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Abstract
This paper reviews the recent theoretical and experimental advances in the study of ultra-cold
gases made of bosonic particles interacting via the long-range, anisotropic dipole–dipole
interaction, in addition to the short-range and isotropic contact interaction usually at work in
ultra-cold gases. The specific properties emerging from the dipolar interaction are emphasized,
from the mean-field regime valid for dilute Bose–Einstein condensates, to the strongly
correlated regimes reached for dipolar bosons in optical lattices.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

1.1. Bose–Einstein condensation and a new quantum era

The achievement of Bose–Einstein condensation (BEC) of
dilute gases in 1995 [1–3] marked the beginning of a new
era in atomic, molecular and optical physics and quantum
optics. For the AMO community it was immediately clear
that the specific experimental techniques of these fields
could be used to study problems usually encountered in
condensed matter physics: degenerate quantum many-body
systems. The condensed matter community at this stage
remained much more skeptical and argued that at the very end
what was achieved experimentally was the regime of weakly
interacting Bose gases, that had been thoroughly investigated
by condensed matter theorists in the 1950s and 1960s [4, 5].
For solid-state/condensed matter experts the very fact that
the AMO experiments dealt with confined systems of finite
size and typically inhomogeneous density was of technical,
rather than fundamental importance. Nevertheless, the Nobel
foundation decided to give its yearly prize in 2001 to Cornell,
Wieman and Ketterle ‘for the achievement of Bose–Einstein
condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensate’ [6, 7].
Today, from the perspective of some years, we see that due to
the efforts of the whole community these fundamental studies
have enriched amazingly the standard ‘condensed matter’
understanding of static and dynamical properties of weakly
interacting Bose gases [8].

At the same time, the AMO community continued the
efforts to extend the BEC physics toward new regimes and
new challenges. The progress in this direction was indeed
spectacular and at the beginning of the third millennium it is
clear both for AMO and condensed matter communities that
we are entering a truly new quantum era with unprecedented
possibilities of control on many-body systems. In particular
it became clear that the regime of strongly correlated systems
may be reached with ultra-cold atoms and/or molecules. Few
years after the first observation of BEC, atomic degenerate
Fermi gases [9–12] have been achieved. This has paved the
way toward the observations of Fermi superfluidity (described
in the weak interaction limit by Bardeen–Cooper–Schrieffer
(BCS) theory [5]), and the so-called BEC-BCS crossover in the
limit of strong correlations (for recent reviews of an enormous
activity in this field see [13, 14]). Even earlier, following
the seminal proposal by Jaksch et al [15], Greiner et al [16]
observed the signatures of the quantum phase transition from

the superfluid to the so-called Mott insulator state for bosons
confined in an optical lattice.

Nowadays, ultra-cold atomic and molecular systems are
at the frontier of modern quantum physics, and are seriously
considered to offer more control than solid-state systems. It
is generally believed that these systems will find highly non-
trivial applications in quantum information (either as quantum
simulators, i.e. quantum computers for a special purpose, or as
universal ones) or quantum metrology. At the level of theory a
fascinating ‘grand unification’ takes place: AMO, condensed
matter, nuclear physics and even high energy physics theorists
join their efforts to work on ultra-cold gases (for recent reviews
see [13, 14, 17]).

1.2. Interactions

Although quantum gases are very dilute systems (with densities
typically ranging from 1014 to 1015 cm−3), most of their
properties are governed by the interaction between particles.
Usually, in the ultra-cold regime characteristic of quantum
gases (temperatures in the nanokelvin range), only s-wave
scattering between particles can take place. This allows
one to replace the real interatomic potential (which at long
distances is the usual van der Waals interaction) by a pseudo-
potential, which is short range, isotropic and characterized by a
single parameter, the s-wave scattering length a. This contact
interaction potential reads as

Ucontact(r) = 4πh̄2a

m
δ(r) ≡ gδ(r), (1.1)

where m is the atomic mass. For a large number of atomic
species, the magnitude and even the sign of the scattering
length a can be tuned by means of an external magnetic
field. This phenomenon, called Feshbach resonance [18, 19],
has found multiple applications since its first experimental
observation in cold gases [20, 21].

Despite its simplicity, the interaction potential (1.1) is
responsible for an extremely rich variety of physical properties
of quantum gases. As we mentioned above, already for weakly
interacting Bose gases, well described by mean-field theory,
the interactions play a crucial role in the static and dynamic
properties of Bose–Einstein condensates [8, 22]; one of the
most fascinating properties they are responsible for is the
superfluid character of those gases. The interactions between
particles obviously play an even more crucial role in the very
active field concerning the study of strongly correlated systems
realized with ultra-cold atoms [14, 17].
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For all those reasons, in the last few years, there has
been a quest for realizing quantum gases with different, richer
interactions, in order to obtain even more interesting properties.
Several researchers, including8 Rza̧żewski, Shlyapnikov,
Zoller, Kurizki, You, DeMille, Baranov, Meystre, Pu and some
of us, have pointed out that the dipole–dipole interaction,
acting between particles having a permanent electric or
magnetic dipole moment, should lead to a novel kind of
degenerate quantum gas already in the weakly interacting limit.
Its effects should be even more pronounced in the strongly
correlated regime.

The dipole–dipole interaction has attracted huge interest
for two reasons:

• Significant experimental progress was made in recent
years in the cooling and trapping of polar molecules [23],
and of atomic species having a large magnetic moment.
For the case of polar molecules, a very promising
technique is to associate ultra-cold atoms by means of
Feshbach resonances, and then to use photoassociation
to bring the weakly bound Feshbach molecules to their
ground state [24]. In practice this technique requires a
very good phase stability of the involved lasers. A few
months ago Jin and Ye groups at JILA have been able to
create a gas of motionally ultra-cold rubidium–potassium
molecules in their ground rotovibrational state [25];
similar work was done in the group of Weidemüller with
LiCs molecules [26]. These amazing achievements open
the way toward degenerate gases with dominant dipole–
dipole interactions. For the case of magnetic dipoles,
Bose–Einstein condensation of 52Cr, a species with a
large magnetic moment of 6µB, was achieved in 2004
[27], and has since then allowed for the first experimental
investigations of the unique properties of dipolar quantum
gases [28]. Although the relative effect of the dipole forces
in chromium can be tuned using the Feshbach resonance
technique, they are typically smaller, or at most on the
same order as the van der Waals forces. Nevertheless
their influence on the physics of the chromium BEC is
stunning, as we shall see in the following.

• The properties of the dipole–dipole interaction are
radically different from the ones of the contact
interaction [29]. Indeed, one directly sees from expression
(2.2), giving the interaction energy between two dipoles
polarized along the same direction, that the dipole–dipole
interaction is long-range (it decays as 1/r3, where r

is the distance between the particles) and anisotropic
(the strength and sign of the interaction depend on
the angle θ between the polarization direction and the
relative position of the particles). Note that if one limits
oneself to neutral particles, the dipole–dipole interaction
is the only interaction between electric or magnetic
multipole moments which is long-range (interactions
between higher order multipoles decay fast enough at large
distances so that they can be replaced by a short range
contact pseudo-potential at low temperatures). Long
range and/or anisotropic interactions are known already, in

8 We apologize in advance if we have forgotten someone.

Figure 1. The Rosensweig instability [32] of a ferrofluid (a colloidal
dispersion in a carrier liquid of subdomain ferromagnetic particles,
with typical dimensions of 10 nm) in a magnetic field perpendicular
to its surface is a fascinating example of the novel physical
phenomena appearing in classical physics due to long range,
anisotropic interactions. Figure reprinted with permission
from [34]. Copyright 2007 by the American Physical Society.

classical fluids [30, 31], to lead to completely new physical
phenomena (see for example the case of ferrofluids [32] in
figure 1). Similarly, anisotropy of interactions lies behind
the fascinating physics of liquid crystals [33]. As we will
argue in this review, dipole interactions in quantum gases
also lead to a variety of novel, fascinating and sometimes
completely unexpected effects.

This review is organized as follows. After a brief
description of the main properties of the dipole–dipole
interaction (section 2) and of the systems in which it
can be studied (section 3), the mean-field theory for a
weakly interacting, polarized dipolar condensate is presented
(section 4). We derive here the non-local Gross–Pitaevskii
equation and discuss its applicability. In subsequent sections
we describe a number of properties of dipolar BECs, in
particular their static and dynamic properties (sections 5 and 6).
In section 7 we enter the very rich field of non-linear, non-
local atom optics with dipolar gases. Section 8 is devoted to
the physics of dipolar spinor condensates. Finally, strongly
correlated systems obtained by loading a dipolar BEC into
an optical lattice are described in section 9. Because of the
lack of space, some very interesting topics are not addressed
here; in particular, for a review of the properties of dipolar
Fermi gases and of (strongly correlated) rapidly rotating
dipolar condensates, the reader is referred to the recent review
article [35].

2. Dipole–dipole interaction

2.1. Properties of the dipole–dipole interaction

For two particles 1 and 2 with dipole moments along the
unit vectors e1 and e2, and whose relative position is r (see
figure 1(a)), the energy due to the dipole–dipole interaction
reads as

Udd(r) = Cdd

4π

(e1 · e2) r2 − 3 (e1 · r) (e2 · r)

r5
. (2.1)

The coupling constant Cdd is µ0µ
2 for particles having a

permanent magnetic dipole moment µ (µ0 is the permeability
of vacuum) and d2/ε0 for particles having a permanent electric
dipole moment d (ε0 is the permittivity of vacuum). For a
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polarized sample where all dipoles point in the same direction
z (figure 1(b)), this expression simplifies to

Udd(r) = Cdd

4π

1 − 3 cos2 θ

r3
, (2.2)

where θ is the angle between the direction of polarization and
the relative position of the particles. Two main properties of
the dipole–dipole interaction, namely its long-range (∼1/r3)
and anisotropic character, are obvious from (2.1) and (2.2),
and contrast strongly with the short-range, isotropic contact
interaction (1.1) usually at work between particles in ultra-cold
atom clouds.

Long-range character. In a system of particles interacting
via short-range interactions, the energy is extensive in the
thermodynamic limit. In contrast, in systems with long-range
interactions, the energy per particle does not depend only on
the density, but also on the total number of particles. It is easy
to see that a necessary condition for obtaining an extensive
energy is that the integral of the interaction potential U(r)

∫ ∞

r0

U(r) dDr, (2.3)

where D is the dimensionality of the system and r0 some short-
distance cutoff, converges at large distances. For interactions
decaying at large distances as 1/rn, this implies that one
needs to have D < n in order to consider the interaction
to be short range. Therefore, the dipole–dipole interaction
(n = 3) is long range in three dimensions, and short range
in one and two dimensions. For a more detailed discussion,
including alternative definitions of the long-range character of
a potential, the reader is referred to [36].

Anisotropy. The dipole–dipole interaction has the angular
symmetry of the Legendre polynomial of second order
P2(cos θ), i.e. d-wave. As θ varies between 0 and π/2, the
factor 1 − 3 cos2 θ varies between −2 and 1, and thus the
dipole–dipole interaction is repulsive for particles sitting side
by side, while it is attractive (with twice the strength of the
previous case) for dipoles in a ‘head-to-tail’ configuration
(see figures 2(c) and (d)). For the special value θm =
arccos(1/

√
3) ≃ 54.7◦—the so-called ‘magic angle’ used

in high resolution solid-state nuclear magnetic resonance
[37, 38]—the dipole–dipole interaction vanishes.

Scattering properties. Usually, the interaction potential
between two atoms separated by a distance r behaves like
−C6/r6 at large distances. For such a van der Waals potential,
one can show that in the limit of a vanishing collision energy,
only the s-wave scattering plays a role. This comes from the
general result stating that for a central potential falling off
at large distances as 1/rn, the scattering phase shifts δℓ(k)

scale, for k → 0, as k2ℓ+1 if ℓ < (n − 3)/2, and as kn−2

otherwise [39]. In the ultra-cold regime, the scattering is thus
fully characterized by the scattering length a. In the study
of quantum gases, the true interaction potential between the
atoms can then be replaced by a pseudo-potential having the

Figure 2. Two particles interacting via the dipole–dipole
interaction. (a) Non-polarized case; (b) polarized case; (c) two
polarized dipoles side by side repel each other (black arrows);
(d) two polarized dipoles in a ‘head-to-tail’ configuration attract
each other (black arrows).

same scattering length, the so-called contact interaction given
by (1.1).

In the case of the dipole–dipole interaction, the slow decay
as 1/r3 at large distances implies that for all ℓ, δℓ ∼ k
at low momentum, and all partial waves contribute to the
scattering amplitude. Moreover, due to the anisotropy of the
dipole–dipole interaction, partial waves with different angular
momenta couple with each other. Therefore, one cannot
replace the true potential by a short-range, isotropic contact
interaction. This specificity of the dipolar interaction has an
interesting consequence in the case of a polarized Fermi gas:
contrary to the case of a short-range interaction, which freezes
out at low temperature, the collision cross section for identical
fermions interacting via the dipole–dipole interaction does not
vanish even at zero temperature. This could be used to perform
evaporative cooling of polarized fermions, without the need for
sympathetic cooling via a bosonic species.

Dipolar interactions also play an important role in
determining inelastic scattering properties. In particular,
because of its anisotropy, the dipole–dipole interaction can
induce spin–flips, leading to dipolar relaxation. The cross-
section for dipolar relaxation scales with the cube of the dipole
moment [40], and therefore plays a crucial role in strongly
dipolar systems (see section 3.4.1). Dipolar relaxation is
usually a nuisance, but can in fact be used to implement
novel cooling schemes inspired by adiabatic demagnetization
as described in section 3.4.3.

Fourier transform. In view of studying the elementary
excitations in a dipolar condensate, as well as for numerical
calculations, it is convenient to use the Fourier transform of
the dipole–dipole interaction. The Fourier transform

Ũdd(k) =
∫

Udd(r)e−ik·r d3r (2.4)

of (2.2) reads as

Ũdd(k) = Cdd(cos2 α − 1/3), (2.5)
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Figure 3. Tuning of the dipole–dipole interaction can be obtained
by making the dipoles precess around z using a rotating field.

where α is the angle between k and the polarization direction
(see appendix A). Remarkably, in three dimensions, the
Fourier transform of the dipole–dipole interaction does not
depend on the modulus of the wavevector k, a feature which
is shared by the contact interaction (1.1), whose Fourier
transform is simply g.

2.2. Tuning of the dipole–dipole interaction

By using a rotating polarizing field, it is possible, by time-
averaging, to tune the dipole–dipole interaction, namely to
reduce its effective strength and even change its sign [41]. For
definiteness we consider here the case of magnetic dipoles µ in
a magnetic field B(t) = Be(t) (see figure 3). The unit vector
e(t) = cos ϕez +sin ϕ[cos((t)ex +sin((t)ey] is rotated about
the z-axis on a cone of aperture 2ϕ at an angular frequency (

which is small compared with the Larmor frequency µB/h̄, but
much larger than the trapping frequencies. Then, only the time
average over a period 2π/( of the dipole–dipole interaction
(2.1) with e1 = e2 = e(t) plays a role in determining the
properties of the gas. This time-averaged potential reads as

⟨Udd(t)⟩ = Cdd

4π

1 − 3 cos2 θ

r3

[
3 cos2 ϕ − 1

2

]
. (2.6)

The last factor between brackets decreases from 1 to −1/2
when the tilt angle ϕ varies from 0 to π/2, and vanishes when
ϕ is equal to the magic angle θm. The ‘inverted’ configuration
(ϕ > θm) in which the averaged dipole–dipole interaction is
attractive for particles sitting side by side, allows exploration
of otherwise inaccessible physics (see section 7 for some
examples of applications).

3. Creation of a dipolar gas

In order to realize a quantum gas with significant dipole–dipole
interactions, one can use particles having either an electric
dipole moment d or a magnetic dipole moment µ. Usually, the
dipolar coupling is much higher in the electric case. Indeed,

Table 1. Dipolar constants for various atomic and molecular
species. For the molecular species, the (yet unknown) scattering
length is assumed to be 100 a0 (as the C6 coefficient of the dimer is
comparable to that of a single atom, the order of magnitude of the
scattering length is similar, but obviously the actual value highly
depends on the details of the potential).

Species Dipole moment add εdd

87Rb 1.0 µB 0.7 a0 0.007
52Cr 6.0 µB 16 a0 0.16
KRb 0.6 D 2.0 × 103a0 20
ND3 1.5 D 3.6 × 103 a0 36
HCN 3.0 D 2.4 × 104 a0 240

the typical order of magnitude of d for an atomic or molecular
system is d ∼ qea0, where qe is the electron charge and a0

the Bohr radius, while the magnetic moments are on the order
of the Bohr magneton µB. Using the definitions of a0 and µB

in terms of fundamental constants, one sees that the ratio of
magnetic to electric dipolar coupling constants is

µ0µ
2

d2/ε0
∼ α2 ∼ 10−4, (3.1)

where α ≃ 1/137 is the fine structure constant.
For a given species, it is convenient to define various

quantities to quantify the strength of the dipolar interaction.
From the dipole moment (i.e. the dipolar coupling constant
Cdd) and the mass m of the particle, one can define the
following length:

add ≡ Cddm

12πh̄2 . (3.2)

This ‘dipolar length’ is a measure of the absolute strength of the
dipole–dipole interaction. However, in some circumstances, it
is the ratio

εdd ≡ add

a
= Cdd

3g
(3.3)

of the dipolar length to the s-wave scattering length, comparing
the relative strength of the dipolar and contact interactions,
which determines the physical properties of the system. This
dipolar parameter needs to be non-negligible if one wants
to observe dipolar effects. The numerical factors in (3.2)
are chosen in such a way that for εdd ! 1 a homogeneous
condensate is unstable against 3D collapse (see section 5.1).
Table 1 summarizes some typical numerical values of the
dipolar constants for various atomic and molecular species.

In this section, we review the different systems that can
be used in principle to study experimentally the effect of the
dipole–dipole interaction in degenerate quantum gases. We
first address the various candidates having an electric dipole
moment, either static or induced by a laser. The case of
magnetic dipoles (the only system to date in which strong
dipolar effects in a quantum gas have been observed) is then
described, with an emphasis on the experimental techniques
used to achieve Bose–Einstein condensation of chromium.

3.1. Polar molecules

Due to their strong electric dipole moment, polar molecules are
ideal candidates to show dipolar effects. Three requirements
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need to be fulfilled in order for a molecule to have a significant
dipole moment:

(i) a heteronuclear molecule, having a permanent dipole
moment, is needed9;

(ii) the molecule must be in a low rovibrational state in order to
have a dipole moment whose magnitude is not vanishingly
small (as would be the case for a highly excited vibrational
state, especially for Feshbach molecules; indeed, the
dipole moment scales asymptotically as R−7 with the
internuclear separation R [44]) and to be stable against
collisional relaxation;

(iii) an external electric field (with a typical value on the order
of 104 V cm−1) must be applied to orient the molecule
in the laboratory frame and approach the asymptotic
value of the permanent electric dipole moment along the
internuclear axis (indeed, the ground state J = 0 is
rotationally symmetric and therefore the dipole moment
averages to zero; only via a mixing with higher rotational
levels, induced by the electric field, does the average
dipole become non-zero, see appendix B). Note that this
effect can be used to tune the strength of the dipole–
dipole interaction (but not its sign, unlike the rotating
field method described in section 2.2). Using additional
microwave fields allows for advanced tailoring of the
interactions between molecules [45].

If these requirements are met, the dipole moment is on the order
of one Debye (1 D ≃ 3.335 × 10−30 C m). Assuming that the
order of magnitude for the scattering length is similar to that of
atoms commonly used in BEC experiments (typically around
100 a0), the corresponding value of εdd is on the order of 100
(see table 1), meaning that the properties of such a quantum
gas would be dominated by the dipole–dipole interaction.

Quantum degenerate gases of polar molecules are a ‘Holy
Grail’ of experimental molecular physics. Progress has been
made recently in cooling of molecules, with techniques such
as Stark deceleration (see, e.g. [46] for a review) or buffer-gas
cooling [47–49], but the densities and temperatures achieved
so far are still orders of magnitude away from the quantum
degenerate regime. A very promising approach to degeneracy,
actively explored by several groups [24–26], is to start from
already ultra-cold atomic mixtures and then use a Feshbach
resonance to create heteronuclear molecules [18]. Created in
a highly excited vibrational state, they must then be brought to
the vibrational ground state, e.g. by photoassociation using
STIRAP processes, as demonstrated recently [25, 26]. A
recent review on cold and ultracold molecules is given in [50].

3.2. Rydberg atoms

Extraordinarily large electric dipole moments can be obtained
for highly excited Rydberg atoms. As the Kepler radius—
and thus the dipole moment—scales with n2, where n is the
main quantum number, the dipolar interaction energy can in
principle scale as n4. Individual Rydberg atoms experience

9 Note, however, that exotic homonuclear molecules, such as the ultra-long-
range Rydberg molecules predicted in [42] and recently observed in [43], can
have a permanent dipole moment.

lifetimes which scale with n−3. However, due to the weak
binding of the valence electrons and the strong and partially
attractive forces between Rydberg atoms, the lifetime of a
dense gas is limited to time scales much shorter than the
lifetime of a free Rydberg atom [51]. Therefore, Rydberg
atoms in a BEC [52] are currently investigated as a frozen
gas. Collective behavior in the excitation dynamics has
been observed, as well as the excitation blockade due to
dipolar interactions [53]. However, hydrodynamic collective
phenomena due to moving dipoles have not been observed to
date. Besides the static dipolar interaction also van der Waals
interactions (∝n11) and ac dipolar interactions can occur if
neighboring energy levels allow for resonant energy transfer
via a so-called Förster resonance.

3.3. Light-induced dipoles

Atoms in their ground state, which is a parity eigenstate, do not
possess an electric dipole moment. Their electric polarizability
is usually very small, such that extreme electric field strengths
would be necessary to induce a sizable dipolar interaction
[54–56]. Following Kurizki and co-workers, one might
consider using resonant excitation of a dipole optical allowed
transition to induce an ac dipole moment on the order of one
atomic unit ea0. However, as this dipole moment also couples
to the vacuum modes of the radiation field, the spontaneous
light forces scale just as the light-induced dipolar interactions
which makes their observation very difficult. Nevertheless, the
anisotropic nature of the interaction might be used for a proof
of principle experiment, which would allow discrimination
of the spontaneous light forces from the dipolar forces [57].
Such interactions have the same form as retarded interactions
between two dipoles [58]: they contain 1/r3, 1/r2 and radiative
1/r terms multiplied by the appropriate factors oscillating
with the spatial period of the laser wavelength. Using an
arrangement of several laser fields it has been proposed to
cancel all anisotropic 1/r3 terms, leaving an effective isotropic,
gravity-like 1/r potential [59–62]. In some situations this may
lead to self-trapping of the BEC. Even before the discovery of
the roton instability [63] discussed in section 5.6, a similar
effect was predicted in a gas with laser-induced dipole–dipole
interactions [60]. Such interactions lead naturally to density
modulations of the BEC as in supersolid [62], and other effects,
such as one-dimensional compression of the condensate [61] or
squeezing [64]. Laser-induced interactions lead in particular to
interesting density modulations in the condensate, somewhat
analogous to self-assembled ‘supersolids’ (see section 9.4).
Due to the above mentioned limitations caused by spontaneous
emission, these proposals have not been realized yet. The
situation in this respect might be more promising if one uses
CO2 lasers [65]. Molecules polarized by microwave fields also
offer interesting perspectives10.

3.4. Magnetic dipoles

In alkali atoms, the maximum magnetic moment in the ground
state is of one Bohr magneton (µB), and thus the magnetic
dipolar effects are very weak. However, very recently, dipolar
10 O’Dell D, private communication.
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effects have been observed in spinor 87Rb condensates (see
section 8) and in condensates with a very small scattering
length (obtained using a Feshbach resonance), either by
studying the size of the condensate (case of 7Li, see section 5.2)
or by using atom interferometry (case of 39K, see section 9.2).

Some other atoms, such as chromium, erbium, europium,
dysprosium and others, have a large magnetic moment of
several Bohr magnetons in their ground state, and thus
experience significant magnetic dipole–dipole interaction.
Among them, only 52Cr has been Bose-condensed to date
[27, 66]. Chromium has a magnetic dipole moment of 6 µB,
and a scattering length of about 100 a0 [67]. This gives
εdd ≃ 0.16 [68], which allows one to observe a perturbative
effect of the dipolar interaction on the expansion dynamics of
the cloud [69]. Here we briefly describe the main steps leading
to the creation of a 52Cr BEC, with a special emphasis on the
specificities arising from the dipole–dipole interaction.

3.4.1. Creation of a BEC of 52Cr. Chromium can be laser
cooled using the 7S3 ↔ 7P4 transition at 425.6 nm (see
figure 4). However, strong excited state collisions limit the
density in a magneto-optical trap (MOT) to relatively low
values [70]. Therefore, in a typical MOT configuration, the
steady state atom number in a Cr MOT is limited to a few
106. In addition the cooling transition is not closed, as there
is a decay channel from the 7P4 state to the metastable state
5D4 (via an intercombination transition) with a branching ratio
of approximately 1 : 250 000. These facts seem to rule out
any hope of achieving Bose condensation of chromium by
standard methods. However, the atoms in the metastable
state have a magnetic dipole moment of 6 µB which is strong
enough so that they remain magnetically trapped in the
inhomogeneous magnetic field configuration of the MOT. One
can thus accumulate large atom numbers in the metastable state
5D4 (where they are decoupled from the MOT light and thus
do not suffer from excited state collisions), and then, at the end
of the MOT phase, repump them using light at 663.2 nm. In
this way, one ends up with more than 108 ground state atoms
magnetically trapped. In [71], the magnetic field configuration
of the MOT was modified to that of an Ioffe–Pritchard trap,
allowing a continuous loading of a magnetic trap, in which rf
evaporative cooling could be performed.

However, when the density in the magnetic trap becomes
too high, one cannot gain anymore in phase-space density
due to increasing dipolar relaxation. This two-body loss
mechanism, in which the spin of one of the colliding atoms
is flipped (this is allowed as the dipole–dipole interaction does
not conserve the spin, but only the total angular momentum),
is especially important for chromium, compared with the
case of alkalis, as its cross section scales as the cube of
the magnetic dipole moment. Typical relaxation rates of
β ∼ 10−12 cm−3 s−1 were measured in 52Cr at magnetic fields
of about 1 G [40], thus preventing the achievement of BEC in
the (magnetically trapped) low-field seeking state mS = +3.

The way to circumvent dipolar relaxation is to optically
pump the atoms into the absolute ground state mS = −3 (via
the 7S3 ↔ 7P3 transition at 427.6 nm, see figure 4) and hold
them in an optical dipole trap. Then, in the presence of a

Figure 4. Scheme of the energy levels of 52Cr relevant for the
realization of a 52Cr BEC. The inset (in gray) gives details of the
optical pumping.

magnetic field such that the Zeeman splitting between adjacent
spin states is much higher than the thermal energy, dipolar
relaxation is energetically forbidden. One can then perform
evaporative cooling in the dipole trap and obtain a chromium
condensate [27]. Recently, an alternative method has been
used to obtain 52Cr condensates, using direct loading of the
optical dipole trap [66].

3.4.2. Feshbach resonances in 52Cr. A very appealing
feature of 52Cr is the existence of several Feshbach resonances.
These allow tuning of the scattering length a, which, close to
resonance, varies with the applied external magnetic field B as

a = abg

(
1 − *

B − B0

)
, (3.4)

where abg is the background scattering length, B0 is the
resonance position (where a diverges) and * the resonance
width. In order to study the effect of the dipole–dipole
interaction in a BEC, it is of course interesting to use the
Feshbach resonance to reduce the scattering length toward zero
by approaching B0 + * from above, thus enhancing εdd.

In 52Cr, for magnetic fields B below 600 G, a total of
14 resonances were found by monitoring inelastic losses in
a thermal cloud of atoms in the |7S3, mS = −3⟩ state [72].
An accurate assignment of the resonances was possible
by considering the selection rules and the shifts of the
resonances imposed by the dipole–dipole interaction only.
In contrast to other atomic species, the dipolar contribution
is therefore dominant as compared with other coupling
mechanisms, such as second order spin-orbit coupling, which
have the same symmetry. The inclusion of dipole–dipole
interaction in multichannel calculations [72] gave a theoretical
understanding of the width * of the various resonances, which
turns out to be relatively small (the broadest one, located at
B0 = 589 G, having a predicted width of * = 1.7 G only).

In [73], this resonance was used to enhance dipolar effects
in a BEC. An active control of the magnetic field at the level
of 3 × 10−5 in relative value was implemented, allowing
for a control of a at the level of ∼a0. Figure 5 shows the
measured variation of a, inferred from the released energy
during expansion (see section 6.2).
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Figure 5. (a) Measured variation of the scattering length across the
589 G Feshbach resonance in 52Cr [73]. (b) Absorption images of
the condensate after expansion for different values of the magnetic
field. One clearly observes a decrease in size and an increase in
ellipticity when a decreases.

3.4.3. Demagnetization cooling. The large magnetic dipole
moment of 52Cr is responsible for strong spin-flip collisions,
which, as we have seen above, prevent condensation of Cr in
a magnetic trap. However, these inelastic collisions can be
used to implement a novel cooling scheme, proposed in [74]
and demonstrated experimentally in [75]. This technique is
inspired by the well-known adiabatic demagnetization used
in solid-state physics to cool paramagnetic salts [76]. In
the context of cold atoms this scheme was proposed for the
first time in [77], and termed ‘elevator cooling’. Particularly
important was the analysis of the limitations of the scheme due
to reabsorption effects in the Raman repumping process.

The principle of this novel cooling mechanism is
represented schematically in figure 6. Dipolar relaxation
introduces a coupling between spin and external degrees of
freedom. It can thus be used to cool an atomic cloud by
letting a sample, initially polarized in the lowest energy state
(in a field B0 ≫ kBT0/µ, where T0 is the cloud temperature),
relax toward full thermal equilibrium at a field B1 ∼ kBT0/µ:
energy is then absorbed by the spin reservoir at the expense
of the kinetic energy (see figure 6). The temperature of the
sample thus decreases, by an amount which can be up to a
few tens of per cent. By optical pumping, the sample can be
polarized again, and a new cycle can begin. One can also
use a continuous cooling scheme, with the optical pumping
light always on, and a ramp in magnetic field. This scheme
can be seen as an evaporation process (where one selects the
most energetic particles in the cloud) in which the evaporated
particles have their energy decreased and are then ‘recycled’
by injecting them back into the trap; it is therefore lossless.

Note that this scheme is applicable for all dipolar species
with a large enough dipolar relaxation rate. This rate scales as
the third power of the electronic spin. There could even be a
variant of this cooling technique for electric dipole moments in
heteronuclear molecules. As under optimized conditions any
scattered photon in the cooling cycle takes more energy than
the mean motional energy, the number of required photons for a
certain cooling rate is much lower than in regular laser cooling
techniques. Therefore the requirements for the closedness
of an optical transition used here are much less stringent as
compared with regular laser cooling techniques.

This scheme has been successfully applied to Cr, allowing
for a reduction of the cloud temperature by a factor of two (from
20 to 11 µK), with almost no atom loss [75]. This cooling
technique is therefore much more efficient than evaporative
cooling, where the decrease in atom number is large. An
important figure of merit for cooling schemes in view of
obtaining quantum degeneracy is the gain χ in phase-space
density ρ per atom loss:

χ ≡ − d ln ρ

d ln N
. (3.5)

For evaporative cooling, χ is limited in practice11 to values of
about 4. In [75], the measured efficiency of demagnetization
cooling reached χ ≃ 11.

The practical limitations in view of achieving lower
temperatures lie essentially in the control of the polarization of
the optical pumping light, as any residual σ + component yields
a heating of the cloud, and in the control of stray magnetic
fields at the milligauss level. However, the recoil temperature
should be attainable in principle with this technique [77], which
could be used, in the future, to realize dipolar condensates with
large atom numbers. Note that the dipolar coupling mechanism
between spin and motional degrees of freedom demonstrated in
this cooling experiment is the same as the one employed in the
proposals to observe the quantum version of the Einstein–de
Haas effect, as explained in section 8.

4. Non-local Gross–Pitaevskii equation

Dipolar interactions are expected to change many of the
properties of the gas, even in the non-degenerate case, where
thermodynamical quantities can be affected. For example,
dipolar interactions lead to a shift in the critical temperature
for condensation [78, 79], which, although negligible for Cr
condensates, could be significant for strongly dipolar systems
made out of polar molecules. However, the most dramatic
effects of the dipolar interactions arise for pure condensates.
In the sections below, unless otherwise stated, we thus consider
the case of a gas at zero temperature.

4.1. Pseudo-potential and Gross–Pitaevskii equation

To describe dilute (and therefore weakly interacting) BECs
at zero temperature, the mean-field approach gives extremely

11 Using a higher evaporation threshold increases χ , but the evaporation time
then increases prohibitively.
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Figure 6. Principle of demagnetization cooling. (a) If the magnetic field is large enough so that the Zeeman splitting *E between adjacent
Zeeman sublevels is much higher than the thermal energy kBT , dipolar relaxation is energetically suppressed, and the system, fully polarized
in mS = −S, is stable. (b) If one reduces the magnetic field so that *E ∼ kBT , dipolar relaxation occurs, and some kinetic energy is
converted into Zeeman energy. (c) By applying an optical pumping pulse of σ− polarized light, one can polarize the cloud again, but with a
decrease in the temperature since the optical pumping process deposits an energy which is only on the order of the recoil energy. The excess
Zeeman energy is taken away by the spontaneously emitted photons.

good results [8, 22]. In the case of short-range van der Waals
interactions and low energy scattering further simplification
can be made, namely the van der Waals interaction potential
VvdW(r − r′) may be replaced by the pseudo-potential

4πh̄2a

m
δ(r − r′)

∂

∂|r − r′|
|r − r′|. (4.1)

This result has been obtained for the first time in the seminal
paper by Huang and Yang [80] for the case of a gas of
hard spheres. It has however more general meaning and
holds for arbitrary short-range potentials. In the language of
many-body theory it is the result of the T -matrix, or ladder
approximation applied to many-body systems [4]. It amounts
to the resummation of diagrams corresponding to multiple
two-body scattering. Note that when acting on a non-singular
function, the pseudo-potential is not different from the simple
contact (Fermi) potential 4πh̄2aδ(r − r′)/m. This is however
not true when we deal with singular, yet square integrable
functions. In fact, strictly speaking, the contact potential
4πh̄2aδ(r − r′)/m is mathematically ill-defined [81].

In the mean-field theory, where the use of contact
interactions is legitimate, the order parameter ψ(r, t) of the
condensate is the solution of the Gross–Pitaevskii equation
(GPE) [8]:

ih̄
∂ψ

∂t
= − h̄2

2m
△ψ + (Vext + g|ψ |2)ψ. (4.2)

The non-linear term proportional to g accounts for the effect
of interactions within the mean-field approximation, and Vext

denotes the external potential. The normalization of ψ chosen
here is

∫
|ψ |2 = N , where N is the total atom number.

4.2. Validity of non-local Gross–Pitaevskii equation

In the simple man’s approach, to include dipolar effects, one
just needs to add an extra term to the mean-field potential g|ψ |2
to account for the effect of the dipole–dipole interaction, and

one gets

ih̄
∂ψ

∂t
= − h̄2

2m
△ψ + (Vext + g|ψ |2 + 0dd)ψ, (4.3)

where 0dd is the dipolar contribution to the mean-field
interaction:

0dd(r, t) =
∫

|ψ(r′, t)|2 Udd(r − r′) d3r ′. (4.4)

This term is non-local (due to the long-range character of the
dipolar interaction) and makes it much more complicated to
solve the GPE, even numerically, as one now faces an integro-
differential equation. In the time-independent case, the left-
hand side of the above equation has to be replaced by µψ , with
µ the chemical potential, and the GPE becomes

− h̄2

2m
△ψ + (Vext + g|ψ |2 + 0dd)ψ = µψ. (4.5)

It should be stressed that, due to the long-range and
anisotropic character of the dipole–dipole interactions, it is
by no means obvious that one can put the pseudo-potential
and the real potential into one single equation—obviously this
implies that the long- and short-range physics can somehow
be treated separately.

Questions concerning the validity of (4.4) were a subject
of intensive studies in recent years. In their pioneering
papers, You and Yi [55, 56] have constructed, in the spirit
of the ladder approximation, a pseudo-potential for the
general case of anisotropic potentials. Their results were
rigorous, but perturbative, in the sense that the Born scattering
amplitude from the pseudo-potential reproduced the exact
one. The conclusion was that, away from shape resonances,
the generalized GPE (4.4) is valid, and the effective pseudo-
potential has the form (assuming for instance that we deal with
electric dipoles)

Veff(r − r′) = 4πh̄2a(d)

m
δ(r − r′)

∂

∂|r − r′|
|r − r′|

+
1

4πε0

d2 − 3(n · d)2

|r − r′|3
, (4.6)
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where n = (r − r′)/|r − r′|, whereas a(d) depends
effectively on the strength of the dipole moment d = |d| (see
also [83]).

Derevianko succeeded in deriving a more rigorous version
of the pseudo-potential with a velocity dependence [82], which
was then used in [84] to calibrate the dipole interactions. The
author predicted that the effects of dipole interactions should
be significantly enhanced due to the velocity dependent part of
the pseudo-potential. Unfortunately, these conclusions were
too optimistic due to some incorrect factors in the expressions
of [82, 85, 86].

Further important contributions to these questions came
from Bohn and Blume [87, 88]. These authors studied the
instability and collapse of the trapped dipolar gas and compared
the mean-field (MF) results with diffusive Monte Carlo (DMC)
calculations. The DMC results agreed quite accurately with
the MF ones, provided the variation of the s-wave scattering
length with the dipole moment was properly taken into account.
In fact, this dependence had been already noted in [55, 56], and
can be traced back to the fact that the rigorous form of dipole–
dipole interactions contains already a contact δ(r) term [58].
Very careful discussion of the differences between the GPE
approach, and more exact numerical results of diffusive
quantum Monte Carlo methods, were presented recently by
Astrakharchik et al [89]. These authors point out several
differences between DMC and GPE results in a wide range
of parameters, especially reflected in the frequency of the low
energy excitation ‘breathing’ mode. Very recently, Wang [90]
has managed to derive a general effective many-body theory
for polar molecules in the strongly interacting regime. Wang’s
approach allows one to go beyond the Born approximation
approach of Yi and You. One of the surprising results is that
close to shape resonances, anisotropic effects of dipole–dipole
interactions are strongly reduced. Phonon dispersion relations
scale as

√
|p| as in the case of a Coulomb gas.

4.3. Variational approach and hydrodynamics

The time-independent GPE can be obtained from the
minimization of the energy functional:

E[ψ] =
∫ [

h̄2

2m
|∇ψ |2 + Vtrap|ψ |2 +

g

2
|ψ |4

+
1
2
|ψ |2

∫
Udd(r − r′)|ψ(r′)|2 d3r ′

]
d3r. (4.7)

In this context the chemical potential appears simply
as a Lagrange multiplier arising from the constraint on
the normalization of the macroscopic wavefunction ψ .
Minimizing the energy functional (4.7) within a space of trial
wavefunctions depending on a small number of variational
parameters is a convenient way to approach in a simple
manner a variety of problems; a typical example being the trap
geometry dependence of the stability of a dipolar BEC (see
section 5.3). Variational approaches can be extended to the
time-dependent case by replacing the energy functional (4.7)
by an appropriate Lagrange action [91, 92].

A useful reformulation of the Gross–Pitaevskii equation
is obtained by writing ψ =

√
n exp(iS), with n the atomic

density and S the phase of the order parameter, related to the
superfluid velocity field by v = (h̄/m)∇S. Substituting this
expression in (4.3) and separating real and imaginary parts,
one gets the following set of hydrodynamic equations:

∂n

∂t
+ ∇ · (nv) = 0, (4.8)

which is nothing more than the equation of continuity
expressing the conservation of mass, and an Euler-like
equation:

m
∂v

∂t
= −∇

(
mv2

2
+ gn + Vext + 0dd − h̄2

2m

△
√

n√
n

)
. (4.9)

The last term in (4.9), proportional to the Laplacian of
√

n is
the quantum pressure term arising from inhomogeneities in the
density and vanishes in the limit of BECs containing a large
number of atoms (Thomas–Fermi limit, see section 5.4).

5. Ground-state properties and excitations

5.1. Homogeneous gas: phonon instability

Because of the partially attractive character of the dipole–
dipole interaction, the stability of a dipolar BEC is a problem
that needs to be addressed. Indeed it is well known [8] that a
homogeneous condensate with attractive contact interactions
(a < 0) is unstable, as the Bogoliubov excitations have
imaginary frequencies at low momentum.

We consider here a homogeneous dipolar condensate,
having an equilibrium densityn0. By considering small density
and velocity perturbations with frequency ω and wavevector
k, and linearizing the hydrodynamic equations (4.8) and (4.9)
around equilibrium, one can show that the excitation spectrum
is given by

ω = k

√
n0

m

[
g +

Cdd

3
(3 cos2 α − 1)

]
+

h̄2k2

4m2
, (5.1)

which corresponds to the usual Bogoliubov spectrum ω =
k
√

gn0/m + h̄2k2/(4m2) [8] with the Fourier transform g of
the contact interaction (1.1) complemented by that (2.5) of the
dipole–dipole interaction. With the definition (3.3) for εdd,
(5.1) implies that a dipolar uniform condensate is unstable for
εdd > 1, as phonons (k → 0) acquire imaginary frequencies,
the most unstable situation being in the case of a direction of
the wavevector perpendicular to the orientation of the dipoles
(α = π/2). At first sight, this might seem counterintuitive:
as dipoles side by side repel each other, one could conclude
(wrongly) that the most unstable phonons correspond to those
for which k is parallel to the dipoles. Figure 7 shows how one
can understand intuitively this behavior.

5.2. Trapped gas: elongation of the cloud

As in the case of a BEC with contact interactions, in the
presence of an external trap (usually harmonic in experiments)
new properties arise for a dipolar condensate. A prominent
effect of the dipole–dipole interaction is to elongate the
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k

k

Figure 7. (a) A phonon with k perpendicular to the direction of
dipoles (α = π/2) creates planes of higher density (light gray), in
which the dipoles are in the plane, corresponding to an instability
(see section 5.3 for a discussion of the geometry dependence of the
stability of a trapped dipolar gas). (b) For k parallel to the direction
of dipoles (α = 0) the dipoles point out of the planes of high
density; such a perturbation is thus stable.

B

Figure 8. (a) Inverted parabola density distribution n(r) in the
Thomas–Fermi regime in the absence of dipole–dipole interaction.
(b) Saddle-like mean-field dipolar potential (5.2) induced by the
density distribution displayed in (a).

condensate along the direction z along which the dipoles are
oriented [56, 93, 94]. This magnetostriction effect (a change
of the shape and volume of the atomic cloud due to internal
magnetic forces) can be understood in a very simple way
for a spherically symmetric trap (of angular frequency ω)
in the perturbative regime εdd ≪ 1. To zeroth order, the
density distribution is given, in the Thomas–Fermi limit, by
n(r) = n0(1 − r2/R2), where R is the Thomas–Fermi radius
of the condensate (see figure 8(a)). One can then calculate to
first order in εdd the mean-field dipolar potential (4.4) created
by this distribution; one finds [41]

0dd(r) = εdd
mω2

5
(1 − 3 cos2 θ)

⎧
⎨

⎩

r2 if r < R,

R5

r3
if r > R,

(5.2)

i.e. the dipolar mean-field potential has the shape of a saddle,
with minima located on the z-axis (see figure 8(b)). It is
therefore energetically favorable for the cloud to become

elongated along z. One can actually show that this conclusion
remains valid even if the cloud is anisotropic, and for larger
values of εdd [95–97].

Very recently, the spatial extent of a 7Li BEC was
studied as a function of the scattering length close to a
Feshbach resonance [98]. For very small scattering lengths, the
elongation effect due to the dipole–dipole interaction could be
seen unambiguously, in spite of the small value of the magnetic
dipole moment.

5.3. Trapped gas: geometrical stabilization

A BEC with pure contact attractive interactions (a < 0) is
unstable in the homogeneous case, but, in a trap, stabilization
by the quantum pressure can occur for small atom numbers,
namely if

N |a|
aho

" 0.58, (5.3)

where N is the atom number and aho =
√

h̄/(mω) is the
harmonic oscillator length corresponding to the trap frequency
ω [99]. Here the trap has been supposed isotropic, but, for
anisotropic traps, the dependence on the trap geometry is
weak [100].

The situation is radically different in the case of a BEC
with dipolar interactions. Due to the anisotropy of the dipole–
dipole interaction, the partially attractive character of the
interaction can be ‘hidden’ by confining the atoms more
strongly in the direction along which the dipoles are aligned.
Let us consider for simplicity a cylindrically symmetric trap,
with a symmetry axis z coinciding with the orientation of the
dipoles. The axial (resp. radial) trapping frequency is denoted
as ωz (respectively ωρ). It is then intuitively clear that for a
prolate trap (aspect ratio λ = ωz/ωρ < 1), the dipole–dipole
interaction is essentially attractive, and in such a trap a dipolar
BEC should be unstable, even in the presence of a (weak)
repulsive contact interaction (see figure 9(a)). In contrast, in
a very oblate trap, the dipole–dipole interaction is essentially
repulsive, leading to a stable BEC even in the presence of weak
attractive contact interactions (see figure 9(b)). One therefore
expects that, for a given value of λ, there exists a critical value
acrit of the scattering length below which a dipolar BEC is
unstable; from the discussion above, acrit should intuitively be
a decreasing function of λ, and the asymptotic value of acrit for
λ → 0 (respectively λ → ∞) should be positive (respectively
negative).

A simple way to go beyond this qualitative picture and
obtain an estimate for acrit(λ) is to use a variational method.
For this purpose, we assume that the condensate wavefunction
ψ is Gaussian, with an axial size σz and a radial size σρ that
we take as variational parameters:

ψ(r, z) =
√

N

π3/2σ 2
ρ σza

3
ho

exp

[

− 1
2a2

ho

(
r2

σ 2
ρ

+
z2

σ 2
z

)]

. (5.4)

Here, aho =
√

h̄/(mω̄) is the harmonic oscillator length
corresponding to the average trap frequency ω̄ = (ω2

ρωz)
1/3.

Inserting ansatz (5.4) into the energy functional (4.7) leads to
the following expression for the energy:

E(σρ, σz) = Ekin + Etrap + Eint, (5.5)
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Figure 9. Intuitive picture for the geometry-dependent stability of a trapped dipolar BEC. (a) In a prolate (cigar-shaped) trap with the
dipoles oriented along the weak confinement axis of the trap, the main effect of the dipole–dipole interaction is attractive, which leads to
an instability of the condensate. (b) In an oblate (pancake-shaped) trap with the dipoles oriented along the strong confinement axis, the
dipole–dipole interaction is essentially repulsive, and the BEC is stable.

with the kinetic energy

Ekin = Nh̄ω̄

4

(
2
σ 2

ρ

+
1
σ 2

z

)

, (5.6)

the potential energy due to the trap

Etrap = Nh̄ω̄

4λ2/3
(2σ 2

ρ + λ2σ 2
z ) (5.7)

and the interaction (contact and dipolar) energy

Eint = N2h̄ω̄add√
2πaho

1
σ 2

ρ σz

(
a

add
− f (κ)

)
. (5.8)

The dipolar contribution in the last part is most easily
calculated in momentum space as

Edd = 1
2

∫
n(r)n(r′)Udd(r − r′) d3r d3r ′

= 1
2(2π)3

∫
Ũdd(k)ñ2(k) d3k, (5.9)

where ñ(k) is the Fourier transform of the density distribution
(and therefore, in this case, still a Gaussian). In (5.8), κ =
σρ/σz is the aspect ratio of the cloud (which differs from that
of the trap due to the elongation induced by the dipole–dipole
interaction as discussed above), and f is given by

f (κ) = 1 + 2κ2

1 − κ2
− 3κ2artanh

√
1 − κ2

(1 − κ2)3/2
. (5.10)

The function f (κ), displayed in figure 10, is monotonically
decreasing, has asymptotic values f (0) = 1 and f (∞) = −2
and vanishes for κ = 1 (implying that for an isotropic density
distribution the dipole–dipole mean-field potential averages to
zero).

To determine the stability threshold acrit(λ), one needs
to minimize (5.5) with respect to σρ and σz for fixed values
of N , λ and ω̄. For a > acrit , one has a (at least local)
minimum of energy for finite values of σρ,z, while as soon
as a < acrit , no such minimum exists. Figure 11 shows
contour plots of E(σρ, σz) for N = 20 000, λ = 10 and
different values of a, clearly showing that acrit(10) ≃ −8.5 a0

for the chosen parameters. In figure 13, the critical scattering
length acrit(λ) obtained in this way is shown as a thick line
for ω̄ = 2π × 800 Hz and N = 20 000 atoms. In the limit
N → ∞, the asymptotic behavior of this curve (a∞

crit(0) = add

and a∞
crit(∞) = −2add) can be easily understood, as only the

sign of the interaction term (5.8) (which scales as N2 and

Figure 10. The function f (x) entering the calculation of the dipolar
mean-field energy.

not as N like the kinetic and potential energy) determines the
stability. For an extremely pancake-shaped trap λ → ∞, the
cloud has an aspect ratio κ → ∞, and, as lim

x→∞
f (x) = −2,

the condensate is (meta-)stable only if a > −2add. In the
same way, one readily understands that for λ → 0, the critical
scattering length is add. The minimal value of λ for which
a purely dipolar condensate (a = 0) is stable is the one
for which κ = 1 and is found numerically to be close to
λ ≃ 5.2 [56, 93, 96, 101, 102].

In [102], the influence of the trapping geometry on the
stability of a 52Cr BEC was investigated experimentally. A
combination of an optical dipole trap and one site of a
long period (7 µm) optical lattice provided an harmonic trap
cylindrically symmetric along the z-direction (along which
the dipoles are aligned), with an aspect ratio λ that could
be varied over two orders of magnitude (from λ ≃ 0.1—
prolate trap—to λ ≃ 10—oblate trap—), while keeping the
average trap frequency ω̄ = (ω2

ρωz)
1/3 almost constant (with

a value of 2π × 800 Hz). Using the Feshbach resonance at
589 G, the scattering length was ramped adiabatically to a
final value a and the atom number in the BEC was measured.
A typical measurement is shown in figure 12. When a is
reduced, the atom number decreases, first slowly, and then
very abruptly when a approaches a critical value acrit , below
which no condensate can be observed. Figure 13 shows the
measured value of acrit as a function of λ. One clearly observes
that for prolate traps, acrit is close to add, as expected from
the discussion above, while for the most pancake-shaped trap
λ = 10 the critical scattering length is close to zero: for such
a geometry, a purely dipolar condensate is stable. The solid
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Figure 11. The energy landscape E(σρ, σz) as a function of the variational parameters σρ and σz of the Gaussian ansatz, for a trap of aspect
ratio λ = 10, and various values of the scattering length a. When a decreases, one goes from a global minimum (at a = 18a0) to a local
minimum corresponding to a metastable condensate (at a = 10a0). This local minimum vanishes at a = acrit (here −8.5a0). Below acrit , the
energy can be lowered without bound by forming an infinitely thin cigar-shaped cloud.

Figure 12. Experimental observation of the geometry-dependent
stability of a dipolar BEC. (a) BEC atom number N as a function of
a for a spherical trap; N vanishes for a smaller than acrit ≃ 15a0.
(b) For an oblate trap (λ = 10), one has acrit ≃ −2a0; such a trap
can thus stabilize a purely dipolar BEC. In (a) and (b) the solid lines
are fits to the empirical threshold law (a − acrit)

β . (c) Sample
images of the atomic cloud as a function of a for λ = 10.

line is the stability threshold acrit(λ) obtained by the Gaussian
ansatz for a number of atoms N = 2 × 104, which shows
good agreement with the measurements. Note that for the
parameters used in the experiment, the critical scattering length
for pure contact interaction, given by (5.3) would be −0.3a0

for λ = 1, which clearly shows that the instability is driven
here by the dipole–dipole interaction.

To calculate the exact stability threshold, one needs to
resort to a numerical solution of the GPE (4.3); the result of
such a calculation [103] is displayed as a thin line in figure 13
and shows very good agreement with the data. The numerical
solution reveals, for some values of the parameters (λ, a)

close to the instability region, the appearance of ‘biconcave’

Figure 13. Stability diagram of a dipolar condensate in the plane
(λ, a). The dots with error bars correspond to the experimental
data [102]; the thick solid line to the threshold acrit(λ) obtained
using the Gaussian ansatz (5.4) with N = 20 000; the thin solid line
to the numerical solution of the GPE (4.3) [103].

condensates, where the density has a local minimum at the
center of the trap [104]12.

5.4. Trapped gas: Thomas–Fermi regime

As we shall see in the following sections, a very important
approximation in the case of dipolar gases is the so-called
Thomas–Fermi (TF) limit, in which quantum pressure effects
are neglected. Amazingly, the TF solutions for the ground
state of the trapped BEC have the same inverted parabola shape
as in the case of contact interactions. This has been pointed
out for the first time in [63], where, however, the trapping
was restricted to the z-direction, while in the other directions

12 The experimental observation of such biconcave condensate (which shows
in a striking manner the long-range character of the dipole–dipole interaction)
is difficult for several reasons: (i) the density dip does not survive in time of
flight (which implies that in situ imaging would be needed to detect it), (ii) it
has a small contrast of only a few per cent and (iii) the regions in the plane
(λ, a) where the biconcave condensate exists have a very small area. However,
the use of potentials flatter than harmonic traps, such as a quartic or a box-like
potential, should relax considerably the constraints (ii) and (iii) (Ronen, 2008,
private communication).
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the systems were assumed to be homogeneous. The Thomas–
Fermi approach was also used to study fermionic dipolar gases
(see [105] and references therein).

The exact solutions of the dipolar BEC hydrodynamics
in 3D were presented in a series of beautiful papers
by O’Dell et al [95] and Eberlein et al [96]. These
authors have used spheroidal coordinates and solved the TF
equations for the ground state in cylindrically symmetric traps.
They have also considered the stability of the three most
relevant perturbations: local density perturbations, ‘scaling’
perturbations and ‘Saturn-ring’ perturbations. The subtle
question of the applicability of the TF approximation in dipolar
BECs was recently addressed in [106].

In particular, the ground state density in the cylindrically
symmetric case has the form

n(r) = n0

(
1 − ρ2

R2
x

− z2

R2
z

)
, (5.11)

for n(r) ! 0, where n0 = 15N/(8πR2
xRz). These expressions

are exactly the same as in the case of contact interactions. The
difference is, of course, in the explicit expressions for the radii:

Rx = Ry =
[

15gNκ

4πmω2
x

{
1 + εdd

(
3
2

κ2f (κ)

1 − κ2
− 1

)}]1/5

,

(5.12)

and Rz = Rx/κ . The condensate aspect ratio κ is determined
by the transcendental equation

3κεdd

[(
ω2

z

2ω2
x

+ 1
)

f (κ)

1 − κ2
− 1

]

+(εdd − 1)(κ2 − ω2
z/ω

2
x) = 0, (5.13)

where f (κ) is defined in (5.10). A plot of the condensate
aspect ratio as a function of εdd is shown in figure 14. The
TF approach is also extremely useful to study the dynamics
of dipolar condensates, for instance their free expansion (see
section 6.1).

5.5. Trapped gas: excitations

The unusual properties of the ground state of dipolar
condensates have their counterpart in the excitations of the
system. They are expected to exhibit novel character and
symmetries, as well as new types of instabilities. Indeed, as we
shall see in the next subsection, even in the pancake traps with
dipole moments polarized orthogonally to the pancake plane,
the excitation spectrum reveals an instability, at the so-called
roton–maxon minimum. Before discussing the pancake case,
let us first consider in this section the case of a moderate aspect
ratio of the trap.

The study of the excitations of a dipolar BEC should
in principle be realized using the non-local Bogoliubov–de
Gennes (BdG) equations. Such an approach is however
technically very difficult, and for this reason approximate
methods are useful. We discuss here the results of pioneering
papers (see [55, 56, 101] and references therein). Góral
and Santos [101] apply the dynamical variational principle,
developed for the contact GPE in [91, 92]. The idea consists

Figure 14. Aspect ratio κ of the condensate as a function of the
dipole–dipole to s-wave coupling ratio εdd. Each line is for a
different trap aspect ratio γ = ωz/ωx , which can be read off by
noting that κ(εdd = 0) = γ . When 0 < κ < 1 the condensate is
prolate; for κ > 1 it is oblate. Likewise, for 0 < γ < 1 the trap is
prolate, and when γ > 1 the trap is oblate (figure courtesy of
Eberlein).

of writing the time-dependent condensate wavefunction in the
Gaussian form:

ψ(x, y, z, t) = A(t)
∏

η=x,y,z

exp[−η2/2wη(t)
2 − iη2βη(t)],

(5.14)

with time-dependent variational parameters describing the
Gaussian widths wη(t) and phases βη(t), while A(t) takes
care of the normalization. The dynamical variational principle
implies equations of motions for the widths and phases.
Stationary solutions of these equations describe the ground
state BEC, small deviations from the ground state describe
the lowest energy excitations. Góral and Santos consider the
case of a polarized dipolar gas and discuss the influence of
dipole–dipole forces on the stability of the condensate and the
excitation spectrum. The authors extend their discussion of
the ground state and excitation properties to the case of a gas
composed of the two anti-parallel dipolar components.

One of the most interesting results of this paper is the study
of the nature of the collapse instability. In the standard case of
contact interactions three modes are relevant at low energies
(see figure 15): two ‘quadrupole’-like modes (1 and 3) and
one ‘monopole’ mode (2). It is the latter one which becomes
unstable at the collapse (when the scattering length changes
sign). The frequency of the breathing monopole mode 2 goes
to zero in a certain manner, namely, if γ denotes the ratio of the
non-linear energy to the trap energy, and γc is correspondingly
its critical value, the frequency of the breathing monopole
mode 2 goes to zero as |γ − γc|1/4 [107, 108] when γ

approaches criticality from below.
In the case of dipolar gases with dominant dipole

interaction the situation is similar only for aspect ratios λ ≪ 1
far from criticality, where the lowest frequency mode is the
breathing mode, and its frequency tends to zero as |γdd−γc,dd|β ,
with β ≃ 1/4, when the energy of the dipolar interactions
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mode 3mode 2mode 1

Figure 15. Graphical representation of the oscillation modes of the
condensate; modes 1 and 3 are ‘quadrupole’-like, mode 2 is the
breathing ‘monopole’ mode.

approaches the criticality. Numerical analysis indicates that
as one approaches the criticality the exponent β remains
close to 1/4, but the geometry of the zero frequency mode
is completely different: it attains the quadrupole character
and becomes a superposition of modes 1 and 3. Very close
to the criticality the exponent β grows up to the value ≃2.
These results imply already that one should expect for the
dipolar gas a completely different character of the collapse
dynamics than for a gas with contact interactions and negative
scattering length. We will discuss it in detail in the next
section.

The variational method employing the Gaussian ansatz is
evidently the simplest approach to study the excitations and
dynamics of the dipolar BECs, and for this reason it was used
by many authors. After the seminal experiments of the JILA
group with 85Rb, in which efficient, i.e. practically loss-free
control of the scattering length was achieved [109], Yi and You
used this method to investigate the possibility of observing
dipolar effects in the shape oscillations and expansion of a
dipolar condensate [110, 111].

Direct solution of the Bogoliubov–de Gennes equations
is, as we said, difficult, but not impossible. First of all, they
become easier to solve in the Thomas–Fermi (TF) limit. The
first step toward it was made in the ‘roton–maxon’ paper of
Santos et al [63]. These authors considered an infinite pancake
trap (i.e. a slab) with dipoles oriented along the z-direction and
in the TF limit. It turns out that the density profile in the TF
limit is given by an inverted parabola, just as in the case of the
standard BEC [8]. The BdG equations for excitations close
to the critical parameter region, where the ‘rotonization’ of
the spectrum appears, can be solved analytically in terms of
series of Gegenbauer polynomials, as we discuss in the next
subsection.

Very recently, in a beautiful paper, Ronen et al [112]
developed an efficient method for solving BdG equations for
the dipolar BEC with cylindrical symmetry. The algorithm is
very fast and accurate, and is based on an efficient use of the
Hankel transform. The authors study excitations in different
geometries (from cigar to pancake; for typical results of BdG
spectra, see figure 16) and in particular they calculate for the
first time the dipolar condensate depletion for various regimes
of parameters.
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Figure 16. Excitation frequencies as a function of the dipolar
parameter D∗ = (N − 1)mCdd/(4πh̄2aho,ρ) for a dipolar BEC in
the JILA pancake trap [113] (ωz/ωρ =

√
8), with a zero scattering

length. Plotted are modes with m = 0 − 4. The three lines that
extend to higher D∗ are the variational results of [101] (figure
courtesy of Ronen).

5.6. Trapped gas: roton–maxon spectrum

As we have mentioned, a dipolar gas exhibits two kinds of
instabilities. In cigar-like traps, when the dipole is oriented
along the trap axis, the dipolar interactions have an attractive
character and the gas collapses. The collapse is similar to
the case of the contact interactions with negative scattering
length, but has a different geometrical nature, and different
critical scaling behavior. There is, however, another instability
mechanism that occurs even in quasi-2D pancake traps for
dipoles polarized perpendicularly to the trap plane (along
the z-axis). In this case, when the dipolar interactions are
sufficiently strong, the gas, despite the quasi-2D trap geometry,
feels the 3D nature of the dipolar interactions, i.e. their partially
attractive character. This so-called ‘roton–maxon’ instability
has been discovered in [63], and discussed by many authors
since then.

In the original paper [63] the authors considered an infinite
pancake trap (slab geometry) with dipoles oriented along
the z-direction perpendicular to the trap plane. The roton–
maxon physics occurs in the TF limit in the z-direction. The
condensate was hence assumed to have a TF shape along
the z-axis and constant amplitude with respect to x and y

coordinates. The 3D Bogoliubov–de Gennes equations were
then solved. Here, we follow a somewhat simplified effective
2D approach of [114], which nevertheless captures the main
physics. The bosons are also polarized along the z-direction,
so that the dipolar interaction in momentum space reads Vdd =
Cdd(k

2
z /k2 −1/3). We also introduce the ratio β = 3εdd/(4π).

As we shall see below, the cases of repulsive (attractive) contact
interactions with g ! 0 (g < 0) lead to qualitatively different
physics. We first consider the case of positive g.

In the standard quasi-2D approach, one assumes that the
condensate has a Gaussian shape along the z-direction, with
the width determined by the harmonic potential. The problem
is then projected onto 2D by integrating over the condensate
profile. Such an approach is valid when the chemical potential
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µ ≪ h̄ω. However, the roton–maxon instability occurs outside
this regime and hence the standard quasi-2D approach cannot
be employed to understand it.

However we can still use an effective quasi-2D approach,
where we assume that the bosonic wavefunction in the
z-direction is given by the TF profile. In this way we may
obtain an effectively 2D model with the dipole interactions
‘averaged’ along the z-direction. This approach corresponds
approximately to the approach of [63], with the only difference
being that for the lowest energy branch of excitations we
neglect their ‘kinetic’ energy, i.e. terms in the Bogoliubov–
de Gennes equation involving derivatives with respect to z.
The quantitative differences between the exact results of [63],
and the present effective quasi-2D approach amount typically
to 10–20% in the entire regime of β " 2 (which is the
relevant regime for rotonization [63]). Qualitatively, both
approaches describe the same physics and the same mechanism
of appearance of the instability, namely the momentum
dependence of the dipole–dipole interactions.

For the purpose of this review we apply yet another
approximation, and use for simplicity a Gaussian profile in
the z-direction with a variationally determined width ℓ, which
turns out to be of the order of the TF radius ℓ ≃ ℓTF/

√
5. The

dipolar interaction in 2D, after integrating out the z-direction,
takes the form

Veff = Cdd

4πℓ
V(k⊥),

where

V(k⊥) = 1 − 3
2

√
π

2
k⊥ℓerfc[k⊥ℓ/

√
2] exp[k2

⊥ℓ2/2], (5.15)

and k2
⊥ = k2

x + k2
y , k̃⊥ = k⊥ℓ. The Hamiltonian that

generated the Bogoliubov–de Gennes equations reduces then
in the absence of the contact interactions, i.e. for g = 0, to
H =

∑
k⊥

((k⊥)b†
k⊥

bk⊥ , where b†
k⊥

and bk⊥ are Bogoliubov
quasi-particle operators. The excitation spectrum is given, in
units of the trap frequency, by

(2(k̃⊥) = k̃4

4
+ g3dV(k̃⊥)k̃2, (5.16)

where the dimensionless interaction strength is defined as
g3d = mCddnℓ/(4πh̄2). The interaction in (5.15) is repulsive
for small momenta and attractive in the high momentum
limit (with a zero-crossing at k⊥ℓ ≃ 1). Due to this fact
the properties of the excitation spectrum in (5.16) are very
different from those of bosons with contact interactions. For
any bosonic density, ((k⊥) exhibits two regimes: (i) phonon
spectrum for small momenta and (ii) free particle spectrum
for higher momenta. For g3d greater than a certain critical
value, ((k⊥) has a minimum (see figure 17) at the intermediate
momentum regime. Following Landau, the excitations around
the minimum are called ‘rotons’ and ((k̃0) is known as the
‘roton gap’ [63]. With increasing g3d the ‘roton’ gap decreases
and eventually vanishes for a critical particle density. When
the critical density is exceeded, ((k̃0) becomes imaginary and
the condensate becomes unstable.

Once more we stress that in the presence of repulsive
contact interactions, the roton instability occurs in pancake

 

Figure 17. The excitation spectrum ((k⊥) as a function of k⊥ for
different values of g3d (figure courtesy of Dutta).

traps in the regime in which the standard quasi-2D
approximation does not hold. The condensate attains the TF
profile in the z-direction and the systems start to experience
the 3D (partially attractive) nature of the dipolar forces [115].
The situation is however different if the contact interactions
are attractive (g < 0). In that case the roton instability already
appears in the standard quasi-2D regime, when the chemical
potential µ ≪ h̄ω, when the condensate profile is Gaussian
with the bare harmonic oscillator width. While in the previous
case it was the attractive part of the dipolar interactions that
led to the roton instability, in this quasi-2D situation with
g < 0 the situation is different. The dipolar interactions
(which are on average repulsive in this case) stabilize for
µ = (g + 8πgdd/3)n > 0 the phonon instability (which in
the absence of dipole–dipole interaction leads to the well-
known collapse for gases with a < 0) [116]. Note that
µ > 0 but may be kept well below h̄ωz. However, due to
the momentum dependence of the dipole–dipole interaction
(which acquires the form (5.15)), one encounters the roton
instability for −3/8π < β < βcr (where βcr depends on the
value of g), whereas for β > βcr the system is stable (as long
as it remains 2D [117]). Note that in this case, a larger dipole
strength stabilizes (sic!) the gas. The reason is that the roton in
the quasi-2D scenario is not actually induced by the attractive
nature of the dipolar interactions at large momenta, but by the
fact that g < 0. As a consequence, quasi-2D roton may occur
for much lower momenta than 1/lz.

The roton spectrum was also studied in quasi-1D
geometries [118], a situation in which some analytical results
can be obtained.

The presence of a roton minimum in the spectrum of
elementary excitations may be revealed in various ways. On
the one hand, and using Landau superfluidity criterion [119],
it is clear that the superfluid critical velocity is reduced in
the presence of a roton minimum [63]. Another alternative
experimental signature of the roton could be provided at finite
temperatures, where the thermal activation of rotons may
induce a ‘halo’ effect in time-of-flight images [120]. Finally,
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we would also like to point out that (as discussed in section 7.3)
the presence of even a shallow roton minimum may alter
dramatically the response of the system against a periodic
driving [121].

The question of whether ‘there is a life after the roton
instability’ was studied by many researchers, in the hope of
finding novel types of stable Bose superfluids that would have
supersolid character, i.e. self-assembled density modulations.
This is suggested by the fact that the instability occurs at a
specific value of the momentum, indicating instability toward
a non-uniform ground state [122, 123]. The ultimate answer to
the question is negative: the condensate undergoes a sequence
of local collapses, as shown for the first time in [116, 124, 125].
In [116] it is shown numerically that in the mean-field theory
supersolid states of dipolar BEC are unstable. The authors
of [126] use a variational ansatz with density wave modulations
along the z-direction in a cylindrically symmetric trap, and
show that it is not stable for a dipolar gas due to the roton
instability. It can, however, be stabilized, by allowing
for admixture of a single component polarized Fermi gas.
This idea was followed further in [127], where the stability
of dipolar boson-fermion mixtures in pancake cylindrically
symmetric traps was investigated at T = 0 using a variational
approach. Fermion-induced interactions stabilize the system
in such traps and allow for quantum phase transition from the
Gaussian shape BEC to a supersolid state, characterized by a
hexagonal density wave.

Interestingly, while fermions stabilize dipolar bosons
leading to a novel type of state, the opposite is also true:
boson mediated interactions between polarized fermions may
lead to the appearance of the ‘exotic’ Fermi superfluids with
p-wave, f-wave or even h-wave pairing [114]. All of these
states exhibit topological order, and admit non-Abelian anionic
excitations [128] that can be used for topologically protected
quantum information processing [129].

The discovery of the roton instability in dipolar gases
stimulated the search for supersolid structures and density
modulations. Ronen et al studied angular and radial roton
instabilities in purely dipolar BECs in oblate traps [104], and
have shown that in some situations the condensate attains a
biconcave density profile (see the end of section 5.3). These
results have been generalized to the case of finite temperature
using the Hartree–Fock–Bogoliubov approach [130]. Such
structures are very sensitive to changes in the trapping
potential; their relation to the roton instabilities for the case
of a trapped dipolar BEC without and with a vortex has been
studied in [131]. Dutta and Meystre [124] predicted similar
effects in anisotropic traps.

Very recently, the stability, excitations and roton
instabilities have been discussed for the case of a dipolar BEC
with a vortex [132]. Recent observation of the dipolar effects in
Bloch oscillations with 39K [133, 134] with s-wave scattering
tuned to zero stimulated studies of collective excitations and
roton instabilities in multilayer stacks of dipolar condensates.
In [117, 120], an enhancement of the roton instability was
predicted. Note also that, interestingly, a gas of light-
induced dipoles (see section 3.3) was predicted by Kurizki
and co-workers to display roton instabilities [60].

Finally, let us stress that excitations in a 2D system of
dipoles perpendicular to the 2D plane are well described by
the Bogoliubov spectrum in the dilute regime. As the density
is increased, the roton minimum appears. However, in this
strictly 2D case, the roton gap never vanishes in the gas
phase, because the interaction potential is purely repulsive.
No instability is found as the density is increased; instead the
dipolar system crystallizes, as shown in [135].

6. Dynamics of a dipolar gas

6.1. Self-similar expansion in the Thomas–Fermi regime

In most experiments on BECs, all the information is obtained
from an absorption image of the cloud taken after a period of
free expansion (‘time of flight’), which acts as a ‘magnifier’
allowing one to resolve optically the BEC (in a trap, the
typical size of the BEC is on the order of a few micrometers,
making it difficult to image it in situ with a good resolution).
It is therefore of great practical importance to describe the
expansion of a condensate released from a trap.

In the case of a BEC with contact interactions in a
harmonic trap of frequencies ωi (i = x, y, z) in the Thomas–
Fermi limit (see section 5.4), a remarkable property allows
for a very simple description of the free expansion [136, 137]:
the in-trap density profile of the condensate (which is, in the
Thomas–Fermi limit, an inverted parabola) is merely rescaled
upon time of flight. The Thomas–Fermi radii Ri(t) at time t

are given by
Ri(t) = Ri(0)bi(t), (6.1)

where the scaling parameters bi are solution of the following
set of coupled differential equations:

b̈i = ω2
i (0)

bibxbybz

(i = x, y, z), (6.2)

where ωi (0) stands for the trap frequency along the direction
i before the trap is turned off.

The underlying reason for the existence of such a
scaling solution is the fact that, for a parabolic density
distribution n, the mean-field term gn is also quadratic
in the coordinates, yielding only quadratic terms in the
hydrodynamic equations (4.8) and (4.9). One can show that
this property remains valid in the case of dipolar condensate
in the Thomas–Fermi limit, as the following non-trivial
property holds: if the density distribution n is parabolic n =
n0 max(0, 1 −

∑
i x

2
i /R

2
i ), then the mean-field potential (4.4)

due to the dipole–dipole interaction is a quadratic form in the
coordinates13.

This property can be understood in the following way [96].
Starting from the identity

1 − 3z2/r2

r3
= − ∂2

∂z2

1
r

− 4π

3
δ(r), (6.3)

13 As shown, in the much more restrictive case of a spherical trap and for
εdd ≪ 1, in section 5.2 (see (5.2) and figure 8).
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Figure 18. Free expansion of a dipolar condensate for two different orientations of the dipoles with respect to the trap axes. The squares are
the experimental results; the solid lines are the prediction of the scaling equations (6.6) without any adjustable parameter. (a) Perturbative
regime εdd = 0.16, the dipole–dipole interaction only gives a small departure from the contact interaction prediction (data taken from [97]).
(b) Perturbative regime (for a different trap geometry) εdd ≃ 0.16 far above the Feshbach resonance, the effect of the dipole–dipole
interaction is similar to case (a). (c) Closer to the resonance, with εdd = 0.75; in that case, the dipole–dipole interaction is strong enough
to inhibit the usual inversion of ellipticity in time of flight. Data in (b) and (c) are taken from [73].

one can prove that

0dd(r) = −Cdd

(
∂2

∂z2
φ(r) +

1
3
n(r)

)
, (6.4)

where

φ(r) =
∫

n(r′)

4π |r − r′|
d3r ′. (6.5)

The last equality shows that the ‘potential’ φ fulfills Poisson’s
equation △φ = −n. From this, one deduces that the
most general form of φ, when one has a parabolic density
distribution n, is a polynomial of order two in the variables
(x2, y2, z2), and thus, from (6.4), one deduces that 0dd is
also quadratic in (x, y, z). The actual analytical calculation
of the coefficients of this quadratic form, carried out for the
cylindrically symmetric case in [95, 96] and for the general
anisotropic case in [97], is far from trivial, especially in the
latter case, which involves a generalization of (5.10) to two
cloud aspect ratios.

One can then generalize Thomas–Fermi scaling equations
(6.2) to the case of a condensate with both contact and dipolar
interactions. The corresponding set of differential equations
now reads as

b̈i = ω2
i (0)

bibxbybz

[1 + εddF(bx, by, bz)] (i = x, y, z),

(6.6)

where the function F includes the effect of the dipole–dipole
interaction [97]. Solving these equations, one can for example
study the time evolution, during free expansion, of the cloud
aspect ratio to reveal the effects of the dipolar interaction (see
section below).

6.2. A quantum ferrofluid

The superfluid hydrodynamic equations describing, e.g., the
expansion of a condensate are modified by the long-range,
anisotropic dipole–dipole interaction. In classical fluids, such
magnetic interactions modifying the hydrodynamic properties

can be observed in ferrofluids, which are colloidal suspensions
of nanometric ferromagnetic particles [32]. In that sense, a
dipolar condensate can be called a quantum ferrofluid. As
seen in the preceding section, a clear and simple way to
demonstrate the effect of the dipole–dipole interaction is to
study the expansion of the condensate when it is released from
the trap.

By measuring the aspect ratio of the condensate as a
function of the expansion time for two different orientations
of the dipoles with respect to the trap axes, the elongation of
the cloud along the magnetization direction could be clearly
observed in [69, 97]. However, since εdd ≃ 0.16 for 52Cr away
from Feshbach resonances, the effect, shown in figure 18(a),
is small. By using the 589 G Feshbach resonance in order to
decrease the scattering length a and thus enhance εdd, a much
larger effect of the dipole–dipole interaction on the expansion
dynamics was observed in [73]. For example, by increasing
εdd to values close to one, the usual inversion of ellipticity of
the condensate during the time of flight is inhibited by the
strong dipolar forces which keep the condensate elongated
even during the expansion, as shown, for example, by the red
curve in figure 18(c).

6.3. Collapse dynamics

The dynamics of a condensate with pure contact interactions
when the scattering length is ramped to a negative value,
thus making the condensate unstable, is extremely rich: one
observes a fast implosion (‘collapse’) of the condensate,
followed by inelastic losses and a subsequent ‘explosion’ of the
remnant condensate accompanied by energetic bursts of atoms.
The behavior of those ‘Bose–Novae’ has been extensively
studied with 85Rb and 7Li condensates [109, 138–140]. More
recently, the formation of soliton trains during collapse has
been reported [141, 142]. It is then natural to ask whether
the collapse of a dipolar condensate displays some specific
features arising from the long-range and anisotropic character
of the dipole–dipole interaction [143].
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Figure 19. (a) Experimental images of a dipolar condensate after collapse and explosion as a function of the time thold between the crossing
of the critical scattering length for instability and the release from the trap. The time of flight is 8 ms. (b) Results of a numerical simulation
of the collapse dynamics without any adjustable parameter. The field of view is 130 µm × 130 µm.

In [144], the collapse dynamics of a dipolar 52Cr BEC
when the scattering length a is decreased (by means of a
Feshbach resonance) below the critical value for stability acrit

was investigated experimentally. A BEC of typically 20 000
atoms was created in a trap with frequencies (νx, νy, νz) ≃
(660, 400, 530) Hz at a magnetic field of ∼10 G above the
589 G Feshbach resonance, where the scattering length is
a ≃ 0.9 abg. The scattering length a was then ramped down
rapidly to a value af = 5 a0, which is below the collapse
threshold acrit ≃ 13a0. After the ramp, the system evolved
for an adjustable time thold and then the trap was switched off.
The cloud was then imaged after time of flight. The atomic
cloud had a clear bimodal structure, with a broad isotropic
thermal cloud, well fitted by a Gaussian, and a much narrower,
highly anisotropic central feature, interpreted as the remnant
BEC. Figure 19(a) shows the time evolution of the condensate
when thold is varied. From an initial shape elongated along
the magnetization direction z, the condensate rapidly develops
a complicated structure with an expanding, torus-shaped part
close to the z = 0 plane. Interestingly, the angular symmetry of
the condensate at some specific times (e.g. at thold = 0.5 ms) is
reminiscent of the d-wave angular symmetry 1−3 cos2 θ of the
dipole–dipole interaction. Figure 19(b) displays the column
density

∫
|ψ(r)|2 dx obtained from a numerical simulation of

the three-dimensional GPE

ih̄
∂ψ

∂t
=

[
−h̄2

2m
△ + Vtrap +

∫
U(r − r′, t)|ψ(r′, t)|2 d3r ′

− ih̄L3

2
|ψ |4

]

ψ, (6.7)

where

U(r, t) = 4πh̄2a(t)

m
δ(r) +

µ0µ
2

4π

1 − 3 cos2 θ

r3
(6.8)

stands for both contact and dipolar interactions. The
non-unitary term proportional to L3 ∼ 2 × 10−40 m6 s−1

describes three-body losses that occur close to the Feshbach
resonance. The agreement between the experimental data and
the simulation, performed without any adjustable parameter,
is excellent.

The observed cloverleaf patterns are caused by the
anisotropic collapse and the subsequent dynamics of the

Figure 20. Iso-density surfaces of a dipolar BEC after collapse and
explosion. (a) Simulation result, showing the location of vortex
rings (in red/gray), for the conditions of [144]. (b) Experimentally
reconstructed iso-density surfaces (using the inverse Abel
transform) for high and low density (top and bottom, respectively)
in the case of a cylindrically symmetric situation [145].

system: when the atomic density grows due to the attractive
interaction, three-body losses predominantly occur in the high-
density region. The centripetal force is then decreased, and the
atoms that gathered in this narrow central region are ejected due
to the quantum pressure arising from the uncertainty principle.
The kinetic energy is supplied by the loss of the negative
interaction energy. The collapse occurs mainly in the x–y

direction due to anisotropy of the dipole–dipole interaction
(in the absence of inelastic losses, the condensate would
indeed become an infinitely thin cigar-shaped cloud along
z, see section 5.3), and therefore the condensate ‘explodes’
essentially radially producing the anisotropic shape of the
cloud.

During the collapse, the BEC atom number, which was
initially NBEC(0) ≃ 16 000, dropped to a value ∼6000. The
missing atoms very likely escaped from the trap as energetic
molecules and atoms produced in three-body collisions. The
simulated atom number as a function of thold matched very well
the experimental data.

The numerical simulation gives access not only to the
density |ψ(r)|2, but also to the phase S(r) of the order
parameter ψ (i.e. to the velocity field v = h̄∇S/m) and
reveals the generation of vortex rings. Figure 20(a) shows
the simulated in-trap iso-density surface of a condensate at
thold = 0.8 ms and the location of the vortex rings (shown as
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Figure 21. Interference pattern of independent condensates for different holding times thold [145].

red curves). The mechanism responsible for the formation of
vortex rings can be understood intuitively as follows. During
the collapse, due to the strong anisotropy of the dipole–
dipole interaction, the atoms ejected in the x–y plane flow
outward, while the atoms near the z-axis still flow inward,
giving rise to the circulation. Thus, the vortex-ring formation
is specific to the d-wave collapse induced by the dipole–
dipole interaction. Although the vortex rings are not observed
directly in the experiment (even when reconstructing the 3D
density distribution by means of the inverse Abel transform),
the excellent agreement between the experiment and the
simulations strongly suggests the creation of vortex rings
during the collapse.

In [145], the collapse dynamics of a dipolar BEC was
studied for different trap geometries, from prolate to oblate
traps. The latter being created by superimposing a large period
optical lattice onto the optical trap, it was possible to prepare
independent condensates, let them collapse by changing
the scattering length and then release the confinement.
The observation of high contrast interference fringes after the
clouds overlapped (see figure 21) proved for the first time that
the post-collapse remnant clouds are truly coherent matter-
wave fields.

The collapse observed here has the same physical origin
as the phonon instability discussed in section 5.1, and should
be distinguished from other possible collapse mechanisms,
in particular the roton instability discussed in section 5.6.
Note also that the phonon instability in two-dimensional
geometries [146] does not necessarily lead to collapse, as we
discuss in section 7.3. Recent studies [147, 148] address the
collapse dynamics with an emphasis on the fact that local
collapses can be used as a signature of the roton instability.

7. Non-linear atom optics with dipolar gases

As mentioned in section 4, BEC physics is inherently non-
linear due to the interparticle interactions. Non-dipolar
BECs obey the non-linear Schrödinger equation (NLSE)
(4.2), which is identical to that appearing in non-linear
optics of Kerr media. Striking resemblances between both
fields have been observed, including non-linear atom optics
phenomena as four-wave mixing [149], BEC collapse [109]
and the creation of bright [141, 150], dark [151–153] and
gap [154] solitons. Dipolar BECs obey the NLSE (4.3),
where the non-linearity is intrinsically non-local, due to the
long-range character of the dipole–dipole interaction. Non-
locality appears in many different physical systems, including
plasmas [155], where the non-local response is induced by

heating and ionization, nematic liquid crystals, where it is
the result of long-range molecular interactions [156], and also
photorefractive media [157]. Most interestingly, non-locality
plays a crucial role in the physics of solitons and modulational
instability [158, 159]. In this section, we review some recent
results concerning the non-linear atom optics with dipolar
BECs, including qualitatively new phenomena in bright and
dark solitons (for recent works on vector and discrete solitons
see [160] and [161]), vortices and pattern formation.

7.1. Solitons

Since the seminal works of Zakharov [162] it is known that
the 1D NLSE with focusing local cubic non-linearity supports
the existence of localized waves that travel with neither
attenuation nor change of shape due to the compensation
between dispersion and non-linearity. These so-called bright
solitons occur in diverse fields, most prominently in non-linear
optics [163]. Matter-wave bright solitons have been observed
in quasi-1D condensates with a < 0 [141, 150]. The quasi-
1D condition requires a tight transversal harmonic trap of
frequency ω⊥ such that h̄ω⊥ exceeds the mean-field interaction
energy. This in turn demands the transversal BEC size to be
smaller than the soliton width. When this condition is violated
the soliton becomes unstable against transversal modulations,
and hence multi-dimensional solitons are not stable in non-
dipolar BECs.

Remarkably the latter is not necessarily true in the
presence of non-local non-linearity. In particular, any
symmetric non-local non-linear response with positive definite
Fourier spectrum has been mathematically shown to arrest
collapse in arbitrary dimensions [159]. Multidimensional
solitons have been experimentally observed in nematic liquid
crystals [164] and in photorefractive screening media [165],
as well as in classical ferrofluids [166]. Multidimensional
solitons have also been discussed in BECs with short-range
interactions, by considering the collapse inhibition induced
by the first non-local correction to the local pseudo-potential
[158, 167]. However, this occurs for an extremely small BEC
size [167], which, except for the case of a very small particle
number, leads to extremely large densities, at which three-body
losses destroy the BEC.

Dipolar BECs in contrast introduce a non-locality at
a much larger length scale. As a consequence, and in
spite of the fact that, due to the anisotropy of the dipole–
dipole interaction, the non-local non-linear response is not
positive definite, 2D bright solitons may become stable under
appropriate conditions [168]. This may be understood from
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Figure 22. Breathing (bold solid) and m = ±2 quadrupole (bold
dashed) mode of a 2D bright soliton for g̃ = 20, with κ0 = lρ/lz the
ratio between the condensate widths perpendicular to and along the
dipole orientation. Results from a reduced 2D NLSE [168] are
shown in thin lines. Inset: E(κ0) for g̃ = 500 and εdd = −0.42
(dashed) and εdd = −0.84 (solid).

a simplified discussion where we consider no trapping in the
xy-plane and a strong harmonic confinement with frequency
ωz in the z-direction, along which the dipoles are oriented. A
good insight into the stability of 2D solitons may be obtained
from a Gaussian ansatz 8(r) ∝ exp(−ρ2/2l2

ρ−z2/2l2
z ), where

lz =
√

h̄/mωz and lρ = κ0lz is the xy-width. Introducing this
ansatz into the non-local NLSE (4.3) we obtain the system
energy, which up to a constant is

E = πh̄ωz

κ2
0

{2π + g̃[1 − εddf (κ0)]}, (7.1)

where g̃ = g/
√

2πh̄ωzl
3
z and f (κ) is defined in (5.10). As

mentioned above, in the absence of dipole–dipole interaction
(εdd = 0), 2D localized solutions are unstable, since
E(κ0) ∝ κ−2

0 either grows with Lρ (collapse instability) or
decreases with Lρ (expansion instability). Dipolar BECs are
remarkably different due to the additional dependence f (κ0),
which may allow for a minimum in E(κ0) (inset in figure 22),
i.e. for a stable localized wavepacket. From the asymptotic
values f (0) = −1 and f (∞) = 2 localization is just possible
if εddg̃ < 2π + g̃ < −2εddg̃. A simple inspection shows that
this condition is fulfilled only if εdd < 0, i.e. for the dipole–
dipole interaction tuned with rotating fields (see section 2.2).
Note also that if Na/lz ≫ 1, the stability condition reduces
to |εdd| > 1/2. The anisotropic character of the dipole–dipole
interaction becomes particularly relevant when the quasi-2D
condition is relaxed. In particular, solitons in 3D dipolar BECs
are fundamentally unstable against collapse, as reflected in the
decrease in the frequency of the breathing mode of the soliton
for larger values of εdd [168] (figure 22).

Although εdd < 0 is attainable for magnetic
dipoles in a rotating magnetic field, the combination with
Feshbach resonances to reduce the contact interactions makes
experiments, e.g. in chromium, very complicated. Recently
a similar idea, but without the necessity of dipole tuning,
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Figure 23. Stability diagram of an anisotropic soliton as a function
of εdd and g̃cr = gcr/

√
2π lz, where for g > gcr the soliton is unstable

against collapse even for εdd > 1.

has been proposed by Tikhonenkov et al [169]. In this new
proposal the dipoles are considered as polarized on the 2D
plane. A similar Gaussian ansatz on the xy-plane as above with
unequal widths lx and ly shows the appearance of a minimum
in the energy functional E(lx, ly) for εdd > 1, and thus the
existence of stable anisotropic solitons. However, even if the
latter condition is fulfilled there is a critical universal value g̃cr

(which decreases with εdd) such that for g̃ > g̃cr the minimum
ofE(lx, ly)disappears [170] (see figure 23). As a consequence,
contrary to the case of isotropic solitons (with εdd < 0) there
are a critical number of particles per soliton even if the soliton
remains 2D. In addition, as for the case of isotropic solitons,
anisotropic solitons are also unstable in 3D environments.

A major difference between bright solitons in non-dipolar
and dipolar BECs concerns the soliton-soliton scattering
properties. Whereas solitons in 1D non-dipolar BECs scatter
elastically, the scattering of dipolar solitons is inelastic
due to the lack of integrability [158]. The solitons may
transfer center-of-mass energy into internal vibrational modes,
resulting in intriguing scattering properties, including soliton
fusion [168] (see figure 24), the appearance of strong
inelastic resonances [171] and the possibility of observing
2D-soliton spiraling as that already observed in photorefractive
materials [165].

For defocusing non-linearity (a > 0) the local
NLSE supports dark-soliton solutions, i.e. density notches
(accompanied by phase slips) that propagate with no change of
shape, again due to the compensation between dispersion and
non-linearity [172]. Dark solitons have been created in non-
dipolar quasi-1D BECs [151–153], but become fundamentally
unstable in higher dimensions against vibrations of the nodal
plane which lead to the so-called snake instability. This
instability which was previously studied in the context of non-
linear optics [173, 174] leads in the context of non-dipolar
BEC to the soliton breakdown into vortex rings and sound
excitations [175–178]. In contrast, a dark soliton in a dipolar
BEC may become stable in a 3D environment [146] if the BEC
is placed in a sufficiently deep 2D optical lattice (characterized
by an effective mass on the lattice plane m∗ > m [179]
and a regularized local coupling constant g̃). This effect
may be understood by considering the phonon-like excitations
of the dark soliton plane: ϵ =

√
σ/Mq, where M is the

(negative) soliton mass per unit area and σ is the surface tension
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Figure 24. Density plot of the fusion of two dipolar 2D solitons for
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of the nodal plane. For non-dipolar BECs one always has
σ > 0, and hence the phonon spectrum is always unstable
leading to the above-mentioned snake instability. However,
for dipolar BECs the surface tension σ becomes negative
when m/m∗ < 3Cdd/(3g̃ + 2Cdd) [146], and hence the nodal
plane is stabilized for a sufficiently deep optical lattice (large
m∗/m) and a sufficiently large dipole–dipole interaction. Very
recently, solitons in quasi-1D dipolar BECs have been studied
theoretically [180, 181].

7.2. Vortices

Quantized vortices constitute one of the most important
consequences of superfluidity, playing a fundamental role in
various physical systems, such as superconductors [182] and
superfluid helium [183]. Vortices and even vortex lattices have
been created in BECs in a series of milestone experiments
[184–186]. Contrary to normal fluids, a vortex in a BEC
cannot be created by any rotation, but there is a critical
angular velocity (c. Only for angular velocities ( > (c it
is energetically favorable to form a vortex [187] (the critical
rotation for vortex nucleation is actually larger, since also
dynamical instabilities at the condensate boundaries must be
considered [188]). O’Dell and Eberlein [189] have recently
studied the critical (c in a dipolar condensate in the Thomas–
Fermi regime, by means of the solution discussed in section 5.
For BECs in axially symmetric traps with the axis along the
dipole orientation it has been shown that (c is decreased due
to the dipole–dipole interaction in oblate traps and increased
in prolate traps. This modification can be traced back to the

Figure 25. Stable/unstable regimes, as a function of the ratio m/m∗

and εdd, for straight vortex lines when the dipoles are oriented along
the vortex line.

modification of the Thomas–Fermi radius due to the dipole–
dipole interaction, rather than changes in the vortex core.
However, the dipole–dipole interaction may induce crater-like
structures close to the vortex core for the case of a < 0, or
even anisotropic vortex cores, as recently shown by Yi and
Pu [190]. The effect of the dipolar interaction on the dynamical
instability leading to the nucleation of vortices in the TF regime
was addressed in [191, 192].

At higher rotating frequencies, more vortices enter the
condensate and a vortex lattice develops [185, 186]. In
non-dipolar BECs vortices form so-called Abrikosov lattices,
i.e. triangular lattices with hexagonal symmetry. Interestingly,
this is not necessarily the case in dipolar condensates
[193, 194]. In particular, with increasing εdd or high filling
factor, the vortex lattice may undergo transitions between
different symmetries: triangular, square, stripe vortex crystal
and bubble states [193]. In addition for vortex lattices in double
well potentials the competition between tunneling and inter-
layer dipole–dipole interaction should lead to a quantum phase
transition from a coincident phase to a staggered one [194].

Vortex lines are in fact 3D structures with transverse
helicoidal excitations known as Kelvin modes [195, 196].
Kelvin modes, which play an important role in the physics
of superfluid helium [183], have also been experimentally
observed in BECs [197]. The long-range character of the
dipole–dipole interaction links different parts of the vortex
line, and hence the 3D character of the vortex lines is much
more relevant in dipolar BECs. Remarkably the dipole–dipole
interaction may significantly modify the vortex-line stability.
In the presence of an additional optical lattice (which leads to an
effective massm∗ along the vortex line direction) the dispersion
of Kelvin modes shows a roton-like minimum [198], which for
sufficiently large dipole–dipole interaction and large m∗ may
reach zero energy, leading to a thermodynamical instability
related to a second-order-like phase transition from a straight
vortex into a twisted vortex line [199] (see figure 25).

7.3. Pattern formation

Pattern formation in driven systems is a general non-linear
phenomenon occurring in many scenarios ranging from
hydrodynamics and non-linear optics to liquid crystals and
chemical reactions [200]. Faraday patterns have recently been
observed in non-dipolar BECs by a modulation of the harmonic
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confinement [201] which leads to a periodic modulation of
the system non-linearity [202]. Faraday patterns offer an
important insight into the elementary excitations in a BEC,
and hence pattern formation may be remarkably different in
dipolar BECs, especially in the presence of a roton–maxon
excitation spectrum (section 5). Most remarkably, whereas
for non-dipolar BECs the pattern size decreases monotonically
with the driving frequency, patterns in dipolar BECs present a
highly non-trivial dependence characterized by abrupt pattern-
size transitions [121].

Faraday pattern formation in driven systems is the
(transient) result of an externally driven dynamical instability.
However, an interaction-induced dynamical instability may
lead as well to pattern formation. In this sense, the phonon
instability, which, as discussed in section 5, leads to collapse
in 3D dipolar gases (also in 2D and 3D non-dipolar BECs),
does not necessarily lead to collapse in 2D geometries. In
contrast, the 2D phonon instability leads to the formation of
a soliton gas, and to transient pattern formation, which, if
avoiding collapse, may lead to the formation of a 2D stable
soliton [146]. Dynamical roton instability leads typically to
local collapses [116], although a sufficiently strong trapping
may stabilize a biconcave BEC profile [104] (as mentioned in
section 5.3). Another possibility lies in using a phase-separated
two-component gas, one dipolar and the other not. Rosensweig
patterns very similar to that of figure 1 are then predicted to be
observed on the interface [15].

8. Dipolar effects in spinor condensates

Spinor BECs, composed of atoms in more than one Zeeman
state, constitute an extraordinary tool for the analysis of
multicomponent superfluids. Whereas magnetic trapping
confines the BEC to weak-field seeking magnetic states,
optical trapping enables confinement of all magnetic
substates, hence freeing the spin degree of freedom [204].
Interestingly, interatomic interactions allow for a coherent
transfer of population between different Zeeman states (spin-
changing collisions), leading to a fascinating physics in both
what concerns ground-state properties and spin dynamics
[205–210].

The energy scale associated with spin-preserving
collisions is given by the chemical potential, which for
typical alkali gases (and even for chromium in the absence
of Feshbach resonances) is much larger than the dipole–
dipole interaction. In contrast, the energy associated with
spin-changing collisions is typically much smaller, since it is
provided by the difference between s-wave scattering lengths
in different spin channels [205], which is very small. Hence
the dipole–dipole interaction may become comparable to the
energy of spin-changing collisions, and as a consequence even
alkali spinor BECs (in particular 87Rb) can be considered in this
sense as dipolar gases as well. The dipole–dipole interaction
may hence play a significant role in the ground-state properties
and the dynamics of spinor condensates.

8.1. Ground state

Pu et al [211] have shown that ferromagnetic spinor BECs
(as it is the case of 87Rb in F = 1) placed at different sites
of a strong optical lattice behave as single magnets oriented
in the effective magnetic field induced by the combination of
an external magnetic field and the dipole–dipole interaction
of other sites. Interestingly, the collectively enhanced
magnetic moment of the condensates at each site enhances the
magnetic dipole–dipole interaction between sites, which may
become sufficiently strong even for alkali atoms [211]. As a
consequence, such an array of effective magnets can undergo
a ferromagnetic (1D lattice) or antiferromagnetic (2D lattice)
phase transition under the magnetic dipolar interaction when
external magnetic fields are sufficiently weak [211, 212]. In
addition, for 1D lattices the intersite dipole–dipole interaction
may distort the ground-state spin orientations and lead to
the excitation of spin waves, which possess a particular
dispersion relation which depends on the transverse width of
the condensates [213].

The dipole–dipole interaction may play an important role
in the properties of trapped spinor BECs, especially in the
absence of significant external magnetic fields. In particular,
whereas in the absence of an external magnetic field the spinor
BEC is rotationally invariant in spin space, the dipole–dipole
interaction breaks this symmetry, inducing new quantum
phases which can be reached by tuning the effective strength of
the dipole–dipole interaction via a modification of the trapping
geometry [214]. For the case of spin-1 BECs, for very low
magnetic fields (typically below 10 µG) the phase diagram
presents due to the dipole–dipole interaction three different
ground state phases, characterized by different spin textures: a
polar-core vortex phase, a flower phase and a chiral spin-vortex
phase [215]. The latter has chirality in the formation of the spin
vortex, and the topological spin structure spontaneously yields
a substantial net orbital angular momentum. A classical-spin
approach to the ground state properties of dipolar spinor BECs
was used in [216].

8.2. Dynamics and Einstein–de Haas effect

The dipole–dipole interaction has been shown to play quite
a small role in the ground-state properties of chromium
BECs [217, 218]. However, the effects of the dipole–dipole
interaction on the spinor dynamics may be much more
intriguing. The short-range interactions in a spinor condensate
may occur in different scattering channels, corresponding to
different total spins of the colliding pair [205]

V̂sr = 1
2

∫
dr

2F∑

S=0

gSP̂S(r), (8.1)

where P̂S is the projector on the total spin S (necessarily
even due to symmetry reasons), gS = 4πh̄2aS/m and aS

is the s-wave scattering length for the channel of total spin
S. The short-range interactions necessarily preserve the spin
projection Sz along the quantization axis.
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Figure 26. Isodensity surfaces of mF = +1, mF = 0 and mF = −1 spinor components corresponding to the densities: 7.96 × 1013 cm−3,
7.96 × 1013 cm−3 and 7.96 × 1012 cm−3, respectively. The color on the surface represents the phase of the component wavefunction (with
the scale given on the right). Note the characteristic vortex ring patterns. The trap frequency ωx,y,z = 2π × 100 Hz and the magnetic field
B = −0.029 mG. The density plots are taken at 140 ms. Figure courtesy of M Gajda and M Brewczyk.

The dipole–dipole interaction for a spinor BEC is of the
form

V̂dd = Cdd

2

∫
dr

∫
dr′ 1

|r − r′|3
ψ̂†

m(r)ψ̂
†
m′(r′)

× [Smn · Sm′n′ − 3(Smn · e)(Sm′n′ · e)]ψ̂n(r)ψ̂n′(r′),

(8.2)

where S = (Sx, Sy, Sz) are the spin-F matrices and Cdd =
µ0µ

2
Bg2

F /4π (for 52Cr F = 3 and Cdd = 0.004g6) with
e = (r − r′)/|r − r′|.

Interestingly, contrary to the short-range interaction
the dipole–dipole interaction does not necessarily conserve
the spin projection along the quantization axis due to the
anisotropic character of the interaction. In particular, if the
atoms are initially prepared into a maximally stretched state,
say mF = −F , short-range interactions cannot induce any
spinor dynamics due to the above-mentioned conservation of
total magnetization Sz. Dipole–dipole interactions, in contrast,
may induce a transfer into mF + 1. If the system preserves
cylindrical symmetry around the quantization axis, this
violation of the spin projection is accompanied by a transfer of
angular momentum to the center of mass, resembling the well-
known Einstein–de Haas effect [218, 219]. Due to this transfer
an initially spin-polarized dipolar condensate can generate
dynamically vorticity (see figure 26).

Unfortunately, the Einstein–de Haas effect is destroyed in
the presence of even rather weak magnetic fields. Typically,
magnetic fields well below 1 mG are necessary to observe
the effect. Due to the dominant role of Larmor precession,
and invoking rotating-wave-approximation arguments, the
physics must be constrained to manifolds of preserved
magnetization, where the system presents a regularized
dipole–dipole interaction [220]. However, the dipole–dipole
interaction may have observable effects also under conserved
magnetization, since the regularized dipole–dipole interaction
may lead also in that case to spin textures [220].

A significant Einstein–de Haas effect may be recovered,
however, under particular resonant conditions as studied by
Gawryluk et al [221], who studied the particular case of Rb
BECs in F = 1, initially prepared into mF = 1. In that
case, the population transfer away from the mF = 1 state

is typically very small, but it can be significantly enhanced
by applying a resonant magnetic field, such that the Zeeman
energy of an atom in the mF = 1 state is totally transferred into
the kinetic energy of the rotating atom in mF = 0, µB = Ekin.
Typically, the resonant B is small (∼100 µG), but can be
tuned directly, or by adjusting the trap geometry and thus the
rotational energy of the atoms, reaching up to 1 mG. Gawryluk
et al demonstrated that at the resonance, a significant transfer of
the initial population of the mF = 1 state occurs on a time scale
inversely proportional to the dipolar energy ttransfer ≃ h̄/Cddn.
As mentioned above, such a transfer is accompanied by the
formation of vorticity (see figure 26) [218, 219, 221].

An alternative possibility for the observation of the
Einstein–de Haas effects at finite fields may also be provided
by an artificial quadratic Zeeman effect induced by either
microwave [222] or optical fields [223]. This effective
quadratic Zeeman effect may allow for a resonance between
e.g.mF = −F andmF = −F +1 and hence lead to a significant
enhancement of the Einstein–de Haas transfer [223].

8.3. Experimental results

Recent 2D experiments at Berkeley [224] have demonstrated
the dipolar character of spin-1 87Rb spinor BECs. In particular,
these experiments show the spontaneous decay of helical
spin textures (externally created by magnetic field gradients)
toward a spatially modulated structure of spin domains (see
figure 27). The formation of this modulated phase has been
ascribed to magnetic dipolar interactions that energetically
favor short-wavelength domains over the long-wavelength spin
helix. Interestingly, the reduction of dipolar interactions (by
means of radio-frequency pulses) results in a suppression of
the modulation.

These experiments have attracted a great deal of
theoretical interest, in particular in the dipole–dipole
interaction-induced distortion of the excitation spectrum of
a spinor BEC [225, 226]. Recently Cherng and Demler
have analyzed (in the context of the above-mentioned 2D
experiments [224]) the possibility of roton softening (similar
to that discussed in section 5.6) in the spectrum of spin
excitations. This roton instability may lead as a function of
the quadratic Zeeman effect and the magnetic field orientation
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Figure 27. Spontaneous dissolution of helical textures in a quantum degenerate 87Rb spinor Bose gas. A transient magnetic field gradient is
used to prepare transversely magnetized (b) uniform or (a), (c) helical magnetization textures. The transverse magnetization column density
after a variable time T of free evolution is shown in the imaged x–z plane, with orientation indicated by hue and amplitude by brightness
(color wheel shown). (b) A uniform texture remains homogeneous for long evolution times, while (c) a helical texture with pitch λ = 60 µm
dissolves over ∼200 ms, evolving into a sharply spatially modulated texture. Figure reprinted with permission from [224]. Copyright 2008
by the American Physical Society.

with respect to the normal of the 2D trap to different spin
textures (checkerboard, striped phase) and may pave the way
toward a supersolid phase. The latter is a long pursued phase
in condensed matter physics which possesses both periodic
crystalline order and superfluidity [227–229] (see also the
next section). However, instability against finite-momentum
excitations does not necessarily lead to the appearance of a
stable modulation (as it is the case of the roton instability
discussed in section 5.6) and more work on the physics in the
unstable regime is clearly necessary. Recent experiments at
Berkeley have reported on possible first traces of supersolidity
in a spinor 87Rb BEC [230].

9. Dipolar gases in optical lattices

One of the most fruitful fields of research both from the
experimental and the theoretical points of view in the last years
has been the study of ultra-cold atomic samples in optical
lattices, which are non-dissipative periodic potential energy
surfaces for the atoms, created by the interference of laser
fields. The study of cold atoms in periodic potentials is of
primary interest because it allows one to reproduce problems
traditionally encountered in condensed matter and solid-state
physics in a new setting, where a high degree of control is
possible and where the Hamiltonian which governs the system
is in general very close to ideal. With the present developments
there is even the possibility to investigate, with appropriately
designed atomic systems, phenomena which do not exist in
condensed matter.

We will first summarize the physics of weakly interacting
atomic gases in optical lattices in section 9.1, and describe
the first measurement of dipolar effects in alkali atoms
in section 9.2. After introducing the physics of strongly
correlated systems with contact interaction in section 9.3, we
will devote sections 9.4 and 9.5, respectively, to the quantum

phases and the metastable states found in 2D lattices in the
presence of long-range interactions. In section 9.6, we discuss
the novel physics introduced by the presence of two or many
2D optical lattice layers. In section 9.7, we discuss proposals
on how to tailor the interaction potential and create lattice spin
models with polar molecules and finally, in section 9.8, we will
mention the possibility of formation of self-assembled regular
structures in cold dipolar gases.

9.1. Bose–Einstein condensates in optical lattices

In the presence of weak optical lattices, when the coherence
of the system is preserved, the Gross–Pitaevskii equation
provides a good description of the system. Due to the
presence of the periodic potential and interactions, analogies to
phenomena typical of solid-state physics and non-linear optics
are, respectively, possible [14, 231–233].

As previously explained, in the most common cases,
interactions in ultra-cold gases are dominated by s-wave
scattering, which can be in very good approximation
considered a point-like interaction. In the case of full
coherence, the system is described by a macroscopic
wavefunction and obeys the GPE (4.5). In the presence
of optical lattices, Vext is periodic and given by Vext(r) =∑

n V
opt
n sin2(πxn/dn), where the index n runs over the

dimensions of the lattice and dn is the lattice constant in the
nth direction. For lattices created by counterpropagating laser
beams of wavelength λ, the lattice spacing is d = λ/2. The
depth of the lattice potential V

opt
n depends linearly on the

intensity of the laser light.
It is well known that the spectrum of a single particle

in a periodic potential is characterized by bands of allowed
energies and energy gaps [234]. The counterparts of the energy
eigenstates delocalized over the whole lattice (Bloch states)
are the wavefunctions centered at the different lattice sites
(Wannier functions). For deep enough periodic potentials,
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when the Wannier functions are well localized at the lattice
sites, the so-called tight binding regime is reached: the first
band takes the form E(q) = −2J

∑
n cos(qndn), qn being

the quasi-momenta in the different lattice directions and J

the tunneling parameter between neighboring wells. For low
enough interactions and temperature, the physics of the system
is well approximated by the one taking place in the first energy
band. Under those assumptions, the discretized non-linear
Schrödinger (DNLS) equation [235–239] provides a good
description of the system.

The excitations on top of the GP solution can be found by
generalizing the Bogoliubov method to include the periodic
potential. They show a phononic branch with renormalized
sound velocity [240–242]. For a moving condensate, one finds
complex frequencies at the edge of the Brillouin zone [243],
highlighting the presence of dynamical instabilities [244].

Among the numerous phenomena described theoretically
and observed experimentally are collective oscillations [245],
Bloch oscillations [246], dynamical instabilities [247],
Josephson oscillations [248], non-linear self-trapping [249],
gap solitons [154]. The collective oscillations can be described
through an effective macroscopic dynamics accounting for the
periodic potential and their frequency is rescaled in terms of
the effective mass [179]. Instead, the physics underlying the
other phenomena is dominated by a crucial interplay between
the periodic potential and interactions.

In the alkalies usually used in experiments with optical
lattices, s-wave scattering dominates over all other types of
interactions. When the s-wave scattering length is reduced, e.g.
by means of a Feshbach resonance, the presence of other types
of interaction is relatively enhanced and can be probed. In the
next section, we present the first measured effects of dipole–
dipole interaction for a quantum gas in an optical lattice,
performed with potassium atoms.

9.2. Bloch oscillation damping due to dipole–dipole
interactions

Bloch oscillations have been one of the first solid-state
phenomena to be investigated with cold atoms [250, 251],
observed shortly after Bloch oscillations of electrons in
semiconducting heterostructures [252–254]. They consist of
oscillations in space in the presence of a constant acceleration,
due to the change of sign of the effective mass along the first
energy band. For electrons, the acceleration is provided by a
constant electric field, while for cold atoms it is produced by
a linear increase in time of the relative detuning of the two
laser beams creating the optical lattice or, in a vertical setup,
by gravity.

With Bose–Einstein condensates, Bloch oscillations can
be measured with a higher precision thanks to the smaller width
of the momentum distribution [246]. However, in the presence
of interatomic interactions, the onset of dynamical instabilities
in the outer region of the Brillouin zone causes a damping of
the oscillations. Due to the relevance of Bloch oscillations
as a tool of precision measurement of accelerations and small
forces at small distance from surfaces [255–258], attempts at
reducing interactions have been pursued first with polarized

fermions [259] and then with bosons with reduced s-wave
scattering length [134, 260].

The experiment in [134] has highlighted for the first time
effects of dipole–dipole interactions on alkali atoms and has
shown how their interplay with the contact interaction can
be exploited to reduce interaction-induced decoherence of
Bloch oscillations in a 1D optical lattice. When the scattering
length is tuned to zero by means of a Feshbach resonance, the
magnetic dipole–dipole interaction becomes the limiting factor
for the coherence time. The point of minimum decoherence is
shifted to negative or positive values of the scattering length,
depending on the orientation of the dipoles with respect to the
axis of the lattice (see figure 28).

The values of the scattering lengths which maximize the
lifetime in the different configurations have been predicted
through the solution of 1D DNLS and GP equations including
the dipolar potential. The 3D geometry has been accounted
for, assuming the condensate to be in the transversal ground
state. The dipole–dipole interaction contributes both to the
regularization of the on-site interactions and also to the intersite
interactions. Although the compensation of the on-site dipole–
dipole interaction and the short-range interactions explains
the sign of the displacement (toward a < 0 or a > 0)
of the decoherence minimum, the dipole-induced intersite
interactions are crucial for the quantitative understanding
of the experimental results in [134]. In this sense the
experiments in [134] also constitute the first observation of
intersite effects in dipolar gases in optical lattices. Due to the
intersite interactions, the dipole–dipole interaction can be only
partially compensated by the short-range interactions, and as a
consequence an incomplete reduction of the decoherence rate
of the 39K-based interferometer is observed (with a minimum
residual rate of 0.05 Hz).

In the experiments in [134], the interactions at the
decoherence minimum were much weaker than the transversal
confinement, justifying the approximation of assuming the
BEC in the transversal ground state. This is, however, not
the general case. For shallower transversal confinements the
intersite dipole–dipole interaction may significantly modify
and even destabilize the spectrum of elementary excitations
of a BEC in an optical lattice [117, 120]. In particular, the
intersite interactions may induce rotonization and even roton
instability (see also section 5.6) under appropriate conditions,
and may (for a sufficiently shallow transversal confinement)
lead to a dynamical instability that could also damp Bloch
oscillations [120]. Interestingly, the intersite dipole–dipole
interaction induces a hybridization of transversal modes at
different sites (and a corresponding band-like spectrum) even
if the hopping is completely suppressed [117]. Remarkably,
whereas a single lattice site could be stable, a stack of
non-overlapping dipolar BECs may become roton unstable,
showing once more that polar gases in optical lattices differ
qualitatively from short-range interacting gases.

9.3. Strongly correlated lattice gases. Bose–Hubbard
Hamiltonian

For deep optical lattices and small numbers of atoms per
site, the coherent description of the system provided by the
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Figure 28. Decoherence of Bloch oscillations in 39K around the scattering length zero-crossing, due to the interplay of contact and dipolar
interactions. The character of the dipolar interaction depends on the relative orientation of the lattice and the magnetic field: (a) prevalently
repulsive interaction; (b) prevalently attractive interaction. (c) The width of the momentum distribution after a few 100 ms of Bloch
oscillations shows a minimum when the contact interaction compensates the dipolar one: circles are for the case (a), while squares are for
the case (b). The lines are parabolic fits to the data, which constrain the position of the zero-crossing in a comparison with theory (black
region in the lower panel) better than Feshbach spectroscopy (gray region). Figure courtesy of Modugno.

GPE breaks down due to the growing effect of correlations.
One of the greatest achievements of the past years was
the experimental observation [16] of the superfluid to Mott
insulator transition [15, 261]. In this session, we will introduce
the main theory for ultra-cold atoms in optical lattices in the
case of point-like interaction, providing the background for
the case of long-range interactions, which will be treated in
the following sections.

Under usual experimental conditions, the single-band
approximation mentioned in section 9.1 is appropriate. In
order to allow for the breaking of the coherence of the system,
the field operator is replaced by its single-band many-mode
expansion ψ̂(r) =

∑
i wi(r)âi , with âi being the annihilation

operator for one boson in the Wannier function wi(r) localized
at the bottom of the lattice site i.

Neglecting the overlap beyond nearest neighboring
densities, defining

J = −
∫

w∗
i (r)

(
− h̄2*

2m
+ Vext(r)

)
wi+1(r) d3r, (9.1)

U = g

∫
|wi(r)|4 d3r, (9.2)

and ni = â
†
i âi , one can derive [15] the famous Bose–Hubbard

Hamiltonian

H = −J
∑

⟨ij⟩
â

†
i âj +

∑

i

[
U

2
ni(ni − 1) − µni

]
, (9.3)

extensively studied in condensed matter physics. In optical
lattices, the Hamiltonian parameters can be accurately
controlled by changing the light intensity: ramping it up
increases the interaction term U due to a stronger localization

of the wavefunctions at the bottom of the lattice wells, and at
the same time exponentially decreases the tunneling J .

When tunneling is suppressed compared with interactions,
this Hamiltonian presents a quantum phase transition between
a superfluid phase, characterized by large number fluctuations
at each lattice site, and a Mott insulating phase where each
lattice well is occupied by precisely an integer number of atoms
without any number fluctuations. The nature of this phase
transition and the qualitative phase diagram can be inferred
based on very simple arguments [261].

At zero tunneling J = 0 and commensurate filling
(exactly an integer number n of atoms per well), the interaction
energy is minimized by populating each lattice well with
exactly n atoms. Energy considerations indicate that the filling
factor n is energetically favored in the range of chemical
potential (n−1)U < µ < nU . The state with precisely integer
occupation at the lattice sites is called the Mott insulating
state. Since a particle–hole excitation at J = 0 costs an
energy *E = U equal to the interaction energy, the Mott
state is the lowest energy state at commensurate filling. For
a tunneling J different from zero the energy cost to create
an excitation decreases thanks to the kinetic energy favoring
particle hopping. However, for large interactions and small
tunneling, the gain in kinetic energy (∼J ) is not yet sufficient
to overcome the cost in interaction energy (∼U ), which leads
to the existence of Mott insulating states also at finite tunneling.
For large enough tunneling, instead, particle hopping becomes
energetically favorable and the system becomes superfluid.
The regions in the J versus µ phase diagram where the Mott
insulating state is the ground state are called Mott lobes (see
figure 29). For non-commensurate filling, there are extra
atoms free to hop from site to site at no energy cost, so that
the phase of the system is always superfluid. The superfluid
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Figure 29. Schematic phase diagram for the ground state of the
Bose–Hubbard Hamiltonian (9.3).

phase at non-commensurate densities survives down to J = 0
for µ/U = [ρ] where the symbol [ρ] indicates the integer
part of the density. Due to the finite energy cost required
to add or remove one particle, the Mott phase is gapped
and incompressible, while in the superfluid regions the gap
vanishes and the system is compressible.

In order to find the shape of the lobes at finite J
sophisticated calculations are required. Apart from the mean-
field approximation [261–263], which works only qualitatively
in one dimension and works better and better in larger
dimensions, there is no exact analytical method which allows
one to calculate the boundary of the lobes. Improvements
are achieved by high order perturbative strong coupling
expansions [264, 265] and exact numerical results are obtained
using quantum Monte Carlo techniques (see e.g. [266–268]).

In the experiments, the phase transition has been identified
by looking at the interference of the expanded cloud and the
measurement of the gapped excitations in the Mott phase [16].
The SF–MI shell structure which arises in the presence of an
external confinement [15, 269, 270] has been observed using
spatially selective microwave transition and spin-changing
collisions [270] or using clock shifts [271], and the underlying
ordering in the lattice in the Mott phase has been inferred from
the measurement of the periodic quantum correlations in the
density fluctuations in the cloud after expansion [272, 273].
The interference of the expanding cloud and spatial noise
correlation measurements prove to be useful tools to identify
also the exotic quantum phases expected to appear in the
presence of dipole–dipole interaction.

9.4. Quantum phases of dipolar lattice gases

Dipole–dipole interactions add to the Bose–Hubbard model a
new essential ingredient, given by long-range and anisotropic
interactions. For a lattice of polarized dipoles, as sketched
in figure 30, the extended Bose–Hubbard Hamiltonian in the
presence of long-range interaction is

H = −J
∑

⟨ij⟩
â

†
i âj +

∑

i

[
U

2
ni(ni − 1) − µni

]

+
∑

ℓ

∑

⟨ij⟩ℓ

Uℓ

2
ninj , (9.4)

Figure 30. Schematic representation of a gas of polarized dipoles in
a 1D optical lattice (a) and in a single 2D optical lattice layer (b).

where the vector ℓ is the distance between the two optical lattice
sites i and j .

The extended Bose–Hubbard Hamiltonian (9.4) has been
extensively studied. It has been predicted that in 2D lattices the
presence of finite range interactions (where the sum over ℓ is
generally cut off at the nearest or next-nearest neighbor) gives
rise to novel quantum phases, like the charge-density wave
(checkerboard), namely an insulating phase with modulated
density, and the supersolid phase, presenting the coexistence
of superfluidity and of a periodic spatial modulation of the
density, different from that of the lattice [274–276] (see also
discussion in section 5.6).

The presence of insulating phases at fractional filling
factors can be inferred readily following the criteria explained
in the previous section, which predict that (e.g.) a
checkerboard ordering of the atoms (see figure 31(GS)) at
J = 0 is stable against particle–hole excitations in the range of
chemical potential 0 < µ < 4UNN, UNN being the first nearest-
neighbor interaction (and neglecting for the sake of simplicity
all following ones). Analogous to the standard Mott insulating
phase, these insulating phases at fractional filling factor exist
in some low tunneling region of the µ versus J phase diagram.

In [277], it has been pointed out that 1D lattice systems
of spinless bosons interacting with long-range interactions
possess a further insulating phase, which they call Haldane
Bose insulator (HI), presenting some analogies with the famous
Haldane gapped phase in quantum spin-1 chains [278]. This is
a gapped phase, which unlike the checkerboard phase does
not break the translational symmetry of the lattice, but is
characterized by an underlying hidden order, namely a non-
trivial ordering of the fluctuations which appear in alternating
order separated by strings of equally populated sites of arbitrary
length. These studies were extended to a confined 1D dipolar
gas in [279].

The existence of the supersolid phase in solid helium
has not yet been unambiguously proven experimentally: while
on the one hand the interpretation of the first experimental
results measuring a non-classical rotational inertia [280–282]
remains controversial, microscopic calculations [283] indicate
that disorder-based mechanisms, such as the presence
of superfluid dislocations, grain boundaries and ridges,
should be responsible for the more recent observations of
supersolidity [284, 285]. Even if bulk supersolid remains in
many respects more challenging than lattice supersolid, the
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Figure 31. (a), (b), (c) Phase diagram with a range of the dipole–dipole interaction cut at the first, second and fourth nearest neighbor,
respectively. The thick line is the ground state and the other lobes correspond to the metastable states, the same color corresponding to
the same filling factor. In (a), (b), (c) the ground state filling factors are multiples of 1/2, 1/4 and 1/8, respectively. In (a), (b), (c) the
metastable state filling factors are m/4, m/8 and m/16, respectively (∀m ̸= 1). Metastable configuration appearing at the first nearest
neighbor (I) and second (IIa–IIb), and the corresponding ground state (GS); the metastable states remain stable for all larger ranges of the
dipole–dipole interaction. The above phase diagrams are calculated for U/UNN = 20. This value of the dipole–dipole interaction is much
stronger than the one currently available in systems of chromium atoms, where U/UNN ≈ 400 (for εdd =≈ 0.16 and spherical localization
of the bottom of the potential well at s = 20ER, where ER is the recoil energy at λ = 500 nm).

question of the stability of the supersolid phase in the presence
of the lattice is not trivial and has been only recently settled
by exact quantum Monte Carlo simulations. Checkerboard
supersolid (at ρ ≈ 1/2) is expected for dominant nearest-
neighbor interaction, while star (at ρ ≈ 1/4) and striped
(at ρ ≈ 1/2) supersolids14 are predicted for non-vanishing
nearest-neighbor interaction [286, 287]. There have been
several studies devoted to the stability of the supersolid phase
versus phase separation [288, 289], which is identified by a
negative compressibility. Agreement seems to be reached on
the conclusion that the checkerboard supersolid is stabilized
at ρ > 1/2 by a finite on-site interaction and a strong
enough nearest-neighbor interaction [290], while it phase
separates for nearest-neighbor interactions at densities smaller
than 1/2 (unless a strong enough nearest-neighbor hopping
is introduced [291]). Instead, the striped supersolid, obtained
for large next nearest-neighbor interaction, exists for all doping
away from ρ = 1/2 both in the hard-core and in the soft-core
cases [288, 289, 291]. Finally, at large next nearest-neighbor
interaction, the star supersolid can always be obtained by
doping a star solid at ρ = 1/4 with vacancies and by doping it
with bosons in the case the ρ = 1/2 ground state is a striped

14 The star supersolid shows modulations of the density and order parameter
such that in a 2×2 elementary cell, one (the other) diagonal contains sites with
different (equal) density and order parameter; the striped supersolid presents
alternating horizontal or vertical stripes of higher and lower density and order
parameter.

crystal [291, 292]. The most important conclusion on which
most papers agree15 is that no supersolid phase is found at
commensurate density. Analogous results have been recently
discussed for 1D geometries [294, 295], the most important
difference being the absence of phase separation.

Providing an alternative setting in which to look for the
supersolid phase, cold atoms with long-range interactions are
particularly appealing [277, 286, 287, 290, 296, 297]. Dipolar
atoms and polar molecules are good candidates to create
such physical systems, bringing into play the extra feature
of the anisotropy of the interaction. Dipolar gases have
been first identified as possible candidates to provide a long-
range interaction system in [286]. The on-site parameter U

in (9.4) is given by two contributions: one arises from the
s-wave scattering Us = 4πh̄2a/m

∫
n2(r) d3r and the second

one is due to the on-site dipole–dipole interaction Udip =
1/(2π)3

∫
Ũdd(q)ñ2(q) d3q, Ũdd(q) and ñ(q) being the Fourier

transforms of the dipole potential and density, respectively
[101]. Because of the localization of the wavefunctions at
the bottom of the optical lattice wells, the long-range part of
the dipole–dipole interaction Uℓ is in very good approximation
given by the dipole–dipole interaction potential at distance ℓ,
Uℓ = (Cdd/4π)[1−3 cos2(θℓ)]/ℓ3, multiplied by the densities
ni and nj in the two sites, where θℓ is the angle between ℓ

and the orientation of the dipoles. The ratio between the total

15 All apart from [293].
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on-site interaction U = Us + Udip and the nearest-neighbor
dipolar interaction UNN determines much of the physics of
the system. It can be varied by tuning the on-site dipole–
dipole interaction Udip from negative to positive by changing
the vertical confinement, or by changing the s-wave scattering
length via a Feshbach resonance, as recently demonstrated with
chromium atoms [73].

Due to the anisotropic character of dipole–dipole
interaction, a much richer physics is to be expected with
respect to the case of only repulsive long-range interactions.
By changing the optical lattice strength, the transverse
confinement and the orientation of the dipoles, the parameters
of the Bose–Hubbard Hamiltonian can be tuned over a wide
range, the interaction can be made positive or negative and the
tunneling parameter anisotropic. Exploiting all those degrees
of freedom, one can scan in a single system checkerboard
or striped ground states, and eventually collapse [286]. Very
recently, in two works, the best available QMC codes were used
to study the quantum phases of 2D dipolar gases [298, 299].
The main results of [298] were as follows: (i) existence and
stability of lobes in the phase diagram containing insulator
states: checkerboard, star solid and ν = 1/3 solid, and
surrounding them supersolid regions; (ii) devil’s staircase
region of the phase diagram with phases corresponding to
commensurate filling; (iii) appearance of complex ‘wedding’
cake structures for harmonically confined dipolar gases;
(iv) appearance of multiple metastable states, confirming the
predictions of [316] (see below).

In [300], the case of chromium, including the real
spinor character of the atoms, has been considered. The
dipole–dipole interaction has been treated as a perturbation
on top of the dominant spin-dependent contact interaction.
Using a mean-field treatment with a trial wavefunction
beyond on-site product wavefunction, the quantum phases
have been identified and in particular an antiferromagnetic–
ferromagnetic first order transition occurring simultaneously
with the MI–SF transition.

The existence and observability of the above-mentioned
quantum phases require a relative strength of the long-range
dipole–dipole interaction that is not too small compared with
the zero-range one. This can be achieved by reducing
the s-wave scattering length, as demonstrated in [73].
However, the absolute energy scale has to be compared with
recombination losses over the time scale of the experiments
and finite temperature effects. This might make stronger
dipolar interactions desirable and polar molecules the optimal
candidates for the realization of this kind of physics. Recently,
as already mentioned in section 3.1, the difficulties of creating
heteronuclear polar molecules in deeply bound vibrational
states have been successfully overcome [24–26] and a high-
space density gas of polar molecules in their ground vibrational
state has been obtained [25, 301]. These achievements open
a new era toward quantum degenerate molecular gases of
strongly interacting dipoles.

The search for supersolid and other exotic phases in
cold atomic system in optical lattices is not, however,
restricted to the case of dipolar atoms, Rydberg atoms or
polar molecules [45, 302, 303]. Other optical lattice systems

are relevant, like Bose–Bose mixtures [304–306], Bose–
Fermi mixtures [306–308], Fermi–Fermi mixtures [309],
confined attractive [309, 310] and repulsive fermions [311],
and bosonic gases in frustrated (triangular) lattices [312–315],
as well as extended Bose–Hubbard Hamiltonians designed
from underlying contact-interaction systems using proper laser
excitations involving higher bands [296].

9.5. Metastable states of dipolar lattice gases

Beyond the richness of ground states discussed in the previous
section, in the presence of long-range interactions, metastable
insulating states are also predicted [316]. Similar physics
appears also in the case of Bose–Bose mixtures, where local
minima of the energy landscape indicate the presence of
quantum emulsion states, i.e. metastable states characterized
by microscopic phase separation, finite compressibility in the
absence of superfluidity, thus with macroscopic properties
analogous to those of a Bose glass [317–319].

To determine the existence of the insulating states at
fractional filling factor and the metastable states in a gas of
dipoles in an optical lattice, one has to apply exactly the same
criteria defining the Mott insulating states in the case of on-site
interaction only. A crucial difference is that for non-uniform
atomic distributions in the lattice, the energy of particle–hole
excitations is site dependent. For nearest-neighbor interaction
and zero tunneling, the checkerboard ordering of the atoms
(see figure 31(GS)) is the ground state in the range of chemical
potential 0 < µ < 4UNN. In a similar way, an ‘elongated-
checkerboard’ ordering of the atoms (as shown in figure 31(I))
at J = 0 is stable against particle–hole excitations in the range
of chemical potential UNN < µ < 3UNN, UNN being the first
nearest-neighbor interaction (and neglecting for the sake of
simplicity all following ones).

The phase diagram of the system for a 4 × 4 elementary
cell and different cut-off of the interaction range is shown in
figure 31. In the presence of long-range interactions, there are
insulating lobes corresponding both to ground and metastable
states, characterized by integer and fractional filling factors
and a non-uniform distribution of the atoms in the lattice (see
the caption of figure 31 for details).

The filling factors allowed and the metastable configu-
rations clearly depend strongly on the cut-off range of
interactions. Due to the strongly decreasing r−3 behavior of
the dipole–dipole interaction, in most theoretical approaches
the interaction range is cut off at few nearest neighbors. This
influences the results at very small particle or hole densities
(in the particle–hole duality case of strong on-site interaction,
as shown in figure 31), but only slightly changes the insulating
part of the phase diagram at densities close to half filling
[320]. This conclusion is confirmed by the results obtained
in [321, 298] for dipolar atoms in a 1D and 2D optical lattice,
respectively. Taking into account the infinite-range dipole–
dipole interaction, one finds a Mott lobe in a given range on
µ for each rational filling factor (‘devil’s staircase’), but the
dominant lobes are those corresponding to filling factors with
smaller denominators.

The phase diagram of figure 31 is confirmed by the
imaginary and real time evolution of the system. Depending
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on the initial conditions, the imaginary time evolution
converges to a different metastable configuration. In
the real time evolution, the stability of those metastable
configurations is reflected into typical small oscillations around
the corresponding local minima of the energy landscape.

The stability of the metastable states has been studied
with a path integral formulation in imaginary time [320, 322],
which can describe the tunneling below a potential barrier
(instanton effect). This analysis suggests that the metastable
configurations are very stable when many sites must invert
their population to reach another metastable state. However,
especially in larger lattices, two metastable configurations
might differ just by the occupation of few lattice sites. This,
and the corresponding small energy differences, should be
carefully taken into account in a realistic analysis at a finite
temperature aimed at describing the experiments.

Because of the presence of those very many metastable
states, in an experiment it will be very hard to reach the
ground state or a given metastable configuration. It was
checked that the presence of defects is strongly reduced in
the result of the imaginary time evolution, when a local
potential energy following desired patterns is added to the
optical lattice. One can use superlattices in order to prepare
the atoms in configurations of preferential symmetry. This
idea is presently pursued by several experimental groups. Note
that the configurations obtained in such a way will also remain
stable once the superlattice is removed, thanks to dipole–dipole
interaction.

Spatially modulated structures can be detected via the
measurement of the spatial noise correlations function of the
pictures produced after expansion [272, 273, 297]. Such a
measurement is in principle able to recognize the defects in
the density distribution, which could be exactly reconstructed
starting from the patterns in the spatial noise correlation
function. However, the signal-to-noise ratio required for
single defect recognition is beyond present experimental
possibilities, where the average over a finite number of
different experimental runs producing the same spatial
distribution of atoms in the lattice is required to obtain a good
signal.

In view of the possible application of such systems
as quantum memories one should be able to transfer in
a controlled way the system from one configuration to
another [320]. The real time evolution of the system was
studied by appropriately varying the Hamiltonian parameters
(tunneling coefficients and local chemical potentials) and it
was shown that it is impossible to map this problem onto
a simple adiabatic transfer process. This is due to the fact
that, in spite of the modification of the lattice parameters, the
metastable states survive unchanged till the point where the
stability condition is not fulfilled anymore. The transition to
any other state is then abrupt. A way around this problem is
to push the system into the superfluid region and then drive it
back into a different insulating state. The transfer between two
metastable states turns out to be a quantum controlled process,
where the Hamiltonian parameters must be controlled with
very high precision to obtain the desired result.

9.6. Bilayer and multilayer dipolar lattice gases. Interlayer
effects

In the previous subsections, we have discussed the case of a
single 2D optical lattice layer. In the present experiments,
usually 2D geometries are created as a series of pancake traps
by means of a very strong 1D optical lattice in the perpendicular
direction, which provides strong confinement and completely
suppresses tunneling in that direction. In the presence of long-
range interaction, in order to isolate each layer, one should
also reduce the interaction between the different layers making
the distance between the different layers much larger than the
lattice spacing in the 2D plane. This can be achieved, e.g., by
creating a 1D lattice in the perpendicular direction with two
laser beams intersecting at a small angle θ , which increases the
lattice spacing in the third direction to d1D = (λ/2)/ sin(θ/2).
Alternatively, by using two different wavelengths for the 1D
and 2D lattices, one can make the 1D distance larger or
even smaller than the 2D lattice spacing. This might be
useful in cases where inter-layer interactions do not have to
be suppressed, but on the contrary are exploited to generate
novel effects.

The case of two parallel 1D optical lattices without
tunneling among the two wires has been considered in
[323, 324]. In that work, the polarization of the dipoles
is chosen such that only on-site intra-layer interaction and
nearest-neighbor attractive interaction between the layers exist.
Such an attractive inter-layer interaction leads to the formation
of a pair superfluid (PSF) [325–328], i.e. a superfluid phase of
pairs, composed of two atoms at the same axial position but in
different wires. In the PSF phase, only simultaneous hopping
of atoms in the two wires is involved. Due to the direct Mott to
PSF transition the lowest excitations of the Mott state are not,
as usually, given by particle–hole excitations, but rather by the
creation and destruction of pairs. This change in the nature of
the Mott excitations leads to a significant deformation of the
Mott-insulator lobes, and may even induce a re-entrant shape
of the lobe at small hopping.

The same scenario is expected for two 2D optical lattice
layers, based on the mapping of this problem to the one
of bosonic mixtures in 2D lattices [325–328]. However,
the physics of dipolar atoms in layered 2D optical lattices
is even richer, because of the long-range intra- and inter-
layer anisotropic interactions. The case of dipoles pointing
perpendicular to the 2D lattice plane, generating repulsive
nearest-neighbor intra-layer and attractive nearest-neighbor
inter-layer interactions, has been recently investigated [329]. A
mean-field treatment of the effective pair Hamiltonian provides
clear evidence of the existence of a pair-supersolid phase
(PSS), which arises from two-particle and two-hole excitations
on top of the checkerboard-like insulating phase at half-integer
filling factor (see figure 32(b)).

When tunneling between the two layers is not completely
suppressed (in the specific case, two uniform 2D layers without
lattice), beyond the superfluid and pair-superfluid phases, a
phase transition toward a maximally entangled state, where
all particles populate either one layer or the other, has been
shown [330].
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Figure 32. (a) Phase diagram for a system of two parallel 1D lattices in the presence of on-site intra-wire interaction U and nearest-neighbor
inter-wire interaction W , for W/U = −0.75; white represents 2SF, gray MI and black PSF (figure taken from [324]). (b) Effective MF
phase diagram for a system of two 2D optical lattice layers in the presence of on-site intra-layer interaction U , nearest-neighbor intra-layer
interaction UNN and nearest-neighbor inter-wire interaction W , for W/U = −0.95 and UNN/U = 0.025; the white regions inside the lobe
are CB insulating with single or double site occupancy, the gray shaded region represents the PSS and the lower white region is PSF, as
indicated by the arrows. The red (gray) line indicates the estimated limit of validity of the effective MF treatment [329].

In [331] the full 3D geometry for dipoles pointing along
the perpendicular z-direction has been considered. For inter-
layer attraction and positive on-site interaction, layered phases
where the density distribution is the same on all lattice layers
exist. For negative on-site interaction, instead, modulation of
the density with period 3 along z has been found, reminiscent of
the structure of high-Tc cuprate superconductors. In this work
there is no evidence of the pair-superfluid phase, because of
the mean-field approach used.

9.7. Tailoring interactions with polar molecules

Thanks to their promisingly large dipole moments (typically
of the order of a few Debye), polar molecules have been the
subject of extensive theoretical investigation centered in the
possibility of tailoring the shape of their interaction [332].

Polar molecules prepared in a mixture of rotational states
interact through long-range dipole–dipole interaction even in
the absence of an external electric field. The possible Mott
phases present different ordering, depending on the preparation
of the initial superposition. When the Mott state is melted
the superfluid state can interpolate between homogeneous and
antiferromagnetic ordering or phase separate depending on the
Hamiltonian parameters [303].

On the other hand, appropriate static and/or microwave
fields can be applied to design effective potentials between two
molecules in their electronic and vibrational state [45, 333].
The mechanisms to induce tailored interactions rely on the
simple rigid rotor Hamiltonian (see appendix B), providing the
low energy rotational states of the molecules. Such rotational
states can be coupled by static or microwave fields to design
long-range interaction potentials, in contrast to the typical van
der Waals interaction in the absence of external fields. In 2D, a
static electric field induces a typical repulsive dipolar potential
scaling as 1/r3, which leads to crystallization. An additional
microwave field allows further shaping of the potential, even
allowing an attractive part. As previously discussed, in the
presence of such induced interactions, the system can be driven
through crystalline, superfluid and normal phases [45, 333].

Further investigation has shown that the static electric
field and the microwave field dressing the molecular rotational

levels can be chosen in such a way as to obtain dominant
three-body interactions [334]. Hamiltonians with many-body
interactions have been studied in the context of non-Abelian
topological phases (like Pfaffian wavefunction accounting
for the quantum Hall effect or systems with a low energy
degeneracy characterized by string nets), multiple species in
frustrated lattice topologies, ring exchange models (like the
one responsible for the nuclear magnetism in helium 3) or
undoped high-Tc compounds and cuprate ladders. In typical
condensed matter systems many-body interactions are rarely
dominant and polar molecules provide a setting where they
can be controlled and designed independently from two-body
interactions.

A Hubbard model including an unconventional three-
body interaction term

∑
i ̸=j ̸=k Wijkninjnk can be readily

obtained. The Hamiltonian parameters for two- and three-
body interactions depend explicitly on the applied fields. The
three-body interaction is intrinsically long range due to the
underlying dipole–dipole interaction.

The 2D and 1D quantum phase diagrams for strong
three-body interactions have been recently investigated. In
2D [335], a rich variety of solid, supersolid, superfluid
or phase separated phases are encountered. The several
solid phases at fractional filling factor evolve, upon doping,
into corresponding supersolid phases with complex spatial
structures. In particular, the checkerboard supersolid at filling
factor 1/2, which is unstable for hard-core bosons with nearest-
neighbor two-body interaction, is found to be stable in a
wide range of tunneling parameters. In 1D [336], quantum
Monte Carlo simulations have shown that strong three-body
interactions give rise to an incompressible phase at filling factor
2/3, which presents both charge-density wave (CDW) and
bond (BOW) orders. At the same time, they have ruled out
the solid phases at filling factors 1/2 and 1/3 predicted by
Luttinger theory [334]. The solid phases at filling factor 1/2
is found only in the presence of additional nearest and next-
nearest two-body interactions. These can be either CDW or
BOW depending on the intensity of the two-body corrections.
Instead, at filling factor 1/3, the system is always superfluid.

By tuning the optical potential parameters and by means
of external electric and magnetic fields, one can induce and
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Figure 33. (a) Square lattice in 2D with nearest-neighbor orientation-dependent Ising interaction along x̂ and ẑ. (b) Two staggered
triangular lattices with nearest-neighbor oriented along orthogonal triads. Figure courtesy of Zoller.

control the interaction between spin states of neutral atoms
in an optical lattice and engineer quantum spin Hamiltonians
[17, 337, 338]. Such proposals are aimed at the study of
a variety of quantum phases, including the Haldane phase,
critical phases, quantum dimers and models with complex
topological order supporting exotic anyonic excitations. By
including a spin degree of freedom in addition to the rotational
degrees of freedom of polar molecules, spin models for
half-integer and integer spins with larger coupling constants
can be obtained [302, 339]. The main ingredient of these
proposals is the dipole–dipole interaction: it couples strongly
the rotational motion of the molecules, it can be designed
by means of microwave fields (as explained above) and it
can be made spin dependent, exploiting the spin-rotation
splitting of the molecular rotational levels. The final goal
is to reproduce models with emergent topological order,
robust to arbitrary perturbations of the underlying Hamiltonian,
and hence suitable for error-resistant qubit encoding and for
quantum memories.

For spin 1/2, it has been explicitly demonstrated how
to construct two highly anisotropic spin models [302]. The
first model (see figure 33(a)) is a 2D spin model with
nearest-neighbor orientation-dependent Ising interactions. It
has ideally a gapped two-fold degenerate ground subspace
with zero local magnetization, which guarantees immunity
to local noise [340]. The second model (see figure 33(b))
takes place on two staggered triangular lattices, equivalent to
Kitaev’s honeycomb model [341]. In appropriate regimes, this
model provides a ground state which encodes a topologically
protected quantum memory.

9.8. Self-assembled structures

The long-range character of the dipole–dipole interaction
allows the formation of self-assembled structures. Different
situations have been the object of recent studies, ranging from
the formation of chains of polar molecules in 1D optical
lattices driven by the attractive part of the dipole potential,
to the appearance of crystal ordering in 1D or 2D systems
driven instead by the repulsive character of the interaction.
In this section, we summarize the main results and possible
applications.

The case studied in [342] considered a stack of 2D layers
created by a strong 1D lattice. The dipoles are pointing

perpendicularly to the 2D layer, such that the interaction is
repulsive in each layer and attractive for atoms located on top
of each other in different layers. Collapse in the perpendicular
direction is prevented by the complete suppression of tunneling
by the strong 1D lattice. It has been found that the attraction
in the perpendicular direction is responsible for the formation
of chains of dipoles, where the longest chain is energetically
favorable, while the shortest chain is favored by entropy. When
temperature is decreased, condensation in the longest chain
takes place. It has been pointed out that the physics is similar
to the physics of rheological electro- and magneto-fluids.

In the 2D homogeneous system for dipoles pointing
perpendicular to the plane, the repulsive interaction is
responsible for the formation of hexagonal crystal ordering
[45, 343–345], similar to the formation of Wigner crystals
for electrons or ions interacting via the Coulomb repulsion
[346, 347]. However, two important differences are found,
namely that the transition to the crystal phase in dipolar systems
happens at high density (instead of that at low density as for
Coulomb systems), and the spectrum shows two phononic
linear branches with different slopes (rather than the dispersion
ω ∼ q1/2 typical of Coulomb crystals).

The formation of the crystal ordering has been identified
as a first order phase transition [45, 345] which appears with a
delta-peak at the inverse lattice spacing in the structure factor.
The transition happens for rs = 37 ± 1 [345], where rs stands
for the ratio between interaction energy and kinetic energy16.
Contrary to Coulomb systems, rs increases with density, which
is why Bose–Einstein condensation is found at low densities
and the dipole–dipole dominated crystalline phase at high
densities. The quantum melting transition should be in reach
for the typical parameters of polar molecules.

In [344] the excitation spectrum has been shown to develop
a roton minimum as the density increases. However, the
question about the possibility of having a supersolid in such
systems is still open due to difficulties in getting reliable
measures of the superfluid density [345]. In [120] a greater
stability of supersolid phases has been conjectured for multi-
layer systems, since the roton softening occurs at wavelengths
much larger than the layer width, which should prevent global
collapse.

16 This result is consistent with the other results of rs = 32 ± 7 [45] and
rs = 30 [344].
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In [348], it has been proposed to exploit the protection
against short-range collisions provided by the crystalline
ordering to use those self-assembled dipolar crystals as high-
fidelity quantum memories. Furthermore, the self-assembled
crystal could be used as a floating lattice structure for a second
species of atoms or molecules [349]. The advantages of this
proposal are that the lattice spacing can be tuned down to the
hundred nanometer scale and that the second species is subject
both to its own Bose–Hubbard coupling and to the coupling to
lattice phonons.

In a system of two parallel 2D layers at distance l and
dipoles pointing perpendicular to the layers, one finds intra-
layer repulsion and inter-layer attraction (repulsion) for dipoles
separated by a distance r <

√
3l (r >

√
3l). It has been

shown [350] that the hexagonal crystalline order is preserved
in both layers, and as a function of the layer distance l, one goes
from two independent crystals to a crystal of paired dipoles.
Moreover, since the melting temperature is not monotonic in
l, a solid–liquid–solid transition takes place for increasing l at
a fixed temperature.

Furthermore, the formation of ordered patterns in 1D
systems has been recently investigated in [36, 351–354].
In [352, 353], it has been pointed out that one-dimensional
dipolar gases present strongly correlated phases beyond the
strongly correlated Tonks–Girardeau regime. The crossover
from the superfluid state to the ordered state takes place for
increasing densities (like in 2D) and appears in the structure
factor as additional peaks at the inverse lattice spacing. In the
whole crossover, the gas preserves a Luttinger-liquid behavior,
since no roton minimum nor long-range order is found.

In [36] the stability of such ordered structures with respect
to the transverse confinement has been investigated, in analogy
to what is known from Coulomb Wigner crystals [355].
By weakening the transverse confinement, or equivalently
increasing the density or the strength of the dipolar interaction,
a smooth crossover to a zigzag chain and to structures
formed by multiple chains is predicted. Quantum fluctuations
smoothen out these transitions, which are, respectively, first
and second order phase transitions in a classical model, and
also completely melt the crystal for low values of density or
dipolar interaction.

10. Outlook

An epilogue, in the disguise of wrapping up the
past, is really a way of warning us about the future.
J. W. Irving, The World According to Garp.

10.1. From chromium to heteronuclear molecules to Rydberg
atoms

The experimental realization of dipolar gases was first obtained
with atomic chromium. Despite the large spin magnetism in
chromium, the dipole moment is still small, classifying the
dipolar interaction as a weak one, where the length scale of the
interaction is much smaller than the interparticle spacing. In
this regime we will probably see in the near future experiments
on self-organized collective structures close to the instability

of the gas. In spinor gases first experimental steps have been
done in this direction [224], as shown in section 8.

Rapid progress has been made in the creation of
heteronuclear molecules (see section 3.1) in their vibrational
ground state [25, 26]. These experiments still have to go
some way to degeneracy; however, given the speed of the
development we can expect this step to be taken in the near
future. These gases—when the molecules are prepared in the
rotational ground state—then cover the whole range of dipolar
interaction strengths—from weak to strong interactions—as
their electric dipole moment can be tuned via an external
electric dc field. Even the three-body interaction can be
controlled independently of the two-body interaction by the
use of microwave fields [334]. These systems will therefore
provide a rich toolbox for quantum simulation of spin systems.

Even dramatically larger dipolar interactions between
Rydberg atoms have also become available in the regime of
quantum degenerate gases since the first Rydberg excitation
of Bose–Einstein condensates [52]. As the energy spectrum
of Rydberg atoms involving a quantum defect is very similar
to the level structure of a heteronuclear molecule, many of the
proposed techniques to mix rotational states to tailor the dipolar
interaction can be directly applied to Rydberg atoms. Despite
their limited lifetime the huge size of the dipole moments—
typically 1000 times larger than for heteronuclear molecules—
opens up a whole new class of experiments on long-range
interacting spin systems. Recently, the mapping of a long-
range interacting spin system onto a frozen Rydberg gas was
realized successfully and universal scaling of that strongly
interacting system could be determined experimentally [356].

In terms of particle numbers this experiment was done in
a regime where exact quantum calculations have no access.
Therefore the quantum simulation of large and strongly
interacting spin systems by mapping to other equivalent
quantum systems—just as Richard Feynman proposed—is
starting to become a reality. Dipolar gases will enrich this
effort substantially.

10.2. Dipolar gases and trapped ions

One of the most promising and fascinating ideas that will
allow one to investigate quantum systems bearing a very close
similarity to ultra-cold atomic gases comes from somewhat
unexpected directions. Namely, in recent years, there has been
an enormous interest in ideas that could lead to the use of
trapped ions for simulating quantum many-body systems.

Wunderlich had in 2001 [357, 358] the idea of using
inhomogeneous magnetic fields and long wavelength radiation
to solve the problem of individual ion addressing in ion traps—
one of the most important obstacles to the implementation
of quantum information processing with ultra-cold ions. As
a byproduct Mintert and Wunderlich obtained the result that
internal degrees of freedom of ions behave as coupled pseudo-
spins, where the coupling is mediated by the phonons in the
trap. This idea has been fully put forward by Porras and
Cirac [359, 360], who have argued that trapped ions can be
as attractive systems for quantum simulations as ultra-cold
atoms or molecules in optical lattices. Effective quantum spin
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systems that one can achieve with ions range from linear chains
to 2D self-assembled, or optically prepared lattices, with very
precise control of the parameters. The most interesting aspect
in the present context is that the interactions mediated by
phonons are of long-range character, and in fact typically decay
with distance as 1/r3. The typical spin Hamiltonian one can
simulate with ions has the form

H = 1
2
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where the overall sign and magnitude of J
x,y,z
ij can be

controlled, whereas the spatial dependence is J
x,y,z
ij ∝ 1/|ri −

rj |3. When J x = J y these models correspond nearly exactly
to hard-core Bose gases with dipole–dipole interactions, and in
the presence of transverse and longitudinal ‘magnetic’ fields.
The only difference is that the tunneling now has a non-local
character, and its amplitude also decays as slowly as 1/r3,
since the phonons allow for such long-range interactions.

The ingenious idea of Porras and Cirac has been
followed in many directions. Phonons themselves may
exhibit fascinating many-body quantum physics and undergo
Mott insulator-superfluid transition [361]. One can realize
mesoscopic spin-boson models with trapped ions [362], or
quantum neural network models and fault resistant quantum
computing [363, 364]. Recently, the idea of combining lattices
(either optical ones consisting of microtraps [365] or lattices
employing surface electrodes [366]) with ion traps has led
to fascinating proposals for realization of antiferromagnetic
spin models in a triangular lattice with adjustable couplings,
where the different Néel orders can be realized [365]. As the
parameters interpolate between these Néel orders, the system
is expected to enter into quantum spin liquid states of various
types. These predictions have been very nicely supported
in [365], where exact diagonalization was compared with
one of the first non-trivial applications of the so-called pair
entangled projected states (PEPS) method.

All these proposals are not inventions of theoreticians:
many of the leading experimental ion trapper groups
are working on quantum simulations with ions, and the
first spectacular experimental results have been obtained
already [367].

10.3. ‘Dipolar art’

To conclude this review, we note that the excitement about the
advances in dipolar gases is not only widespread among the
experts in the cold atom and condensed matter community: to
our amazement, it has also recently inspired the artist Brigitte
Simon to work on ‘dipolar art’. This expert in artwork made
of glass has for example designed many church stained glass
windows. After discussing the physics behind the images
of a collapsing dipolar BEC with some of us, she started to
work on a glass window based on our measurements. Let us
quote her: ‘I was fascinated when I discovered an article in
the Frankfurter Allgemeine Zeitung in August 2008 [about
the dipolar collapse, reproducing pictures from figure 19].

Figure 34. A stained glass window, composed of 524 one-inch
squares, each selected from a wide variety of colors and precisely
cut out of mouth-blown genuine antique glass from Bavaria,
reproducing the shape of a collapsed dipolar BEC (compare with
figure 19). The squares are framed with copper foil and soldered
front and back. Figure courtesy of Simon.

Reading it over and over I tried to understand what a miracle
had been created at Stuttgart University. Marveling at the
photos I felt that there is Art in Science, and this is what I
tried to capture’ (figure 34).
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TL and TP acknowledge support by the German
Science Foundation (SFB/TRR 21 and SPP 1116), the
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Appendix A. Fourier transform of the dipolar
interaction

In this appendix, we sketch the main steps of the calculation
of the Fourier transform (2.5) of the dipole–dipole interaction.
Using spherical coordinates (r, θ, ϕ), with the polar axis along
k and the dipole moment in the y = 0 plane (making the angle
α with k), one has

Ũdd(k) = Cdd

4π

∫∫∫
e−ikr cos θ

× 1 − 3(sin α sin θ cos ϕ + cos α cos θ)2

r

× sin θ dr dθ dϕ. (A.1)

After integration over ϕ and the change of variable x = cos θ ,
we obtain

Ũdd(k) = Cdd

4π

∫ ∞

b

dr

r

∫ 1

−1
e−ikrxπ(3 cos2 α − 1)

× (1 − 3x2) dx, (A.2)

where b is a cut-off at small distance introduced to
avoid divergences at this stage. The integration on x is
straightforward, and gives

Ũdd(k) = Cdd(1 − 3 cos2 α)

×
∫ ∞

kb

(
sin u

u2
+

3 cos u

u3
− 3 sin u

u4

)
du, (A.3)

with u = kr . The last integral can be calculated by parts and
has the value [kb cos(kb)−sin(kb)]/(kb)3. We can now let the
cut-off b go to zero; the last integral then approaches −1/3 and
thus we finally get expression (2.5) for the Fourier transform
of the dipole–dipole interaction.

Appendix B. Stark effect of the rigid rotor

In this appendix, we briefly recall basic results (see, e.g. [333])
concerning the behavior of a spinless diatomic molecule,
modeled as a spherical rigid rotor, in an electric field E , with
an emphasis on the dependence of the average electric dipole
moment (in the laboratory frame) on the applied field. We

Figure B1. (a) Rotational spectrum of a diatomic molecule in zero field. (b) Dependence of the first energy levels on the applied electric
field E . (c) the ground state average dipole moment ⟨dz⟩ in the laboratory frame as a function of the applied field E .

assume that the molecule is in its electronic and vibrational
ground state, and that the electronic ground state is a 1: state
(as, e.g., in the case of bi-alkali molecules). For the sake of
simplicity, we also neglect the hyperfine structure, although
this is an issue relevant to experiments. The Hamiltonian for
a rigid rotor reads as

Ĥrot = BĴ2, (B.1)

where Ĵ is the molecule angular momentum operator (in units
of h̄) and B the rotational constant, linked to the equilibrium
internuclear distance r and the reduced mass mr by the
relationship B = h̄2/(2mrr

2); its typical order of magnitude
is B/h ∼ 10 GHz. The eigenstates of (B.1) are the angular
momentum eigenstates |J, mJ ⟩ with energy BJ(J + 1), and
are 2J + 1 times degenerate. Figure B1(a) represents the first
few eigenstates of (B.1), with energies 0, 2B, 6B . . ..

This molecule is supposed to have a permanent dipole
moment d̂ in the molecular frame. Then, in the presence of an
external field E = Eez, the Stark Hamiltonian of the molecule
reads as

Ĥ = Ĥrot − d̂ · E = Ĥrot − dE cos θ, (B.2)

where θ is the angle between z and the internuclear axis.
Figure B1(b) represents the first eigenstates of the Hamiltonian
(B.2), diagonalized numerically, as a function of E . The
interaction with the electric field lifts the degeneracy between
levels having different values of |mJ |. From this Stark map,
the average dipole moment ⟨dz⟩ = d⟨cos θ⟩ for the ground
state |φ0⟩ is obtained (via the Hellmann–Feynman theorem) as

⟨dz⟩ = −
〈

φ0

∣∣∣∣∣
∂Ĥ

∂E

∣∣∣∣∣ φ0

〉

= −∂E0

∂E
, (B.3)

where E0(E) is the ground state energy. The dipole moment
is plotted in figure B1(c). One observes that ⟨dz⟩ increases
linearly at small E (more precisely, one has ⟨dz⟩/d ∼ dE/(3B)
for small fields), and tends asymptotically for dE ≫ B toward
its saturated value d , although relatively slowly, as one can
show that to leading order, ⟨dz⟩/d ∼ 1−

√
B/(2dE) for dE ≫

B [368]. For typical values d ∼ 1 D and B/h ∼ 10 GHz, the
electric field strength corresponding to dE ∼ B is on the order
of 104 V cm−1, which, from the experimental point of view, is
accessible in a relatively easy way.
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2008 Phys. Rev. A 78 063615

[162] Zakharov V E and Shabat A B 1971 JETP 61 118
[163] Stegeman G I and Segev M 1999 Science 286 1518
[164] Peccianti M, Conti C, Assanto G, Luca A D and Umeton C

2004 Nature 432 733–7
[165] Shih M F, Segev M and Salamo G 1997 Phys. Rev. Lett.

78 2551
[166] Richter R and Barashenkov I V 2005 Phys. Rev. Lett.

94 184503
[167] Rosanov N N, Rozhdestvenskii Y V, Smirnov V A and

Fedorov S V 2003 JETP Lett. 77 84
[168] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404
[169] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev.

Lett. 100 090406
[170] Nath R, Pedri P and Santos L 2009 Phys. Rev. Lett.

102 050401
[171] Nath R, Pedri P and Santos L 2007 Phys. Rev. A 76 013606
[172] Zakharov V E and Shabat A B 1972 JETP 64 1627
[173] Tikhonenko V, Christou J, Luther-Davies B and Kivshar Y S

1996 Opt. Lett. 21 1129
[174] Mamaev A V, Saffman M and Zozulya A A 1996 Phys. Rev.

Lett. 76 2262
[175] Muryshev A E, van Linden van den Heuvell H B and

Shlyapnikov G V 1999 Phys. Rev. A 60 R2665
[176] Feder D L, Pindzola M S, Collins L A, Schneider B I and

Clark C W 2000 Phys. Rev. A 62 053606
[177] Anderson B P, Haljan P C, Regal C A, Feder D L,

Collins L A, Clark C W and Cornell E A 2001 Phys. Rev.
Lett. 86 2926

[178] Muryshev A, Shlyapnikov G V, Ertmer W, Sengstock K and
Lewenstein M 2002 Phys. Rev. Lett. 89 110401
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[334] Büchler H P, Micheli A and Zoller P 2007 Nature Phys.
3 726

[335] Schmidt K P, Dorier J and Läuchli A M 2008 Phys. Rev. Lett.
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