
�
: ð13Þ

TheBz;2L3=24 term can be omitted because it is small
with respect to B0L and independent of ρ. As
jθF − θ0Þj ≪ 1, we replace the sine by its argument
in Eq. (11). With the new variable X ¼ 2ρ2=w2, the
integrals are easy to calculate. The value of θ0 is cho-
sen such that it minimizes the transmission. This va-
lue is intermediate between the values of θF for
X ¼ 0 and for Xmax ¼ 2p2, and we note X0 the value
of X such that θF ¼ θ0. We get

T ¼
"
θ0Bz;2w2

0

8B0

#
2

×
X2

0K0 − 2X0K1 þ K2

K0
with

Kn ¼
Z

Xmax

0
Xn expð−XÞdX : ð14Þ

The minimum transmission, obtained for
X0 ¼ K1=K0, is equal to

Tmin ¼
"
θ0Bz;2w2

8B0

#
2
 
K2

K0
−
K2

1

K2
0

!
≈

"
θ0Bz;2w2

8B0

#
2

; ð15Þ

where the approximate value applies if expð−XmaxÞ
≪ 1 (then K2 ≈ 2, K1 ≈ K0 ≈ 1).

B. Applications to Our Prototypes

Let us apply Eq. (15) to our prototypes. We assume
that the Gaussian beam verifies ρmax ¼ 2:5w and we
choose a ρmax value slightly smaller than the internal
radius ri of the magnet, to account for the support

Fig. 7. (Color online) Magnetic field component Bz in Tesla mea-
sured as a function of z for our axial & radial prototype 3. The data
points are fitted by an equation BzðzÞ ¼ BzðOÞ þ Bz;2ðz − zcÞ2=2þ
Bz;4ðz − zcÞ4=24. The values of BzðOÞ and Bz;2 are discussed in
the text; Bz;4 is almost negligible.
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holding the Faraday rod. As usual, θ0 ≈ 45°. We have
collected in Table 2 the relevant parameters and the
calculated minimum transmission given by Eq. (15).
We have also included a dimensionless performance
factor P defined by the ratio of the measured value of
the magnetic field at the origin O and of its theore-
tical value given by Eqs. (6) and (7) for an axial-only
magnet and Eqs. (10) and (7) for an axial & radial
magnet [in this second case, Eq. (7) is only an approx-
imation because the length h is not large enough]. As
in our prototype 3, the magnet external radius is not
constant, and we use the mean value of this radius
hrei in the equations. The performance factor P mea-
sures how close our prototypes follow the design of
Figs. 2 and 3 and its values are discussed in Section 6.

Our axial-only prototypes produce a large field
with a rather low homogeneity, which remains suffi-
cient to provide an isolation ratio larger than 40dB.
The two prototypes achieve a field sufficient for a 45°
Faraday rotation at λ ¼ 633nm with a short Faraday
rod, with L ≈ 4mm. Prototype 3 provides a field with
a very good homogeneity, and Eq. (15) predicts a
50 dB isolation ratio, even for a large beam with ra-
dius w ¼ 4mm. To achieve a 45° Faraday rotation at
the wavelength λ ¼ 1064nm used in the gravita-
tional wave detectors, the length of the TGG rod
should be L ≈ 12mm. We were not able to test these
predictions because we have no TGG rod with ade-
quate length and antireflection coatings.

6. Concluding Remarks

In the current paper, we have shown that the magic
sphere design can be modified to provide powerful
magnets well adapted for high performance Faraday
isolators as well as for intracavity optical diodes.

• The axial-only design is very easy to build and
it already produces a maximum field larger than
1:7T at the center of the structure, with a ratio
re=ri ¼ 8. The achieved values of the performance
factor P are larger than 0.9 for these two prototypes,
thus proving the efficiency of this design. With this
design, a field close to 2T is feasible, by using a larger
value of the re=ri ratio. With this arrangement, the
field decreases rather rapidly along the z axis away

from the center. The field homogeneity, which is not
excellent, will limit the isolation ratio near 40dB
with the parameters of Table 2, but this value can
be improved by reducing the laser beam radius with
the same ri value.

• The axial & radial design requires rings with
radial magnetization, which makes this construction
more costly, but we think that this design is very pro-
mising because it can provide a very strong field with
an excellent homogeneity. As we had chosen a large
internal radius ri ¼ 11mm, we used a rather low
value of the external radius hrei ¼ 49mm, resulting
in a rather low value of the maximum field, BzðOÞ ¼
1:62T. The performance factor is only equal to
P ¼ 0:74, and this is not surprising when one com-
pares the theoretical and practical designs illu-
strated by Figs. 3 and 6. Obviously, we should be
able to increase the field by following more closely
the design of Fig. 3, by using radial rings made of
eight or 12 parts rather than six, with an expected
gain near 5% to 10%, and by increasing the
re=ri ratio.

• A similar axial & radial design was used by
Mukhin and co-workers [35] who included ferromag-
netic polar pieces and a ferromagnetic outer shield.
The introduction of these ferromagnetic “conductors”
produced a substantial gain on the magnetic field,
with BzðOÞ ¼ 1:7T increasing up to 2:1T. We may
also calculate the performance factor P for this mag-
net, using the parameters ri ¼ 7:5mm, hrei ¼ 66mm,
and h ¼ 70mm. We have used Br ¼ 1:2T because
these authors state that Br ¼ 1:2–1:3T for most of
the magnets and 1:0T for the central axial magnet.
We thus get a performance factor P ¼ 0:73, similar to
that achieved by our axial & radial prototype 3. The
achieved field [35] is larger than that of our prototype
3, mostly because the hrei=ri ratio is substantially lar-
ger for the magnet of Mukhin and co-workers than
for our magnet, hrei=ri ¼ 8:8 versus 4.5.

• The cost of these magnets is useful informa-
tion. To build each prototype, we bought a quantity
sufficient to build a few prototypes, with typically 10
units of each different ring. In this way, the cost of
the magnets was about 400 USD for prototype 1,
200 USD for prototype 2, and 2000 USD for
prototype 3.

Our results are still preliminary and a full optimi-
zation of these designs, based on detailed simula-
tions, remains to be done. The largest possible field
will ultimately be limited by demagnetization of the
material near the center; several grades of NdFeB
and of SmCo are able to withstand fields larger than
3T, so that we may still expect large improvements.

We thankM. Büchner, M. Jacquey, and S. Lepoutre
for their help, and A. Brillet and F. Cleva for
interesting information. We acknowledge financial
support from Centre National de la Recherche Scien-
tifique (CNRS) Institut National de Physique (INP),
Agence Nationale de la Recherche (ANR) (grant
ANR-05-BLAN-0094), and Région Midi Pyrénées.

Table 2. Values of Bz�O�, Bz;2, ri, hrei, and h, and the Chosen Value of
ρmax for Each Prototype

Quantity Prototype 1 Prototype 2 Prototype 3

BzðOÞ (T) 1.72 1.49 1.62
Bz;2 (T⋅m−2) −0:057 −0:072 −0:0031
ri (mm) 5 3.25 11
hrei (mm) 40 22.5 49
h (mm) 55 27.5 76
ρmax (mm) 4 2.5 10
w (mm) 1.6 1.0 4
Tmin (dB)a 41 46 50
Pb 0.94 0.91 0.74
aThe calculated Tmin is given, expressed in decibels.
bThe performance factor P is calculated using Br ¼ 1:3T.

20 August 2011 / Vol. 50, No. 24 / APPLIED OPTICS 4795



References

1. Lord Rayleigh, “On the constant of magnetic rotation of light
in bisulphide of carbon,” Phil. Trans. R. Soc. London 176, 343–
366 (1885).

2. Lord Rayleigh, “On the magnetic rotation of light and the
second law of thermo-dynamics,” Nature 64, 577–578 (1901).

3. F. J. Sansalone, “Compact optical isolator,” Appl. Opt. 10,
2329–2331 (1971).

4. K. P. Birch, “A compact optical isolator,”Opt. Commun. 43, 79–
84 (1982).

5. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact,
high-performance permanent magnet Faraday isolator,” Opt.
Lett. 11, 623–625 (1986).

6. P. A. Schulz, “Wavelength independent Faraday isolator,”
Appl. Opt. 28, 4458–4464 (1989).

7. R.Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A com-
pact tunable 60dB Faraday optical isolator,”Rev. Sci. Instrum.
63, 5586–5590 (1992).

8. H. W. Schröder, L. Stein, D. Frölich, B. Fugger, and H. Welling,
“A high-power single-mode cw dye ring laser,” Appl. Phys. 14,
377–380 (1977).

9. T. F. Johnston and W. Proffitt, “Design and performance of a
broad-band optical diode to enforce one-direction traveling-
wave operation of a ring laser,” IEEE J. Quantum Electron.
QE-16, 483–488 (1980).

10. F. Biraben, “Efficacité des systèmes unidirectionnels utilisa-
bles dans les lasers en anneau,” Opt. Commun. 29, 353–356
(1979).

11. C. C. Robinson, “The Faraday rotation of diamagnetic glasses
from 0:334 μm to 1:9 μm,” Appl. Opt. 3, 1163–1166 (1964).

12. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L.
Byer, D. Clubley, S. Yoshida, and R. R. Reitze, Appl. Opt. 40,
366–374 (2001).

13. TheVirgoCollaboration,“In-vacuumopticalisolationchangesby
heating in a Faraday isolator,”Appl. Opt. 47, 5853–5861 (2008).

14. E. Khazanov, “Compensation of thermally induced polarisa-
tion distortions in Faraday isolators,” Quantum Electron.
29, 59–64 (1999).

15. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov,
and D. H. Reitze, “Suppression of self-induced depolarization
of high-power laser radiation in glass-based Faraday isola-
tors,” J. Opt. Soc. Am. B 17, 99–102 (2000).

16. N. F. Andreev, O. V. Palashov, A. K. Potemkin, D. H. Reitze, A.
M. Sergeev, and E. A. Khazanov, “A 45dB Faraday isolator for
100W average radiation power,” Quantum Electron. 30,
1107–1108 (2000).

17. E. A. Khazanov, “A new Faraday rotator for high average
power lasers,” Quantum Electron. 31, 351–356 (2001).

18. E.Khazanov,N.Andreev,O.Palashov,A.Poteomkin,A.Sergeev,
O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet
crystal orientation on the isolation ratio of a Faraday isolator
at high average power,” Appl. Opt. 41, 483–492 (2002).

19. E. Khazanov, A. Anastasiyev, N. Andreev, A. Voytovich, and O.
Palashov, “Compensation of birefringence in active elements
with a novel Faradaymirror operating at high average power,”
Appl. Opt. 41, 2947–2954 (2002).

20. A.V.Voitovich,E.V.Katin,I.B.Mukhin,O.V.Palashov,andE.A.
Khazanov, “Wide-aperture Faraday isolator for kilowatt aver-
age radiation powers,”QuantumElectron. 37, 471–474 (2007).

21. D. J. Dentz, R. C. Puttbach, and R. F. Belt, “Terbium gallium
garnet for Faraday effect devices,” AIP Conf. Proc. 18, 954–
958 (1974).

22. A. Balbin Villaverde, D. A. Donatti, and D. G. Bozinis, “Ter-
bium gallium garnet Verdet constant measurements with
pulsed magnetic field,” J. Phys. C 11, L495–L498 (1978).

23. Terbium gallium garnet on Northrop Grumman website,
http://www.st.northropgrumman.com.

24. W. Zhang, F. Guo, and J. Chen, “Growth and characterization
of Tb3Ga5−xAlxO12,” J. Cryst. Growth 306, 195–199 (2007).

25. J. Liu, F. Guo, B. Zhao, N. Zhuang, Y. Chen, Z. Gao, and J.
Chen, “Growth and magneto-optical properties of
NaTbðWO4Þ2,” J. Cryst. Growth 310, 2613–2616 (2008).

26. F. Guo, J. Ru, H. Li, N. Zhuang, J. Liu, B. Zhao, and J. Chen,
“Growth and magneto-optical properties of NaTbðMoO4Þ2
crystals,” J. Cryst. Growth 310, 4390–4393 (2008).

27. N. P. Barnes and L. B. Petway, “Variation of the Verdet
constant with temperature of terbium gallium garnet,” J.
Opt. Soc. Am. B 9, 1912–1915 (1992).

28. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan,
H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida,
and M. Nakatsuka, “Cryogenic temperature characteristics
of Verdet constant on terbium gallium garnet ceramics,”
Opt. Express 15, 11255–11261 (2007).

29. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan,
H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida,
and M. Nakatsuka, “Development of cryogenic TGG ceramic
based Faraday rotator for inertial fusion driver,” J. Phys. Conf.
Ser. 112, 032059 (2008).

30. D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov,
and A. V. Voitovich, “Faraday rotators with short magneto-
optical elements for 50kW laser power,” IEEE J. Quantum
Electron. 43, 451–457 (2007).

31. H. Becquerel, “Sur une interprétation applicable au phénom-
ène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci.
125, 679–685 (1897).

32. L. Hilico, A. Douillet, J.-P. Karr, and E. Tournié, “Faraday
optical isolator in the 9:2 μm range for QCL applications” (per-
sonal communication, 2011).

33. D. K. Wilson and A. Heiney, “Magnetic configuration for
Faraday rotators,” U.S. patent 4,856,878 (15 August 1987).

34. J. Vigué, G. Trénec, O. Cugat, andW. Volondat, “Magnetic field
generator having permanent magnets,” Patent WO/2008/
031935 A1 (30 March 2008).

35. I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1
Tesla permanent-magnet Faraday isolator for subkilowatt
average power lasers,” Opt. Commun. 282, 1969–1972 (2009).

36. H. Zijlstra, “Permanent magnet systems for NMR tomogra-
phy,” Philips J. Res. 40, 259–288 (1985).

37. K. Halbach, “Design of permanent multipole magnets with or-
iented rare earth cobalt material,” Nucl. Instrum. Methods
169, 1–10 (1980).

38. K. Halbach, “Physical and optical properties of rare earth co-
balt magnets,” Nucl. Instrum. Methods 187, 109–117 (1981).

39. H. A. Leupold, A. Tilak, and E. Potenziani II, “Permanent
magnet spheres: design, construction and application,” J.
Appl. Phys. 87, 4730–4734 (2000).

40. H. A. Leupold and E. Potenziani II, “Novel high-field perma-
nent-magnet flux sources,” IEEE Trans. Magn. MAG-23,
3628–3629 (1987).

41. F. Bloch, O. Cugat, G. Meunier, and J. C. Toussaint, “Innovat-
ing approaches to the generation of intense magnetic fields:
design and optimization of a 4 Tesla permanent magnet flux
source,” IEEE Trans. Magn. 34, 2465–2468 (1998).

42. F. Bloch, O. Cugat, J.-C. Toussaint, and G. Meunier,
“Approches novatrices à la génération de champsmagnétiques
intenses: optimisation d’une source de flux à aimants perma-
nents,” Eur. Phys. J. Appl. Phys. 5, 85–89 (1999).

43. F. Bloch, “Source de champ intense 4 Tesla aimants perma-
nents,” Ph.D. dissertation (Université de Grenoble, 1999).

44. H. A. Leupold and A. Tilak, “Field augmented permanent
magnet structures,” U.S. patent 5,428,334 (27 June 1995).

45. ChenYang Technologies GmbH & Co, http://www.chenyang‑
ism.com/.

46. U. Eismann, F. Gerbier, C. Canalias, G. Trénec, J. Vigué, F.
Chevy, and C. Salomon, “An all-solid-state laser source at

4796 APPLIED OPTICS / Vol. 50, No. 24 / 20 August 2011

http://www.st.northropgrumman.com
http://www.st.northropgrumman.com
http://www.st.northropgrumman.com
http://www.st.northropgrumman.com
http://www.chenyang-ism.com/
http://www.chenyang-ism.com/
http://www.chenyang-ism.com/
http://www.chenyang-ism.com/


671nm for cold atom experiments with lithium,”Appl. Phys. B
(to be published).

47. A. Brillet and F. Cleva, ARTEMIS Observatoire Cote d’Azur,
CNRS, Université de Nice Sophia Antipolis 06304 Nice
(private communication, 2004).

48. Flux2D/3D, finite elements software package available from
CEDRAT Company, www.cedrat.com.

49. J. Poirson, J.-C. Cotteverte, A. Le Floch, and F. Bretenaker,
“Internal reflections of Gaussian beams in Faraday isolators,”
Appl. Opt. 36, 4123–4130 (1997).

20 August 2011 / Vol. 50, No. 24 / APPLIED OPTICS 4797

www.cedrat.com
www.cedrat.com
www.cedrat.com

