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Mesoscopic dipolar Bose gases in triple-well potentials offer a minimal system for the analysis of the

nonlocal character of the dipolar interaction. We show that this nonlocal character may be clearly revealed

by a variety of possible ground-state phases. In addition, an appropriate control of short-range and dipolar

interactions may lead to novel scenarios for the dynamics of polar bosons in lattices, including the

dynamical creation of mesoscopic quantum superpositions, which may be employed in the design of

Heisenberg-limited atom interferometers.
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Interparticle interactions are crucial in quantum gases
[1]. They can usually be described by a short-range iso-
tropic potential proportional to the scattering length a.
Recently, dipolar quantum gases, in which the long-range
and anisotropic dipole-dipole interaction (DDI) between
magnetic or electric dipole moments plays a significant or
even dominant role, have attracted a lot of interest as they
show fascinating novel properties [2,3]. To date, dipolar
effects have been observed experimentally only with
atomic magnetic dipoles, being particularly relevant in
Bose-Einstein condensates (BECs) of 52Cr where exciting
new physics has been observed [4–7]. Dipolar effects have
also been reported in spinor BECs [8], and in 39K and 7Li
BECs with a ¼ 0 [9,10]. Recent experiments with polar
molecules [11,12] open fascinating perspectives towards
the realization of highly dipolar gases.

Although a very clear and direct demonstration of the
anisotropy of the DDI was given by the d-wave collapse of
a Cr BEC [6,7], an equivalently obvious ‘‘visual’’ proof of
the nonlocal character of the DDI is still missing. Such a
nonambiguous qualitative evidence of the nonlocal char-
acter of the dipolar interaction could be provided in prin-
ciple by the observation of novel quantum phases (super-
solid, checkerboard) in optical lattices [13]. However, the
unambiguous detection of such phases is far from trivial, as
is the preparation of the ground state of the system due to a
large number of metastable states [14].

In this Letter, we investigate a minimal system, namely,
a mesoscopic sample of dipolar bosons in a triple-well
potential, which minimizes these restrictions, while still
presenting clear visual nonlocal features (see ‘‘phase’’ B
below). Nondipolar BECs in double-well potentials have
allowed for the observation of Josephson oscillations and
nonlinear self-trapping [15], showing clearly that ‘‘slic-
ing’’ a BEC dramatically enhances the effects of interac-
tions. The two-well Josephson physics is affected
quantitatively (although not qualitatively) by the DDI
[16,17] (the DDI may induce, however, significant intersite

effects in coupled 1D and 2D bilayer systems [18–20]). On
the contrary, as we show below, the DDI does introduce
qualitatively novel physics in the Josephson-like dynamics
in three-well systems. We discuss how the DDI leads to
various possible ground states, which may visually reveal
the nonlocality of the DDI. In addition, we show how this
nonlocality leads to a peculiar quantum dynamics charac-
terized by striking new phenomena, including the dynami-
cal formation of mesoscopic quantum superpositions
(MQS). MQSs produced in cavity QED or with trapped
ions [21] require complex manipulations, whereas in the
present system they arise naturally, similar to the MQSs
obtained in BECs with attractive interactions in double
wells [22,23] or lattices [24]. We then comment on the
design of four-site Heisenberg-limited atom interferome-
ters using the dynamical creation of MQS, and finally
discuss possible experimental scenarios.
We consider N dipolar bosons in a three-well potential

VtrapðrÞ [Fig. 1(a)]. The wells are aligned along the y axis,

separated by a distance ‘ and an energy barrier V0. The
bosons are polarized by a sufficiently large external field,
with a dipole moment d along a given direction. The lattice
potential is strong enough compared to other energies (in
particular, the interaction energies) such that the on-site
wave functions �i¼1;2;3ðrÞ are fixed, being independent of

the number of atoms per site. For a large enough V0 we
may assume �iðrÞ ¼ �ðr� riÞ, where ri is the center of
site i. In addition we may assume � to be a Gaussian with

FIG. 1 (color online). (a) Schematic view of the three-well
system. (b) MQS interferometer with four wells (see text).
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widths�x;y;z. We limit to the case where�y is small enough

with respect to ‘ so that the sites are well defined.

Reexpressing the bosonic field operator as ĉ ðrÞ ¼P
3
i¼1 �iðrÞâi, we may write the Hamiltonian as

Ĥ ¼ �J½ây2 ðâ1 þ â3Þ þ H:c:� þU0

2

X3

i¼1

n̂iðn̂i � 1Þ

þU1

�

n̂1n̂2 þ n̂2n̂3 þ 1

�
n̂1n̂3

�

; (1)

where J¼�R
dr�1ðrÞ½�@

2r2=2mþVtrapðrÞ��2ðrÞ is the
hopping rate, U0¼g

Rj�1j4drþ
Rj�1ðrÞj2j�1ðr0Þj2�

Uddðr�r0Þdrdr0 characterizes the on-site interactions,
U1 ¼

R j�1ðrÞj2j�2ðr0Þj2Uddðr� r0Þdrdr0 is the coupling

constant for nearest-neighbor DDI, and n̂j ¼ âyj âj. In the

previous expressions g ¼ 4�@2a=m is the coupling con-
stant for the short-range interactions, with a the s-wave
scattering length. The DDI is given by UddðrÞ ¼ d2ð1�
3cos2�Þ=r3, where � is the angle between r and d, d2 �
�0�

2=ð4�Þ for magnetic dipoles (� is the magnetic dipole
moment) or d2 � �d2=4��0 for electric dipoles ( �d is the
electric dipole moment). The parameter � in Eq. (1) de-
pends on the geometry of VtrapðrÞ (� ¼ 8 if the wave

functions are well localized in all directions compared to
‘, and decreases towards � ¼ 4 when �x=‘ ! 1 [25]). In
the following we focus on the localized case, i.e., � ¼ 8,
but all results remain valid for 4 � � � 8. Finally, note
that U0 results from short-range interactions and DDI, and
that the ratio between U0 and U1 may be easily manipu-
lated by means of Feshbach resonances, by modifying the
dipole orientation d and by changing ‘ [25].

Since
P

in̂i ¼ N is conserved by (1), we may rewrite Ĥ
[up to a global energy U0NðN � 1Þ=2] as an effective
Hamiltonian without on-site interactions:

Ĥ ¼ �J½ây2 ðâ1 þ â3Þ þ H:c:� þ ðU1 �U0Þn̂2½n̂1 þ n̂3�
þ

�
U1

8
�U0

�

n̂1n̂3: (2)

The gross structure of the ground-state diagram is under-
stood from the J ¼ 0 case, where the Fock states jn1; n3i
are eigenstates of Ĥ, with energy Eðn1; n3Þ (since N is
conserved, the Fock states are defined by n1;3). The mini-

mization of E provides four classical ‘‘phases.’’ ForU0 > 0
and U1 � 8U0=15, and U0 < 0 and U1 <�8jU0j,
phase (A) occurs, with n1 ¼ n3 ¼ b �n=2c with �n �
16NðU0 �U1Þ=ð24U0 � 31U1Þ (where b�c denotes the in-
teger part). Phase (B) appears for U0 > 0 and 8U0=15 �
U1 � 8U0, being characterized by n1 ¼ n3 ¼ N=2. For
U0 > 0 and U1 > 8U0, and U0 < 0 and U1 >�jU0j,
phase (C) occurs, with n2 ¼ N (actually states with ni ¼
N are degenerated, but the degeneracy is broken by tunnel-
ing which favors n2 ¼ N). Finally, phase (D) occurs for
U0 < 0 and 8U0 <U1 <U0, being characterized by a
broken symmetry, with two degenerated states with n1 ¼
b �nc, n3 ¼ 0 and vice versa.

Figure 2(a) shows hn̂i=N, with n̂ ¼ n̂1 þ n̂3 for N ¼ 18.
We can see that phases ðAÞ–ðDÞ describe well the gross
structure of the ground-state diagram [a similar graph
shows, as expected, that the (D) phase shows large fluctu-

ations ��̂ in �̂ ¼ n̂1 � n̂3]. However, tunneling is relevant
at low jU0j and jU1j and at the phase boundaries. In
general, the system is in a quantum superposition of differ-

ent Fock states jc i ¼ P
N
n1¼0

PN�n1
n3¼0 Cðn1; n3Þjn1; n3i.

Figure 2(b) depicts ��̂ in the regionU0;1 > 0. As expected
at small jU0;1j=J tunneling dominates and the product state

ðay1=
ffiffiffi
2

p þ ay2=2þ ay3=
ffiffiffi
2

p ÞNjvaci is retrieved (jvaci is the
vacuum state). This state transforms into phase (A), which
for growing U0 becomes the Fock state jN=3; N=3i.
Phase (C) remains the Fock state j0; 0i (n2 ¼ N), and the
border ðBÞ–ðCÞ is characterized by a first-order ‘‘phase
transition’’ [26], at which n2 abruptly jumps from 0 to N.
Figure 2(c) represents schematically phases (A)–(D).
Phase (B) is characterized by vanishing hn̂2i and �n2,

and hn̂1i ¼ hn̂3i. It strikingly reveals the nonlocal character
of the DDI, similarly to the biconcave BECs predicted in
[27], but with a much higher ‘‘contrast.’’ Note, however,
that the actual ground state may significantly depart from

jN=2; N=2i, since j��̂j is significant at the ðBÞ–ðCÞ transi-
tion [Fig. 2(b)]. At U1 ¼ 8U0, the ground state is a coher-

ent state ðay1 þ ay3 ÞNjvaci; i.e., coherence between the two

extremal sites is preserved in spite of the absence of
particles in site 2. This coherence is understood from (2),
since for U1 ¼ 8U0 there is no effective interaction be-
tween sites 1 and 3. Since hn̂2i � 1 due to the effective
repulsive nearest-neighbor interactions (U1 �U0 > 0),
sites 1 and 3 form an effective noninteracting two-well
system coherently coupled by a second-order process
through site 2 [with effective hopping Jeff ¼ J2=7ðN �
1ÞU0]. Hence the coherent region extends inside (B) for
jU1 � 8U0j & Jeff . Thus for larger NU0 the coherent re-
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FIG. 2 (color online). (a) hn̂i=N as a function of U0;1 for N ¼
18. (b) ��̂=N in logarithmic scale for U0;1. The dashed lines

show the boundaries between the classical phases ðAÞ–ðDÞ that
are shown schematically in (c).
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gion shrinks [reducing to the very vicinity of U1 ¼ 8U0 as
seen in Fig. 2(b)].

Such a 1–3 coherence has important consequences for
the quantum dynamics, best illustrated by considering
initially all particles at site 3. Interestingly, hn̂1;3i show

perfect Josephson-like oscillations (with frequency
2Jeff=@), although for any time hn̂2i ¼ �n̂2 � 1. How-
ever, Jeff decreases with NU0, and hence the observation
of this effect demands a mesoscopic sample, since other-
wise the dynamics may become prohibitively slow. Off the
U1 ¼ 8U0 boundary, inside phase (B), the residual 1–3
interaction leads to a damping of the Josephson oscilla-
tions (connected to number squeezing). Eventually for
jU1 � 8U0j � Jeff self-trapping in 3 occurs.

Phase (D) is characterized by a large ��̂ and hn̂2i � 0,
and two degenerated states: n3 ¼ 0 (i) and n1 ¼ 0 (ii).
Strictly speaking, the exact ground state is provided by a
MQS of these two states, but the gap between the ground
state and the first excited one is vanishingly small (�J)
even at the U1 ¼ U0 < 0 boundary and for N as small as
18. Experimentally, the signature of phase (D) would thus

consist in measuring large shot-to-shot fluctuations in �̂,
while never observing simultaneously atoms in both sites 1
and 3. At U1 ¼ U0 < 0, states (i) and (ii) become coherent

superpositions of the form ðay1 þ ay2 ÞNjvaci and ðay2 þ
ay3 ÞNjvaci, respectively. These superpositions may be

understood from Eq. (2), which for U1 ¼ U0 < 0 becomes

Ĥ ¼ �J½ây2 ðâ1 þ â3Þ þ H:c:� þ 7jU0j
8

n̂1n̂3; (3)

which describes a noninteracting two-well system if n1 ¼
0 or n3 ¼ 0, leading to the coherent states (i) and (ii).

Hamiltonian (3) leads to an intriguing quantum dynam-
ics characterized by the creation of MQSs. From an initial
Fock state j0; 0i (n2 ¼ N), if a particle tunnels into site 1
(state j1; 0i), a subsequent tunneling from 2 to 3 (state
j1; 1i) is produced with a bosonic-enhanced hopping rate

J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
. However, the state j1; 1i has an interaction

energy 7jU0j=8. Hence, if J � 7jU0j=8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
, then the

tunneling from 2 to 3 remains precluded. On the contrary,
the hopping into 1 presents no energy penalty. As a result,
if the first particle tunnels into 1, then a coherent 1–2
superposition is established. Of course, if the first particle
tunnels into 3, then a 2–3 superposition occurs. Since the
initial process is coherently produced in both directions, a
MQS j�ðtÞij0i þ j0ij�ðtÞi is formed, where j�ðtÞi ¼
PN

n¼0 CnðtÞjni, with the normalization condition

2
PN

n¼1 jCnðtÞj2 þ 4jC0ðtÞj2 ¼ 1 [25]. Figure 3(a) shows

that hn̂1;3iðtÞ perform a coherent oscillation, which, how-

ever, damps for longer times. This damping is again a
remarkable consequence of the nonlocal character of the
DDI. Virtual hoppings of a single particle from site 2 into
site 3 (1) induce a second-order correction of the energy of
the states jn; 0i (j0; ni):�En ¼ 8J2ðN � nÞ=7jU0jn, which
distorts the Josephson Hamiltonian, and leads to a signifi-

cant damping after a time scale of the order of 		
7jU0j=8J2N (in agreement with our numerics) [25]. At
longer times, chaotic dynamics may even occur [28].
The three-well system hence acts as a MQS splitter

under the mentioned conditions. We stress, however, that
a MQS (although asymmetric) is still created [25], even for
unequal hoppings Jij for nearest neighbors, as long as

J12;23 � 7jU0j=8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
. We note also that if U1 � U0,

a MQS is created if jU1 �U0j & J, but nearest-neighbor
interactions enhance the damping in each MQS branch. If
jU1 �U0j � J, bosons at site 2 remain self-trapped.
The MQS splitter opens fascinating possibilities beyond

the three-well system, most relevantly in the context of
Heisenberg-limited atom interferometry. We illustrate this
possibility by considering a simple interferometer based on
a four-well system [Fig. 1(b)]. Initially the bosons are at
site 2 (which acts as the input port). Sites 1 and 3 play the
role of the interferometer arms, whereas site 4 acts as the
output port, where the interferometric signal is read out.
We consider hoppings J21 ¼ J23 ¼ J, but J34 ¼ Jei� ¼
J?14. We are interested in the � sensitivity of the popula-
tion at site 4. This arrangement is chosen for its theo-
retical simplicity (more general arrangements work along
similar lines), although it may be implemented also in
practice by means of Raman tunneling [29]. Under the
MQS conditions [in this case U1 ¼ U0 < 0 and

J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p � ð2 ffiffiffi
2

p � 1ÞjU0j=2
ffiffiffi
2

p
], the system evolves

into an entangled MQS formed by Fock states such that
ninj ¼ 0 for next-nearest neighbors. It is straightforward

to show that the probability to find N particles at site 4
depends explicitly on the phase � as P4ðNÞ 	 cos2ðN�Þ
[P4ðn � NÞ are only indirectly � dependent due to nor-
malization]. Hence, P4ðNÞ has a modulation of period
�� ¼ �=N [Fig. 3(b)], contrary to the period �� ¼ �
expected for independent single particles, allowing for a
Heisenberg-limited interferometric measurement of the
phase�. This superresolution is an unambiguous signature
of the coherent character of the MQS thus created [30,31].
hn̂4i presents a similar modulation (but with poorer con-
trast). Calculations with a six-site arrangement provide
similar results [25].
In the final part of this Letter we discuss experimental

feasibility. Triple-well potentials as in Fig. 1 may be con-
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FIG. 3 (color online). (a) hn̂1;3ðtÞi (dashed line) and hn̂2ðtÞi
(solid line), for U0 ¼ U1 ¼ �100J and N ¼ 18. (b) Proba-
bility P4ðNÞ as a function of � for the interferometric four-site
arrangement (see text) with N ¼ 14, U0 ¼ U1 ¼ �100, and
Jt ¼ 2:7.
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trollably implemented with optical potentials. By super-
imposing, onto a single-beam optical trap which provides
the xz confinement, a tightly focused beam (with a waist
	1 �m, see, e.g., [32]), one may create a tight ‘‘dimple’’
acting as one well. To realize a triple well (or even more
complex configurations), several possibilities exist. Using
an acousto-optic modulator (AOM) with several rf frequen-
cies [33,34], several diffracted beams are created, whose
intensity and position can be controlled independently.
Another option using an AOM consists in toggling the
dimple between several positions at high rate, to create
almost arbitrary time-averaged potentials [35]. Such an
implementation has several advantages: arbitrary, time-
dependent energy offsets can be applied to the different
sites; the intersite separation ‘ can be changed in real time,
easing the preparation of a given atom number in each well
(e.g., by performing evaporative cooling with different
energy offsets in each site), and the detection of the popu-
lation in each well (before imaging, V0 may be increased to
freeze out the dynamics and then ‘ increased, thus relaxing
constraints on the imaging resolution).

We now evaluate J,U0, andU1 for realistic experimental
values. Although in our calculations we have just consid-
ered N up to 36, similar ground states are expected for
larger N [but, as mentioned above, the observation of the
quantum features at the ðBÞ–ðCÞ and ðDÞ–ðCÞ boundaries
demands small samples]. In particular, consider a triple-
well potential formed by three Gaussian beams of waist
1 �m separated by ‘ ¼ 1:7 �m. For a barrier height
V0=h ’ 2500 Hz, we obtain J=h	 10 Hz, and the typical
value ofNU1=J is then	10 forN ¼ 2000 52Cr atoms. The
value ofU0 can be tuned, for a fixed geometry, by means of
Feshbach resonances [4], so that one can explore, e.g., the
first-order ðBÞ–ðCÞ ‘‘transition’’ with 52Cr by varying
U1=U0. However, the MQS creation demands small
samples, being hence more realistic with polar molecules.
For example, for KRb molecules placed at a distance ‘ ¼
1 �m and maximally polarized (d ¼ 0:5 D) parallel to the
joining line between the sites, U1=h ’ �70 Hz. Under
these conditions the MQS condition implies, for N ¼ 36
molecules, J=h of a few hertz. Single-atom sensitivity has
been achieved with fluorescence imaging [36], so that the
relatively small values of N considered here should be
detectable.

In summary, we have studied a simple system of dipolar
bosons in a triple well, showing that the nonlocality of the
DDI leads to qualitatively novel physics that may be ex-
plored with a high degree of control over all parameters via
the trap geometry, dipole orientation, and Feshbach reso-
nances. We have shown that the ground-state phases
present abrupt crossovers induced by the nonlocal nature
of the DDI, which may be explored with 52Cr BECs. In
addition, the dynamics presents intriguing new scenarios,
especially for the case of polar molecules, including the
dynamical creation of MQSs, which may be employed for
Heisenberg-limited interferometry.
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