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A pendulum suspended by a flexible beam made of a thin metal strip is commonly used in clocks.

However, the usual theory describing its motion is approximate and incomplete. We first recall that

simple theory and we then present a more complete theory, which describes the shape of the

flexible beam by elasticity theory. We find that the pendulum has two resonant frequencies,

corresponding to different shapes of the flexible beam and different motions of the pendulum. The

dynamical effects of the flexible beam are directly related to its dimensions and its Young’s

modulus. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4906791]

I. INTRODUCTION

Since the work of Galileo Galilei,1 the pendulum has
played an important role in physics.2,3 There are many rea-
sons for this importance: the pendulum is a quasi-harmonic
oscillator; it is easy to build a pendulum with a large quality
factor Q (i.e., with a very sharp resonance); and the theoreti-
cal analysis of pendulum motion can involve many degrees
of refinement.4 Hundreds of papers with the word
“pendulum” in their titles have been published in journals
devoted to the teaching of physics.

However, amongst this vast literature, we have not found
a complete theory of the pendulum suspended by a flexible
beam. In this paper, we therefore present a simplified theory
of such a pendulum in Sec. II. Then, in Sec. III, we develop
a more complete theory in which the shape of the flexible
beam is described by elasticity theory. After our analysis
was completed, we found that a similar study had been
published by Le Rolland5 in 1923. As access to this old
paper is not easy, we have nevertheless decided to present
this theory.

The interest in this type of pendulum is due to the fact that
such a suspension is commonly used in pendulum clocks
(see Fig. 1); the pendulum is made of a long rod with a heavy
bob attached near its lower end. The flexible “beam” consists
of a thin metal strip, which is clamped at both ends, the
lower end in the top of the rod and the upper end in a stable
frame. The flexible beam is called a “spring” by clock mak-
ers and we will use this term throughout this paper. It is usu-
ally difficult to see the spring of a clock because it is hidden
by the mechanism, but the interested reader will find many
images of clock suspension springs on the Web. The springs
are made of an elastic metal like spring steel or Elinvar/
NispanC, a metal with a Young’s modulus almost independ-
ent of temperature.6 For more details, we refer the reader to
the book of Matthys.7 In our calculations, we will assume
that this spring can only flex and that it cannot stretch.

The theory described in Sec. III predicts two resonances,
while the simplified theory predicts only one. There is a
low-frequency resonance associated with the usual pendular
motion and a high-frequency resonance with a rolling
motion.

Finally, in Sec. IV, we compare the present results to
related works by Hughes8 and by Gleiser.9 Hughes predicted
(theoretically) and verified (experimentally) the double reso-
nance characteristics for a pendulum made of a sphere

suspended by an infinitely soft string. He explained this
result as a particular case of a double pendulum. Gleiser
used a variational formalism to describe a pendulum with
arbitrary elastic properties and mass distribution. His results
differ from ours due to a failure in his variational
calculation.

II. SIMPLE THEORY OF A PENDULUM

WITH A SPRING

Figure 1 shows a schematic drawing of the pendulum and
defines our notation. The spring mass is usually considerably
smaller than the pendulum mass so it is a good approxima-
tion to neglect the inertia of the spring. We will do so in all
our calculations.

The pendulum oscillates in the xy-plane and its position is
measured by the angle h between the vertical and the line

Fig. 1. (a) Schematic drawing of the pendulum with the spring clamped in

the frame and at the top of the rod, which carries the pendulum bob.

(b) Enlarged drawing of the spring oscillating in the xy-plane. The spring is

clamped at O and at D, with D0 being the position of D when the pendulum

is at equilibrium. In the case of small oscillations, the shape of the spring

(the curve OD) is assumed to be a part of a circle and C is at the midpoint of

OD0. The angle h, which is assumed to be small in our calculations, has

been magnified for clarity. The center-of-mass of the pendulum body is at G
(far from D on the scale of the diagram).
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segment DG. If the spring length l is small enough, it is rea-
sonable to assume that the spring radius of curvature R is
uniform. Then curve OD is a circular arc and the angle h sat-
isfies l¼Rh. The line DG, which is tangent to the circle at
D, intersects the x-axis at C. Using elementary geometry, we
find the coordinate xC of C:

xC ¼ l
1� cos h
h sin h

� l

2
1þ h2

12

� �
: (1)

At first order in h, the point C is fixed at the midpoint of the
spring when the spring is at equilibrium. For small oscilla-
tions, the pendulum motion is a rotation around point C. The
elastic torque is equal to �Kh, to first order in h, where K is
the spring stiffness. The torque exerted by gravity is
�Mgðhþ l=2Þ sin h � �Mgðhþ l=2Þh, where M is the pen-
dulum mass, g is the local gravitational field strength, and h
is the length of DG, so that CG¼ hþ (l/2) (see Fig. 1). The
equation of motion is

IC
d2h
dt2
� � Mg hþ l

2

� �
þ K

� �
h; (2)

where IC is the pendulum moment of inertia calculated for
rotation around point C. By Huygens’s theorem (i.e., the
parallel-axis theorem), we have IC¼M[(hþ l/2)2þ q2],
where q is the gyration radius of the pendulum body. The
motion is therefore harmonic with the angular frequency

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g hþ l=2ð Þ þ K=M

hþ l=2ð Þ2 þ q2

s
: (3)

If the elastic torque is negligible with respect to the gravita-
tional torque, i.e., if K/M � g(hþ l/2), then the angular fre-
quency X given by Eq. (3) is the usual formula for a gravity
pendulum. When the elastic torque is not negligible, X
increases with the stiffness K.

However, this theory is not satisfactory for two reasons:

• the range of validity of the assumption describing the
spring shape as a circular arc is unknown;

• the spring stiffness K has been introduced without any
information on its value. In order to fully describe the pen-
dulum, it is necessary to relate K to the spring dimensions
and to the Young’s modulus of its material.

III. A MORE COMPLETE THEORY

OF A PENDULUM WITH A SPRING

In elasticity theory, the spring is described as a flexible
beam, with its shape given by the Euler-Bernoulli equation.
The equation derived in many textbooks10 uses an equilib-
rium theory, which neglects spring inertia. This approxima-
tion should be very good because the spring is considerably
lighter than the pendulum; the theory’s validity can be
judged afterwards by verifying that the pendulum resonance
frequencies are considerably smaller than those of the spring.
The calculation of these resonance frequencies is similar to
the calculation of those of piano strings (see, for instance,
Ref. 11 and references therein). Throughout the present
calculation, we will use a first-order approximation in the
oscillation amplitude. Our calculation involves two steps:

• first, we calculate the shape of the spring, assuming that
the force and the torque exerted by the pendulum on the
spring are known;

• second, we use these results in the equations of motion of
the pendulum and we obtain two coupled linear differen-
tial equations.

A. First step: Calculation of the spring shape

via the Euler-Bernoulli equation

As shown in Fig. 2, the spring bends in the xy-plane. The
Euler-Bernoulli equation relates the radius of curvature R of
the spring at any point N to the z-component of the torque
sz(N) exerted on the spring at this point:

sz Nð Þ ¼ l
R
; (4)

with

l � EIs: (5)

Here E is the Young’s modulus of the spring material and Is

is the second moment of the area of its cross section. When
the spring is at its equilibrium position along the x-axis, Is is
given by Is ¼

Ð Ð
y2dydz, with the integration extending over

the spring cross section centered at y¼ 0, the z-direction
being perpendicular to the xy-plane. For a rectangular section
of width c in the xy-plane and length d along z, Is¼ c3d/12.
Only the z-component of the torque sz(N) is nonzero, because
of our assumption of motion in the xy-plane.

We can express the torque sz(N) as a function of the force
components X and Y and of the z component sz(D) of the
torque exerted by the pendulum on the spring at D:

Fig. 2. Schematic of the spring that defines the notation used to analyze the

spring shape. The point N (coordinates x, y) lies on the spring and the tan-

gent to the spring at N makes an angle u with the x-axis. The spring is

clamped in the pendulum rod at D (coordinates a, b). The force exerted by

the pendulum on the spring at D has components X and Y.
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szðNÞ ¼ ða� xÞY � ðb� yÞX þ szðDÞ; (6)

where (a, b) and (x, y) are the coordinates of points D and N,
respectively. The fact that the X and Y force components are in-
dependent of the location of point N along the spring is a con-
sequence of our approximation of neglecting the spring inertia.

We are going to calculate the shape of the spring,
described by the function y(x). We introduce the arc length s
of the curve ON, with ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
, and the angle u

between the tangent to this curve at N and the x-axis, with
dx=ds ¼ cos u and dy=ds ¼ sin u. With these definitions, the
radius of curvature R is given by 1=R ¼ du=ds, and Eqs. (4)
and (6) then give

l
du
ds
¼ a� xð ÞY � b� yð ÞX þ sz Dð Þ: (7)

We differentiate Eq. (7) with respect to s in order to obtain
an equation involving only the function uðsÞ:

l
d2u
ds2
¼ �Y cos uþ X sin u: (8)

This differential equation is difficult to solve, so we simplify
it by expanding the right-hand side in powers of u, retaining
only the first-order terms, giving a good approximation for
small oscillations:

l
d2u
ds2
� �Y þ Xu: (9)

We will show below that X¼Mg so that X is positive. In this
case, the solutions of Eq. (9) involve hyperbolic functions:

u sð Þ ¼
Y

X
þ P cosh jsð Þ þ Q sinh jsð Þ; (10)

where j2�X/l. Here, P and Q are integration constants,
which must be deduced from the conditions at the two ends:
at O, where s¼ 0 and u ¼ 0, and at D, where s¼ l and
l du=ds ¼ szðDÞ. These initial conditions lead to

P ¼ � Y

X
;

Q ¼ sz Dð Þ
lj cosh v

þ Y

X
tanh v;

(11)

where v� jl is dimensionless.
Equation (10) gives the spring shape in an implicit form

uðsÞ. To get an explicit form, we must integrate the equa-
tions dx=ds ¼ cos u and dy=ds ¼ sin u. As in Eq. (9), we use
a first-order expansion in u to get dx� ds and dy � u ds. As
s¼ 0 at O (where x¼ 0), integration of the first expression
gives x¼ s. Integration of the second expression then gives

y sð Þ ¼ y xð Þ ¼ 1

j
P jx� sinh jxð Þð Þ þ Q cosh jxð Þ � 1ð Þ½ �;

(12)

where we have taken into account that y¼ 0 when x¼ 0.
The spring shape is a function of v¼jl and the ratio P/Q. If
v � 1 and if P/Q is not too large, a second-order expansion
of Eq. (12) in powers of jx is a good approximation and we
find y�Qjx2/2, corresponding to a constant radius of

curvature. This is the case where the approximation used in
Sec. II is valid. When v� 1, the shape is more complex and
varies with the ratio P/Q (two examples of the calculated
shape are shown in Sec. IV D).

A similar calculation of the spring shape has been per-
formed by James12 in order to evaluate the stress on the sus-
pension spring and a corrected version of this calculation is
reproduced in the book by Matthys.7 This is a question of
great practical interest for clock makers because too large a
stress limits the lifetime of the spring.

To study the pendulum dynamics, we need the angle h ¼
uðlÞ and the coordinates a and b of point D. We express
these three variables as functions of the force components X
and Y and of the torque sz(D). We then substitute P and Q
given by Eqs. (11) into Eqs. (10) and (12) to get

h ¼ A
Y

X
þ B

lsz Dð Þ
l

;

a ¼ l;

b ¼ Y

X
l 1� B½ � þ A

sz Dð Þ
X

;

(13)

where A � 1� ð1=coshvÞ and B � tanhðvÞ=v are dimension-
less quantities.

B. Second step: Dynamics of the pendulum

Let xG and yG be the coordinates of the pendulum center-
of-mass G. Newton’s equations then give

M
d2xG

dt2
¼ �X þMg; (14)

M
d2yG

dt2
¼ �Y; (15)

Mq2 d2h
dt2
¼ �sz Dð Þ þ h Y cos h� X sin hð Þ: (16)

Next we express xG and yG as functions of h, a, and b:

xG ¼ aþ h cos h � aþ h;

yG ¼ bþ h sin h � bþ hh;
(17)

where the approximate values retain only first-order terms in
h. We then rewrite Eqs. (14)–(16) in terms of a, b, and h.
Because xG is constant, Eq. (14) becomes simply X¼Mg,
and from this we deduce that

j ¼
ffiffiffiffiffiffiffi
Mg

l

s
¼

ffiffiffiffiffiffiffi
Mg

EIs

r
: (18)

We now have two equations relating the force component
Y and the torque component sz(D) to b and h, and two differ-
ential equations in b and h:

AY þ Bj2lsz Dð Þ ¼ Mgh;

1� B½ �lY þ Asz Dð Þ ¼ Mgb;

M
d2b

dt2
þMh

d2h
dt2
þ Y ¼ 0;

M q2 þ h2
� � d2h

dt2
þMh

d2b

dt2
þ gh

� �
þ sz Dð Þ ¼ 0: (19)

527 Am. J. Phys., Vol. 83, No. 6, June 2015 G. Dolfo and J. Vigu�e 527

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.120.230.185 On: Thu, 20 Aug 2015 09:48:12



With the last two equations, we can express Y and sz(D) as
functions of d2b/dt2, h, and d2h/dt2. We introduce these
results in the first two equations to get two coupled linear
differential equations:

d2b

dt2
Aþ Bv2 h

l

� �
þ d2h

dt2
Ahþ Bv2 q2 þ h2

l

� �

þ 1þ Bv2 h

l

� �
gh ¼ 0; (20)

d2b

dt2
1�Bð ÞlþAh½ �þd2h

dt2
1�Bð ÞhlþA q2þh2

� �	 

þg bþAhhð Þ¼0: (21)

There are many equivalent techniques for solving these
equations. We are looking for harmonic solutions with some
angular frequency X, so we note that b and h are both then
proportional to exp ðiXtÞ and we replace d2/dt2 by –X2. The
consistency of these two homogeneous equations then gives
an equation for X:

U
X2l

g

 !2

� V
X2l

g

 !
þW ¼ 0; (22)

where

U � q2 1� 2 tanh v=2ð Þ
v

� �
;

V � h2 þ hlþ l2 1

v tanh v
� 1

v2

� �
þ q2;

W � lhþ l2

v tanh v
:

(23)

We use a dimensionless frequency X2l/g so that the constants
U, V, and W have the same dimension. For each resonance,
the associated eigenvector gives the relative amplitudes of
b and h. We define a length k� b/h and we deduce k from
Eq. (20):

k ¼ lþ Bv2h
� �

g� Ahlþ Bv2 q2 þ h2
� �	 


X2

Alþ Bv2hð ÞX2
: (24)

In all cases, the pendulum motion is a rotation around a point
of the y-axis, and (l� k) measures the distance of the rotation
axis from the origin O.

IV. DISCUSSION OF THE RESULTS

We consider two limiting cases: v � 1 and v � 1. We
recall that the quantity v is dimensionless and given by

v¼jl, with j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mg=ðEIsÞ

p
(for a clock, a typical v value

is v¼ 2.1 and, in this case, the spring has only a small effect
on the clock frequency). We illustrate our results by consid-
ering a typical clock pendulum with a pendulum length
h� 1 m, a radius of gyration q� 5 cm, and a spring length
l� 1 cm, so that l� q� h, and we give approximate formu-
lae valid in this case.

A. Approximate solutions of Eq. (22)

The roots of Eq. (22) are

X ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

l

V6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � 4UW
p

2U

s
: (25)

These expressions are useful if one wants to calculate the
values of X, but the dependence of X with the various
parameters is not clear. When q is small, U is also small, and
an expansion of the lowest root of Eq. (22) in powers of U is
useful. We define Xi as the order-i approximation of the
low-frequency root. Then

X0 �
ffiffiffiffiffiffiffiffi
g

l

W

V

r
;

X1 � X0 1þ UW

2V2

� �
;

(26)

and the high-frequency root is approximately given by

X0 ¼
ffiffiffiffiffiffiffi
g

l

V

U

r
: (27)

B. The short-spring case: v � 1

For v � 1, we expand U, V, and W in powers of v, which
gives U�q2v2/12, V� h2þ hlþ q2þ l2/3, and W� lhþ l2/
v2. Then X0 is approximately

X0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g hþ l=v2ð Þ

h2 þ hlþ q2 þ l2=3

s
; (28)

and the first-order correction term UW/2V2 is very small for
the typical clock pendulum values. Equation (28) is similar
to the approximate result given by Eq. (3) with l2/4 replaced
by l2/3; we have no explanation of this small difference but
one must not forget that both results are approximate. We
are now able to complete the approximate theory of Sec. II
by expressing the spring stiffness as K¼�s(D)/h. We use
Eq. (13) and, because v� 1, we get A� 0, B� 1. The spring
stiffness is equal to

K � l
l
¼ EIs

l
: (29)

The high-frequency root X0 is given by

Fig. 3. The values of the low- and high-frequency roots X and X0 of Eq. (22)

are plotted as functions of v for a typical clock pendulum (h� 1 m,

q� 5 cm, and l� 1 cm). A typical v value for clocks is close to 2, for which

X is larger by only about 0.2% compared to if v were very large.
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X0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

g

l

h2 þ q2 þ hlþ l2=3

q2v2

� �s
: (30)

The ratio X0=X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12h3=v2q2l

p
is usually very large; with the

typical clock pendulum values, X0=X � 700=v (see Fig. 3).

C. The long-spring case: v� 1

When v � 1, the functions tanhðv=2Þ and tanhðvÞ both
tend to 1, and the expansions of U, V, and W up to the first
nonzero terms in 1/v are given by U� q2[1� (2/v)],
V� h2þ hlþq2þ l2/v, and W� hlþ l2/v. With the typical h,
q, and l values of a clock pendulum, the spring v value has
very small effects on U, V, and W and on the angular fre-
quencies of the two resonances. The low-frequency solution
is

X0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g hþ l=vð Þ

h2 þ hlþ q2 þ l2=v

s
: (31)

The first-order correction term is very small, UW/2V2 � 1.
The high-frequency root is

X0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

l

h2 þ hlþ q2 þ l2=v
q2 1� 2=vð Þ

� �s
�

ffiffiffiffiffiffiffi
gh2

lq2

s
: (32)

The ratio X0=X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h3=ðq2lÞ

p
is very large: X0=X � 200

with the typical l, h, and q values; the high-frequency oscil-
lation is usually difficult to observe.

We note that it is possible to considerably reduce the
X0=X ratio by a careful choice of the values of l, h, and q.
The X0=X ratio is lowest when the ratio 4UW/V2 is maxi-
mum. Moreover, as we assume v � 1, we may neglect the
v�1 terms and then 4UW/V2 is a function solely of l, h, and
q. Rather than attempting a global optimization, we consider
only the realistic case of a pendulum with a body made of a
small-diameter bar of length 2h. Then q2� h2/3, and the
maximum of 4UW/V2, obtained for l¼ 4h/3, is equal to
4UW/V2¼ 1/4, which leads to a ratio X0=X � 3:7. With such
a low value of this ratio, the high-frequency motion should
be easy to observe. We have recently built such a pendulum
and we have measured the frequencies of the two resonances
as a function of the length l, with preliminary results in satis-
factory agreement with the present theory.

D. The spring shape

Equation (24) suggests that k is positive for the low-
frequency resonance and negative for the high-frequency
resonance. We have numerically verified this property over a
wide range of parameters. The spring shape for the two
motions is shown for a particular case in Fig. 4.

E. Comparison to previous results

We now discuss the papers of Hughes8 and of Gleiser,9

which are connected to our work.
Hughes8 considered a pendulum made of a sphere sus-

pended by an infinitely soft string. He found two resonances:
one for the usual pendular motion and one for a rolling
motion in which the sphere oscillates about an axis very near
its center. For a soft string, the quantity l¼EIs goes to zero,

so that j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Mg=l

p
and v¼jl both tend toward infinity.

We have verified that, in the limit v!1, Eq. (22) is equiv-
alent to Eq. (5) of Hughes.8

Gleiser9 used a variational formalism to describe a pendu-
lum with arbitrary elastic properties and mass distribution.
He found that the value of the angular frequency is independ-
ent of the flexural rigidity at first order in this quantity,
denoted as j in his paper and equal to our l. This surprising
result can be easily explained. When l tends to 0, v ! 1
and the coefficients U, V, and W of Eq. (22) are of the form
CþDv�1, where C and D are constants. The low-frequency
root X has a similar form (C0 þ D0v�1) and, as v / 1=

ffiffiffi
l
p

;
X ¼ C0 þ D00

ffiffiffi
l
p

. This non-analytic behavior of X as a func-
tion of l is sufficient to explain the failure of a simple varia-
tional calculation. We may even remark that the variational
solution used by Gleiser to describe the shape of the spring is
a straight line, from point O to point D in our notation. This
form is correct if l¼ 0, but for any nonzero value of l, the
real shape of the spring must be tangent to the vertical axis
at O, a property not verified by his test solution.

We have calculated the shape of the spring for the pendu-
lar motion in the limit of a soft spring (v� 1), and get

u ¼ hð1� e�jxÞ; (33)

y xð Þ ¼ h x� 1� e�jx

j

� �
: (34)

Equation (33) shows that the angle u between the tangent to
the spring and the x-axis varies from 0 to its terminal value h
over a distance comparable to j�1. This means that the

Fig. 4. Spring shape for the low-frequency resonance (X¼ 60 rad/s) on the

left and the high-frequency resonance (X0 ¼ 3 800 rad=s) on the right. The

calculation is carried out using v¼ 2.1, l¼ 10 cm, h¼ 10 cm, and q¼ 5 cm.
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curvature of the spring is localized near the origin O, within
a distance that goes to 0 as

ffiffiffi
l
p

.

V. CONCLUSION

In this paper, we have given a more complete treatment of
a pendulum suspended by a spring. The spring shape is
described by the Euler-Bernoulli equation, and our treatment
is rigorous in the limit of small oscillations. Our calculation
predicts two resonances, one corresponding to the pendular
motion at low frequency and the other to a rolling motion at
high frequency. This result can be understood as a particular
case of a double pendulum, as already discussed by Hughes,8

where the spring is replaced by an infinitely soft string.
We have considered mainly the case of a typical clock

pendulum, where the suspension spring only slightly modi-
fies the angular frequency of the low-frequency resonance
associated to the usual pendular motion. The high-frequency
resonance occurs in that case at a considerably larger fre-
quency, so it is not easily observed. However, we have
shown that with a careful choice of the pendulum dimen-
sions, the ratio of these two frequencies can be considerably
reduced, and we have verified experimentally that both fre-
quencies can then be easily observed.
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