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Abstract – We used the Toulouse atom interferometer to study how Van der Waals (VdW)
interactions between atoms and surfaces cause velocity-dependent phase shifts for atomic de
Broglie waves. By introducing a thin nano-grating in one branch of this interferometer, we observed
a phase shift that depends on velocity to the power −0.49. This dispersion serves to measure both
the strength and the position dependence of the atom-surface potential in the range from 5 to
10 nm from the surface, and it can also set new limits on non-Newtonian gravity in the 2 nm range.

Copyright c© EPLA, 2009

Atom interferometers are celebrated tools for measuring
atomic de Broglie wave phase shifts [1]. By transmitting
one arm of an atom interferometer through a nano-
structure, an electric field, or a dilute gas, measurements
have been made of Van der Waals (VdW) potentials [2]
atomic polarizabilities [3–5], and complex scattering
amplitudes [6–8] respectively. Studies of dispersion, i.e.
phase shifts as a function of atomic velocity, provide
additional information about the interactions that cause
these phase shifts. For example, glory undulations
observed in [7,8] can reveal the number of bound states in
atom-atom potentials as well as the long-range shape of
such potentials. Here, we report the first observations of
dispersive phase shifts caused by atom-surface interactions
with enough precision to measure both the strength and
the position dependence of the atom-surface potential.
Atom-surface interactions in the non-retarded Van der

Waals regime and in the longer-range Casimir-Polder
regime [9] are the topic for hundreds of references in
the field of QED [10]. These interactions are impor-
tant for a large variety of experiments involving atoms
or molecules near surfaces: atoms or molecules passing
through nano-gratings [11–13]; propagation of molecules
in Talbot-Lau interferometers using material gratings [14];
reflection properties of atomic mirrors using evanescent

(a)E-mail: jacques.vigue@irsamc.ups-tlse.fr

laser waves [15–17] including atom interferometry exper-
iments [18,19]. Atom-surface interactions are necessary
to understand quantum reflection from nano- or micro-
structured surfaces [20–23], BEC interferometry on a
chip [24], MOT dynamics near an optical fiber [25,26], or
searches for nanometer-scale modifications to Newtonian
gravity [27].
The first measurement of atom-surface interactions

by atom optics techniques was made by the research
group of J. P. Toennies in 1999 [11], by measuring the
intensities of the various diffraction orders transmitted
by a nano-grating and this work was followed by similar
experiments [28,29]. Atom interferometry can be used to
measure the phase shift associated to diffraction by a
nano-grating, as first done by the research group of one
of us (ADC) [2,30]. The long-range part of this potential
has been studied by observing quantum reflection of
atoms [31]. Laser spectroscopy, which can be also used
to study atoms near surfaces [32], is sensitive only to the
difference of the interaction potentials corresponding to
the atom internal states connected by the laser. We cannot
review here all the other methods available to study the
atom-surface interaction potential and we refer the reader
to the review paper by Hoinkes [33].
Deviations from the C3/r

3 form of the atom-surface
potential can be caused by retardation, adsorbed atoms,
and in principle by gravity [34]. There is therefore
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~ 250 mµ

Fig. 1: Left part: experimental set-up of our interferometer. A
supersonic beam of lithium is diffracted by three standing laser
waves, forming a Mach-Zehnder atom interferometer. The laser
standing waves are obtained by reflecting three lasers beams
on the mirrors noted Mi with i= 1–3. A nano-grating can be
inserted just before the second standing wave, at the position
where the distance between the two atomic beams labelled u
and l is largest, of the order of 100µm. The output beams
labelled 1 and 2 carry complementary fringe signals and the
detector D measures the intensity of one of these two beams.
Right part: schematic drawing of the nano-grating showing the
250µm wide gap and the atomic beams with the “u” beam
going through the grating and the “l” beam going through
the gap.

motivation to measure the strength and functional form
of the atom-surface interaction potential with unprece-
dented accuracy. The methods and analysis presented
here advance the Atom Optics techniques available for
such measurements.
We use a silicon nitride nano-structure with 53 nm wide

windows as a phase shifter in an atom interferometer.
With lithium atom beams with velocity v in the range 700
to 3400m/s, our measurements show a surface-induced
phase proportional to v−0.49. This is contrary to the naive
prediction of v−1, therefore we are motivated to present
an analytical model to explain this unusual dispersion
and discuss its implications for new applications for atom
interferometry.
We emphasize that the first experiment [2] to detect

surface-induced phase shifts with an atom interferometer
was not accurate enough to study dispersion, and there-
fore could not test the power law of the potential. By
comparison, the measurements presented here have a 30
times improved accuracy for phase shifts at any one veloc-
ity. In this manuscript, we explain the improved meth-
ods and observations first. Then we discuss the origin of
the dispersion. Finally, we discuss the significance of this
dispersion for new measurements, such as searches for non-
Newtonian gravitational interactions.
Our experiment uses the Toulouse atom interferometer

discussed in [35]. The experimental set-up is shown on
fig. 1. A supersonic beam of lithium atoms seeded in
a carrier gas crosses three near-resonant laser standing
waves that diffract the beam, thus forming a Mach-
Zehnder atom interferometer. This atomic beam is highly
collimated by two slits with widths ca. 15µm (the exact
value depending on the carrier gas used for the supersonic
expansion) separated by 0.76m, resulting in an atomic
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Fig. 2: (Colour on-line) Atom interference fringes recorded with
(A) both arms (visibility VA = 32%), (B) one arm (VB = 34%),
or (C) neither arm (VC = 72%) passing through the nano-
structure, with a lithium beam velocity v= 1062± 20m/s. The
counting period is 0.1 s per data point.

beam angular width close to 20µrad FWHM. This high
collimation is needed to separate the u and l beams in
the interferometer and also the two output beams labelled
1 and 2 in fig. 1. Because the light gratings match the
Bragg condition, the Toulouse interferometer has only two
arms, as opposed to the interferometer used in [2]. The
results are dramatically easier to interpret so we were
able to measure the surface-induced phase shift with an
uncertainty of 2%.
The measured intensity output from the interferometer

depends on the positions xi of the three standing-wave
mirrors Mi [35] and a phase ϕ:

I = I0 [1+V cos(kg(x1− 2x2+x3)+ϕ)] . (1)

Here, I0 is the mean intensity, V is the fringe visibility,
and kg is the light-grating k-vector. To observe atom-
interference fringes, shown in fig. 2, we displace mirror
M3 with a piezo drive. We measure its position using a
Michelson interferometer involvingM3 and a fixed mirror.
This interferometer is completely under vacuum and
operated with a He-Ne laser. The resulting uncertainty
on measurements of the phase ϕ of the atom interference
fringes is about 3 milliradians, for a 100 second recording
with neither arm going through the nano-grating, as in
recording C of fig. 2.
We locate the phase-shifting nano-structure just before

the second laser standing wave. The distance between
the two interferometer arms, which is largest at this
point, is inversely proportional to the atom velocity v
and close to 100µm when v= 1000m/s with first order
Bragg diffraction. For velocities larger than 2000m/s, we
use second order Bragg diffraction to increase the path
separation. However, in this case, the interference fringes
have a lower visibility and some stray beams due to
weak first order diffraction are present. These two defects
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Fig. 3: (Colour on-line) Measured fringe visibility V, mean
intensity I0, and phase shift ∆ϕ shown as a function of the
interaction grating position xG, for a lithium beam velocity
v= 1062± 20m/s. At the reference position, xG = 0, both
interferometer arms go through the gap, so they are unaffected
by the grating. When 65< |xG|< 190µm (case B or D), only
one arm goes through the grating and we observe opposite
phase shifts. The mean intensity and the fringe visibility are
reduced, as discussed in the text. When |xG|> 190µm (case
A or E), both arms go through the grating, the phase shift
returns to 0. The best fit is represented by the continuous line.

reduce the accuracy of our phase measurements when
v > 2000m/s.
Our phase-shifting element is the same interaction

grating used in the Perreault experiment [2], except that
the gap for the reference beam has been enlarged from 100
to 250µm and the structure has been sputter-coated with
Au/Pd metal. The enlarged gap makes data shown in
fig. 3 much easier to interpret. The thin (nominally 1 nm
thick) layer of Au/Pd made the structure more suitable for
SEM imaging, and may have increased the C3 VdW coef-
ficient. This free-standing, Au/Pd-coated, silicon nitride
membrane has an array of 53± 1 nm wide windows that
are regularly spaced, with a period of dG = 100± 0.1 nm:
the width to period ratio has been very accurately
measured by atom diffraction studies [36]. Atoms trans-
mitted through these windows must therefore have passed
within 26.5 nm of a material surface. This causes the
VdW-induced phase Φ0. The interaction grating is on a
translation stage so that either one (or both) of the inter-
ferometer arms can pass through the gap, relatively far

from any surfaces. Hence, the interference fringes can shift
in phase by as much as ∆ϕ=±Φ0, with the sign depend-
ing on which arm goes through the interaction grating.
The windows are oriented horizontally such that diffrac-

tion from the periodic structure deflects atoms out of the
plane of the interferometer. Beam components that are
diffracted by the nano-grating no longer match the Bragg
condition of the light gratings, and thus contribute only
incoherent background flux. Only the direct, 0th order,
beam contributes to the interference signal and we note
A0 the transmission amplitude of this order. The observed
phase shift ∆ϕ is equal to ±Φ0 where Φ0 is the argument
of the complex amplitude A0. A0 has a modulus less than
1 and only |A0|2 ∼ 8% of the incident flux is transmitted
into the 0th order. As a consequence, the fringe intensity
and visibility are both reduced when one arm goes through
the interaction grating. Moreover, these reductions are not
the same when one arm goes through the nano-grating
as compared to the other arm. This is because, initially,
the interferometer is slightly unbalanced, with more de
Broglie wave amplitude in one arm. When both atomic
arms go through the nano-structure, the measured phase
is expected to be the same as when both arms go through
the gap, but the intensity and visibility are modified. A
complete description of the signal as the interaction grat-
ing translates across both interferometer arms is beyond
the scope of the present letter, and will be presented else-
where. Results from this experiment and a best-fit model
are shown in fig. 3. Five conditions are identified, with the
interaction grating attenuating (A) both arms, (B) one
arm, (C) neither arm, (D) the other arm, and (E) both
arms again. The cases B and D provide two measurements
of the grating phase shift, Φ0, corresponding to different
parts of the interaction grating. These two measurements
are in good agreement, as a consequence of the good homo-
geneity of the grating.
The visibility, mean intensity, phase shift profiles in

fig. 3 are significantly different than in the Perreault
experiment [2], for which profiles are published in [37].
The larger gap and better resolved interferometer arms
help to make clear plateaus in fig. 3. The presence of
only two arms due to Bragg diffraction also helps to make
the profiles in fig. 3 much easier to model. After these
improvements, the dominant source of uncertainty in our
determination of Φ0 is phase drift. We compensate for
phase drift by making alternate measurements, a reference
scan allowing both interferometer arms to pass through
the grating gap and a measurement scan with the grating
at a different position. The phase shift ∆ϕ is taken as
the phase difference between the measurement scan and
the mean of the two reference scans done just before and
just after the measurement. In this way, an individual
measurement of the phase shift ∆ϕ has a statistical
uncertainty σ≈ 20mrad. During a run of few hours, we
can get several tens of such phase measurements thus
providing a complete picture of the effect of the grating
on the interferometer signals.
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Fig. 4: (Colour on-line) Induced phase vs. beam velocity v.
The experimental data points have been fitted by various
models. The full line is a numerical model with the only free
parameter being the C3 coefficient, with a fitted value C3 =
3.25meV · nm3. The power law fit which follows a v−0.49-
dependence is represented by a dotted curve which is almost
indistinguishable from the numerical fit. The numerical model
has also been fitted assuming a C2r

−2 and a C4r−4 atom-
surface potential and these fits are very different: the dispersion
of the phase shift with atom velocity appears to be very sensi-
tive to the shape of the atom-surface potential. Finally, we
have calculated the phase shift with our numerical model by
adding to the VdW term (with a reduced C3 value, C3 =
1.5meV · nm3) a non-Newtonian gravity term with α= 1027
and λ= 2 nm: in this case too, the dispersion is very different
from the experimental results.

We collected similar data for six different velocities
of the lithium beam covering the 700–3400m/s range.
The beam velocity was controlled by changing the carrier
gas, and the velocity was measured by studying Bragg
diffraction rocking curves and by Doppler-sensitive laser-
induced fluorescence spectra. The experimental spread in
velocity was typically 20% (FWHM) of the mean velocity.
To determine Φ0 for each velocity, we have taken

a weighted average of all the available measurements,
with a weight inversely proportional to the square of
their statistical uncertainty. The results are plotted as
a function of the beam’s mean velocity v in fig. 4,
and are well described by Φ0 ∝ v−0.49. The data point
corresponding to v= 3300m/s was not included in the fit,
because it deviates from the general trend. We explain
this deviation by the experimental problems associated
with imperfect second order Bragg diffraction at that
velocity.
Next, we discuss the origin of the phase shift and its

dispersion. If the phase shift Φ0 is from VdW interactions
in the non-retarded regime, the potential is expected
to be:

VVdW (r) =−C3
r3

(2)

in the case of an infinite plane, r being the shortest
distance to the surface and C3 the VdW coefficient. We

approximate the potential for an atom in the window
between two grating bars by the potential caused by two
infinite planes coincident with the two nearest grating
walls, as given in equation (2) and we then allow the
potential to be “on” only while the atom is between the
grating bars (for a detailed discussion, see [11,29]). The
thickness of the grating bars is LG = 110± 5 nm [36], so
this interaction grating can be modelled as a thin phase
and amplitude mask. The grating bars have a trapezoidal
cross section and we take the wedge angle αG of the
trapezoid into account when explaining the induced phase.
Once the grating geometry is known in terms of the
period dG, window width wG, thickness LG and wedge
angle αG, the phase due to the interaction of the atom
with the two nearest walls can be calculated in the WKB
approximation:

φ(x) =− 1
�v

∫ LG
0

VVdW (z, x;wG, αG)dz. (3)

Here φ(x) is the phase shift acquired by the incident
wave just after the grating; this phase depends on the
nanometer-scale position, x, within the grating windows.
This position-dependent phase is inversely propositional
to the velocity v. From φ(x), we deduce the complex
amplitude An of the n-th diffraction order:

|An|eiΦn = 1
d

∫ w/2
−w/2

exp

[
i

(
φ(x)− 2πnx

d

)]
dx. (4)

Our experiment measures the phase Φ0 of the 0th order
amplitude, which is given by:

Φ0 = arctan



∫ w/2
−w/2 sin[φ(x)]dx∫ w/2
−w/2 cos[φ(x)]dx


 . (5)

In order to fit the Φ0 data, we used a numerical model
which takes into account the grating geometry. Even
though this numerical model fits the Φ0 data very well,
it is interesting to explain by a simple analytic expression
the dependence of this phase on the velocity. Cronin et al.
have previously introduced a generalized Cornu spiral to
visualize the integral in eq. (4) and to discuss the intensity
|An|2 of the various diffraction orders [38]. We have used
the same analysis to develop an analytical expression for
the phase Φ0. From a plot of the Cornu spiral (not shown
here), the dominant contribution to Φ0 comes from the
region where |φ(x)|<π/2; the contribution of the region
with |φ(x)|>π/2 is almost negligible since this is a region
of rapidly oscillating phase.
To get an analytic expression of the phase shift Φ0,

we must simplify eq. (4) and an obvious simplification
is to note that, as φ(x) is an even function of x, we
may take the integral only from x= 0 to x=w/2 and
double the result to get the amplitude A0. We may then
assume that the phase φ(x) is only due to the nearest
wall because, as shown by numerical calculations, the
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dominant contributions to the amplitude phase Φ0 are due
to trajectories close to the wall (another way of explaining
this approximation is to note that the exact value of φ(0) is
considerably smaller than the value of Φ0). We also assume
that the wall is parallel to the atomic velocity (i.e. the
wedge angle αG us equal to 0). For positive x, the phase
φ(x) is then given by

φ(x) =
C3LG

�v [(wG/2)−x]3
(6)

and, after a change of variables, Φ0 is approximately

Φ0 ≈
∫∞
A3
sin[φ]φ−4/3dφ∫∞

A3
cos[φ]φ−4/3dφ

. (7)

Here A3 = φ(0) = C3LG
�v
(w/2)−3 is the phase acquired

along the center of the window. We can expand both
the numerator and the denominator in this expression in
terms of A and find:

Φ0 ≈
Γ
(
2
3

)
A

2−√3×Γ ( 23)A ≈
1.35
(
C3LG
�v

)1/3
w− 2.35 (C3LG

�v

)1/3 , (8)

where we have given only the first-order terms in A. An
interesting point is that the dominant contribution to the
integral of sin[φ(x)] comes not from the center of the
opening, where the atom-surface distance x is close to w/2,
but from the region where φ(x)≈ 1 rad, corresponding
to an atom-wall distance r1 = [C3LG/(�v)]

1/3. In our
experiment, r1 decreases from r1 ≈ 9 nm when v= 700m/s
to r1 ≈ 5.6 nm when v= 3300m/s.
By taking the logarithmic derivative of eq. (8), we

can deduce the exponent q of the best approximation of
Φ0(v) by a power law of the form Φ0 ∝ vq. We thus get
q=− w

3(w−2.35r1) ≈−0.48 when r1 ≈ 7 nm, corresponding
to a velocity v≈ 1600m/s. This agrees well with our exper-
imental data, but it is an unusual velocity dependence for
a phase shift in atom optics. A uniform potential applied
to one arm of an atom interferometer usually results in
a phase proportional to v−1. The velocity dependence is
related to the spatial dependence of the potential. For
example, a gas cell in one arm induces a phase propor-
tional to v−7/5 compounded with glory oscillations due to
bound states. Topological phases, such as the Aharonov-
Casher phase, are independent of velocity.
We explain the observed velocity dependence by the fact

that the phase comes mostly from a region of distance to
the wall which itself depends on velocity. The similarity
to q=−1/2 is a coincidence. Equation (8) predicts Φ0 ∝
v[−1/p+f(v)] where f(v) is a velocity-dependent correction
factor and p describes a more general ansatz for an atom-
surface interaction potential given by V =−Cpr−p.
In fact, using the numerical model and assuming an

atom-surface interaction potential given by −Cp/rp, we
find that the best fit is obtained for p= 2.9± 0.2. At any
one velocity, we could not constrain the value of p. It is

the observed dispersion that provides sensitivity to p at
short atom-surface separations.
The presence of non-Newtonian gravitational inter-

actions can also be hypothesized as an explanation
for the observed phase shifts. We analyzed our
data using a model that includes a potential term
VG(�) =−Gm1m2(1+αe−�/λ)/� with � the distance
to any volume element of the nano-structure. When
we analyze the observed phase shifts with this
potential we can constrain (α, λ) = (< 1026, 2 nm) or
(α, λ) = (< 1023, 10 nm). At λ= 2nm, this upper limit
on α is comparable to previous upper limits [27,39]. We
emphasize that the observed dispersion helps to set a
more strict limit on α. In the future, α can be constrained
by two additional orders of magnitude by using heavier
atoms with a weaker atom-surface interaction such as
xenon.
The analysis leading to eq. (8) also serves to make a

prediction for much larger nano-structures, such as the
ones described in [40]. For these structures with w� r1,
we predict that the phase shift depends inversely on
the window size and inversely on the one-third power of
velocity, Φ0 ∝w−1v−1/3, whereas one might näıvely have
predicted that Φ0 would depend on w

−3. We emphasize
that this prediction assumes that the atomic wave function
extends uniformly over the entire grating window, which
does not apply for localized distributions of atoms in a
larger cavity, such as a BEC trapped near a surface.
From eq. (8), it is apparent that an accurate C3 is highly

dependent on good knowledge of the grating geometrical
parameters (dG, wG, LG and αG). These parameters were
determined using the method described in [36] and we
thus get the fitted value C3 = 3.25± 0.2meV ·nm3. Using
equation 2.36 of reference [41], we have calculated the
following C3 values: C3 ≈ 3.10meV ·nm3 with the optical
constants of bulk Si3N4 [42] and C3 ≈ 2.95meV ·nm3 with
the optical constants of SiNx given in ref. [28], with the
optical constants being represented, in both cases, by the
Tauc-Lorentz formula [43]. The agreement is reasonably
good, especially if one considers that the thin metallic
Au/Pd layer should increase the C3 coefficient.
In summary, we have been able to measure the phase

shift due to the Van der Waals interaction of the atoms
with a silicon nitride grating with a 2% relative uncer-
tainty. The main impact of this research is that our
improvement in precision allows us to study dispersion of
this phase shift for the first time. The VdW-induced phase
shift was found to scale like v−0.49, a somewhat unusual
result. We have used the observed dispersion to determine
the strength and the power-law of the VdW potential. The
VdW C3 coefficient for lithium atoms and a silicon nitride
surface, covered with a thin Au/Pd layer, was determined
from this phase shift with 6% uncertainty. The observed
dispersion is also necessary to establish a constraint on
a possible non-Newtwonian gravitational interaction and
we get an upper limit comparable to the best published
values for a range parameter λ≈ 2 nm.
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