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Fast and optimal transport of atoms with nonharmonic traps
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We investigate the fast transport of an atom or a packet of atoms by different kinds of nonharmonic traps
including power-law traps. The study is based on the reverse-engineering method. Exact results are obtained
and applied to design robust transport protocols. The optimization of the transport trajectory is performed with
classical trajectories and remains valid for the transport of a wave packet.
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I. INTRODUCTION

The development of quantum information processing re-
quires the accurate control of the motion of atoms or atomic
packets [1–5]. Similarly, cold-atom experiments often use
the transport of atoms from a preparation chamber to a
science chamber [6,7]. To increase the number of quantum
manipulations feasible in a given amount of time, a fast
transport ending in a state without excitations is highly
desirable. The experimental demonstrations of such diabatic
transport have been realized with cold atoms transported
in an optical tweezers [8] and for one and two ions with
time-dependent electromagnetic traps [9,10].

Recently, proposed protocols to ensure the fast and optimal
transport of neutral or charged particles have been worked out.
They are inferred from the different theoretical frameworks
developed for shortcuts to adiabaticity [11]. A simple method
is provided by the compensating-force approach [12–16]. It
requires to superimpose a time-dependent constant force dur-
ing the transport to compensate exactly for the inertial force.
The fast-forward formalism proposes the same solution [17].
In practice, this trick may not be so easy to implement with
the required accuracy. Alternatively, the reverse-engineering
approach, the Lewis-Riesenfeld invariants scheme, or the
N -point protocol provides a time-dependent trap trajectory
that ensures an optimal transport [12,13,18,19]. The di-
rect implementation of the counteradiabatic approach [20]
yields an unphysical Hamiltonian that can be recast as the
compensating-force approach with an appropriate unitary
transformation [21]. Those latter techniques have been devel-
oped for quantum and classical mechanics with a harmonic trap
and for a one-body problem. So far the role of anharmonicities
has been investigated for trap expansion and compression in
a Gaussian beam [22] and for the transport of two-Coulomb
interacting particles [14].

In this article, we provide an extension of the reverse-
engineering approach when the transport is carried out with a
nonharmonic trap. This study is important for the experimental
implementation since a fast transport implies that the high-
energy part of the potential is necessarily explored in the course
of the transport while the harmonic approximation is only valid
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in the low-energy range. We also investigate the robustness of
the transport of a packet of atoms in the framework of classical
and quantum mechanics.

The paper is organized as follows. In Sec. II, we extend the
one-body reverse-engineering method to nonharmonic traps
and develop an exact optimal scheme for a trap that has
well-characterized anharmonicities. We then develop another
protocol based on a perturbative approach about a fast and
optimal trajectory for a harmonic confinement that is well
adapted for a large range of anharmonicities. We also address
the transport with a potential having a finite depth through
the example of optical tweezers. In Sec. III, we study the
robustness of the exact treatment developed in Sec. II for the
transport of a packet of atoms, with both a harmonic and a
nonharmonic trap. In the last section, we show that the previous
schemes based on classical mechanics are still valid for the
transport of a wave packet in a nonharmonic trap.

II. ONE-BODY TRANSPORT IN CLASSICAL PHYSICS

A. Reverse-engineering protocol with power-law traps

Consider the transport of a particle of mass m confined in
a power-law trap with an even exponent: Un(x) = mηn[x −
x0(t)]2n/(2n) with n ! 1 an integer where x0(t) denotes the
trajectory of the bottom of the trap to be determined. We
consider the transport over a distance d in a time interval tf .
According to Newton’s law, the particle obeys the differential
equation

ẍ + ηn[x − x0(t)]2n−1 = 0. (1)

The boundary conditions for the bottom trap trajectory are
x0(0) = 0 and x0(tf ) = d. To ensure an optimal transport,
the particle should be at rest at t = 0 and t = tf , and obeys
therefore the boundary conditions x(0) = ẋ(0) = ẍ(0) = 0,
x(tf ) = d, and ẋ(tf ) = ẍ(tf ) = 0. The reverse-engineering
protocol works as follows. We set the trajectory x(t) of the
particle according to the six boundary conditions using a time
interpolation. For the sake of simplicity, we take a polynomial
function. According to the number of boundary conditions, the
minimum order of this polynomial function is five:

x(t) = d[10(t/tf )3 − 15(t/tf )4 + 6(t/tf )5]. (2)
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QI ZHANG, XI CHEN, AND DAVID GUÉRY-ODELIN PHYSICAL REVIEW A 92, 043410 (2015)

t/tf

|x
(t

)/
x
(t

f
)
−

1|

FIG. 1. Robustness of the transport in quartic potential (n = 2)
against fluctuations of the final time. The relative error |x(t)/x(tf ) −
1| is plotted as a function of t/tf for a polynomial interpolation of
order 5 (solid line), 7 (dashed line), and 9 (dotted line).

We then infer the bottom trap trajectory:

x0(t) = x(t) + ε

(
εẍ

ηn

)1/(2n−1)

, (3)

with ε = +1 for 0 " t " tf /2 and ε = −1 for tf /2 " t " tf .
The robustness against final time fluctuations can be

improved with a polynomial interpolation of higher order
associated with the cancellation of the next order of the
derivative of x at t = 0 and t = tf . For instance, for a poly-
nomial interpolation of order 7, the extra boundary conditions...
x (0) = ...

x (tf ) = 0 are included. This is illustrated in Fig. 1
for the quartic potential n = 2. The expansion about the final
time tf scales as |x(t)/d − 1| ∼ |t/tf − 1|p−2, where p is the
degree of the polynomial that is used for the interpolation.
However, according to our numerical simulation this method
does not improve the robustness against fluctuations of the trap
strength ηn.

B. Anharmonicities

Consider now another type of nonharmonic potential that is
the sum of a harmonic confinement and a cubic anharmonicity:

U (x) = 1
2
mω2

0[x − x0(t)]2 + 1
3
m

ω2
0

ξ
[x − x0(t)]3, (4)

where ξ quantifies the strength of the anharmonicity. Such a
potential can result from an expansion around the minimum of
the real transport potential [23]. The equation of motion reads

ẍ + ω2
0[x − x0(t)] + ω2

0

ξ
[x − x0(t)]2 = 0. (5)

From this expression, we can infer the value of x0(t) if we use
the polynomial interpolation (2) for x(t). This equation is of
the form X2 + ξX + q = 0 with X = x − x0 and q = ξ ẍ/ω2

0.
The solution reads

x0(t) = x(t) + ξ

2

(

1 −
√

1 − 4ẍ

ξω2
0

)

. (6)

This solution exists only when the discriminate is positive, i.e.,
for ξω2

0t
2
f /d > 40/

√
3 according to the polynomial ansatz (2).

This inequality reflects the fact that the harmonic plus cubic

potential has a finite depth. The acceleration that can be used
for transport is therefore bounded. In the limit ξ → ∞, Eq. (7)
collapses to Eq. (3) as expected.

Consider now that the anharmonicity is quartic. We need to
add to the harmonic potential a potential of the form mω2

0[x −
x0(t)]4/(4ξ 2). Repeating the previous argument, we obtain the
bottom trap trajectory by solving a cubic equation:

x0(t) = x(t) + ξ 2/3

21/3ω
2/3
0

[

ẍ +
(

4ξ 2ω4
0 + 27ẍ2

27

)1/2
]1/3

− ξ 2/3

21/3ω
2/3
0

[

−ẍ +
(

4ξ 2ω4
0 + 27ẍ2

27

)1/2
]1/3

. (7)

As previously, in the limit ξ → ∞, we recover Eq. (3). The
solutions presented above assume that one knows exactly
the value of the anharmonicity. In this case, we have shown
that an exact strategy can be worked out using the reverse-
engineering approach. However, one may need an approach
that works at best but only approximately for a large range of
anharmonicities. We explain hereafter how one can proceed in
this latter case.

C. Perturbative approach to overcome anharmonicities

To minimize the sensitivity to the anharmonicities for the
final position and velocity of the particle, we use a perturbative
expansion about a fast and optimal strategy designed for a
harmonic confinement. We hereafter work out this method
explicitly for cubic anharmonicities. The results of a similar
treatment applied to the case of quartic anharmonicities are
then given.

First, we use as a reference the one-point protocol of
Ref. [19] to design the trajectory for transport in a harmonic
trap of angular frequency ω0. In this method, one defines
an auxiliary function that obeys the boundary conditions
g(0) = g(tf ) = ġ(0) = ġ(tf ) = 0 and the integral relations

∫ tf

0
g(t)dt = 0 and

∫ tf

0
dt ′

∫ t ′

0
g(t ′′)dt ′′ = d

ω2
0

. (8)

The one-point protocol gives the trajectory through the
differential equation ẍ0(t) = g̈ + ω2

0g. By construction, x0(t)
obeys the boundary conditions x0(0) = 0 and x0(tf ) = d. Us-
ing the simple polynomial interpolation g(t) = N (t/tf )2(1 −
t/tf )2(1 − 2t/tf ) with N = d/ω2

0% and % = 1/420, we
obtain the following polynomial form for the trajectory of
the bottom of the trap:

x̃0(s) = 420
u2

[
s2 − 4s3 +

(
5 + u2

12

)
s4 −

(
2 + u2

5

)
s5

+ u2

6
s6 − u2

21
s7

]
, (9)

with s = t/tf , x̃0(s) = x0(t)/d, and u = ω0tf . With this
choice, the trajectory of the particle can be explicitly worked
out: x̃1(s) = 35s4 − 84s5 + 70s6 − 20s7. One can check that
¨̃x1 + ω2

0[x̃1 − x̃0(s)] = 0 with x̃1(0) = 0, ˙̃x1(0) = 0, ¨̃x1(0) =
0, x̃1(1) = 1, ˙̃x1(1) = 0, and ¨̃x1(1) = 0 (the double dot cor-
responds here to a second derivative with respect to the
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FIG. 2. Residual energy, %E, after transport normalized to
!ω0 as a function of the anharmonicity parameter ξ/d and for
different transport time tf : (a) cubic anharmonicity and (b) quartic
anharmonicity. The calculations are performed in dimensionless units
and are therefore generically valid. The prefactor for the quantitative
estimate of the excess of energy has been estimated with the following
parameters: ω0 = 2π × 1.41 × 105 Hz, m = 40 × 1.667 × 10−27 kg
(40Ca+), a0 = [!/(mω0)]1/2, and d = 20.2a0.

s variable). We then solve perturbatively Eq. (5):

¨̃x2 + u2(x̃2 − x̃0) = −u2d

ξ
(x̃2 − x̃0)2 ≃ −d

ξ

( ¨̃x1)2

u2
.

The perturbative solution to the first order is x̃2(s) = x̃1(s) +
(d/ξ )f1(s) with

f1(s) = − 1
u3

∫ s

0

¨̃x2
1 (s ′) sin[u(s − s ′)]ds ′.

The quality of the transport is evaluated by calculating the
residual energy communicated by the transport at the final
time tf ,

%E

!ω0
= mω0d

2

!

[ ˙̃x2

2u2
+ (x̃ − x̃0)2

2
+ d

3ξ
(x̃ − x̃0)3

]
.

The optimal strategy that we propose proceeds in the
following manner. First, we compute the dimensionless quan-
tity %E/!ω0 for the perturbative solution x̃2 for different
values of ξ . Second, we search for the optimal values,
u0, of u = ω0tf that minimize the excess %E of energy
after the transport. As illustrated in Fig. 2(a), in the time
interval 0 " tf " 4 × (2π/ω0), we find two values of the
final time, tf ≃ 6.97/ω0 and tf ≃ 21.21/ω0, for which the
transport is ultrarobust against the anharmonicity parameter ξ .

They correspond to a highly nonadiabatic transport. For
the optimal choices u0 the final excess of energy scales as
%E ≃ (d/ξ )4!ω0 since the lowest-order contribution of the
anharmonicities (d/ξ )2 is canceled out by the choice u = u0.
We conclude that the optimal nonlinear strategy that we have
derived provides a set of discrete optimal transport times. For
a longer transport time compared to the optimal one, excited
states can be massively populated. Figure 2(a) also provides a
window of final time values about the optimal one for which
the transport remains quite optimal. The low values of ξ/d
correspond to large anharmonicities. However, for a cubic
anharmonicity, one has only a limited range of possible values
since the potential experienced by the atoms should remain a
trapping potential in the course of the transport.

From this respect, the situation is quite different with
a quartic anharmonicity. The robustness of our approach
can be tested outside the perturbative regime. Repeating the
previous argument for the quartic anharmonicity, the lowest-
order perturbative solution reads x̃2(s) = x̃1(s) + (d/ξ )2f2(s)
with f2(s) = (1/u5)

∫ s

0 [ ¨̃x1(s ′)]3 sin[u(s − s ′)]ds ′. The optimal
value u0 that minimizes the excess of energy at the final time,

%E

!ω0
= mω0d

2

!

[ ˙̃x2

2u2
+ (x̃ − x̃0)2

2
+ d2

4ξ 2
(x̃ − x̃0)4

]
,

after the transport is u0 ≃ 14 in the time interval 0 " tf "
4 × (2π/ω0) [see Fig. 2(b)]. The excess of energy, %E/!ω0,
decays as (d/ξ )8 about the optimal value while the lowest-
order contribution of the anharmonicities provides a scaling
as (d/ξ )4. Figure 2(b) shows explicitly the breakdown of
our approach for too-large anharmonicity (ξ < 0.3d). Inter-
estingly, new features outside the perturbative regime emerge
as nearly horizontal lines. They are associated with specific
values of the anharmonicity (for instance, ξ = 10−1.73d) for
which our designed trajectory provides an optimal transport
that is extremely robust against the final time (%E " 10−11!ω0
for 15.5 " ω0tf " 21.6).

The method developed here can in principle be further
improved by searching for a solution of the next order in
the expansion of x̃2(s). The optimization procedure requires
to choose the final time tf and the other parameters to cancel
higher-order terms in the expression for the excess of energy
after the transport. For this purpose, one needs to add extra free
parameters in the g function that generates the x̃0 trajectory.
Alternatively, one could apply the strategy for optimizing the
spring-constant error in Ref. [24], in which the polynomial
form of higher order is designed to nullify the integral f1
or f2. As a result, the residual energy %E can be reduced
by one order of the magnitude, as compared to the original
polynomial form, Eq. (2). Finally, the ultrarobustness against
final time observed outside the perturbative regime for quartic
potential [Fig. 2(b)] can be tuned by adding extra parameters
to the trajectory on which the protocol is based.

D. Transport in optical tweezers

The first transport experiment of cold atoms carried out
outside the adiabatic regime was performed with optical tweez-
ers generated by a focused Gaussian laser beam whose focal
point was displaced using an accurate translation stage [8].
The potential experienced by the atoms along the longitudinal
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axis is

U (x) = − U0

1 + [x − x0(t)]2

x2
R

, (10)

where xR = πw2
0/λ is the Rayleigh length of the Gaussian

beam, w0 is the waist, and λ its wavelength. This potential
is clearly nonharmonic and has also a finite depth. The three
first terms of the expansion of the potential (10) around its
minimum provide a quartic potential for which the previous
analysis can be used. Alternatively, the transport can be solved
exactly in this specific case. Introducing the variable X =
[x − x0(t)]/xR and the parameter η = 2U0/mxR , the equation
of motion reads

ẍ = −η
X

(1 + X2)2
. (11)

As previously, we use the polynomial interpolation (2) for x(t).
To extract the optimal trajectory using the reverse-engineering
method, we first consider the time interval 0 " t " tf /2 for
which ẍ(t) ! 0. One can readily show that Eq. (11) has a
solution only if (d/t2

f ) < (27
√

3/1040)η. Physically, this latter
criterion sets an upper bound for the ratio d/t2

f resulting
from the finite depth of the potential. Indeed, this potential
remains a transport potential only for acceleration below
27η/104 according to our ansatz (2). In the appropriate range
of acceleration, the trajectory is obtained by solving the quartic
equation (11) in X. The analytic solution can be readily worked
out, and the time evolution of the focal point is then given by
x0(t) = x(t) − X(t).

III. TRANSPORT OF A PACKET

In this section, we evaluate the quality of the fast transport
protocol for a packet of N atoms using the reverse-engineering
protocol designed in the previous sections. In the first subsec-
tion, we explain the new features that arise when one considers
the transport of a packet of atoms using a harmonic confining
potential; we then present a strategy to optimize the transport
in the presence of anharmonicities.

A. The transport of a packet in a harmonic trap

To evaluate the quality of the transport we compare before
and after the transport the variance, [%x(t)]2 = x2(t) − x(t)

2
,

with

x2(t) = 1
N

N∑

i=1

x2
i (t) and x(t) = 1

N

N∑

i=1

xi(t), (12)

where xi(t) refers to the coordinate of particle i in the packet.
First, we calculate exactly those moments as a function of
time in the case of a harmonic trap of angular frequency
ω0. The initial standard deviations of position, %x(0), and
velocity, %v(0), are related at equilibrium. For instance, in
a harmonic trap at thermal equilibrium, one has %v(0) =
ω0%x(0) = (kBT /m)1/2, where T is the temperature and m
the atomic mass. An optimal transport for a packet has two
requirements: the center of mass should follow the optimal
one-particle trajectory [Eq. (2)], and the standard deviation

should obey a relationship that characterizes the equilibrium
after the transport. In the thermal case that we consider, we
expect the equality %v(tf ) = ω0%x(tf ).

In the following, we propose a moment method that shows
explicitly how the center-of-mass motion (x and v moments)
is coupled to the quadratic moments (x2, v2, and xv) in the
course of the transport. Starting with the calculation of the time
derivative of the moment x2, we derive the following closed
set of equations:

ẋ2 = 2xv, (13)

ẋv = v2 − ω2
0x

2 + ω2
0x0x, (14)

v̇2 = −2ω2
0xv + 2ω2

0x0v, (15)

ẋ = v, (16)

v̇ = −ω2
0x + ω2

0x0. (17)

Imposing that the packet is at equilibrium at t = 0 and
at t = tf amounts to setting the values of the position-
velocity correlation moment, xv, at the boundaries of the time
interval [xv(0) = 0, xv(tf ) = 0, ẋv(0) = 0, and ẋv(tf ) = 0]
in addition to the boundary conditions on the bottom of the
trap variable x0(t). As a result, we recover from Eq. (14) the
equilibrium condition that relates the standard deviation for
position and velocity at t = 0 and t = tf : v2(0) = ω2

0x
2(0)

and v2(tf ) = ω2
0[x2(tf ) − d2].

From Eqs. (13)–(17), we deduce the equation for the
position-velocity correlation moment:

ẍv + 4ω2
0xv = ω2

0(ẋ0x + 3x0v), (18)

whose exact solution is

xv(t) = ω0

2

∫ t

0
(ẋ0x + 3x0v) sin[2ω0(t − t ′)]dt ′, (19)

where we have taken into account the boundary conditions
xv(0) = 0 and ẋv(0) = 0. The polynomial ansatz (2) for x(t)
provides a bottom trajectory x0(t) = x(t) + ẍ/ω2

0. The extra
boundary conditions xv(tf ) = 0 and ẋv(tf ) = 0 are fulfilled
for a set of discrete final times.

The solution found here using a classical formalism is
actually also valid quantum mechanically for the transport
of any eigenstate of the harmonic oscillator. Indeed, the set of
Eqs. (13)–(17) can be derived using the Ehrenfest theorem
for the observables X2, P 2, XP , X, and P [25], and the
relation between the quadratic position and velocity moments
at the boundaries t = 0 and t = tf remains the same for all
eigenvalues. The fact that an optimal choice for the bottom of
the trap ensures the perfect transport of the position of velocity
dispersions is a result specific to harmonic trapping and that
can be proved using alternative approaches such as the scaling
method [26]. This latter technique enables one to show that the
design of the optimal transport for a one-body wave function
is still valid for an interacting Bose-Einstein condensate in the
Thomas-Fermi regime [27].
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FIG. 3. Relative excess of final energy after the transport as
a function of the transport duration tf and the strength of the
anharmonicity parameter ξ : (a) cubic anharmonicity and (b) quartic
anharmonicity. Dark vertical lines correspond to “magic times” for
which the transport of the packet is optimal.

B. Transport of a packet in the presence of anharmonicities

In this subsection, we use the exact results of Sec. II B
for cubic and quartic anharmonicities for the bottom trap
trajectory and study the quality of those optimal strategies
for the transport of a packet of atoms. Our bottom-trajectory
choice provides a perfect transport of the center of mass of the
packet. To evaluate the impact of this transport on a packet we
calculate the relative variation |1 − Ef /Ei | of the total energy
(kinetic plus potential) after the transport compared to its initial
value. This quantity is studied as a function of the strength of
the anharmonicity and the transport time. The transport time
plays the role here of a free parameter that will be adjusted to
guarantee an optimal transport.

The results are summarized in Fig. 3(a) for the cubic
anharmonicity and in Fig. 3(b) for the quartic one. In both
cases, we observe the emergence of a discrete set of transport
times that ensure the perfect transport of the packet with a
very small excess of energy after transport. For example,
at ξ/d = 101.5 in Fig. 3(a), we find the following set of
magic times: (u0, log10 |1 − Ef /Ei |) = (5.7635,−5.1974),
(7.8343,−5.4588), (9.0968,−5.666), (10.995,−5.9142),
(12.329,−6.0903), (14.1238,−7.2799), (15.513,−6.4508),
(17.285,−6.8358), (18.69,−6.7855), (20.412,−7.2077),
(21.8453,−7.793), and (23.575,−7.1666).

Those “magic times” are quite robust against the strength
of the anharmonicity (this is the reason why they appear as
vertical dark lines in Fig. 3). The general conclusions deduced

here in the specific case of cubic anharmonicities are generic
and hold in the case of quartic anharmonicities as illustrated
in Fig. 3(b).

IV. TRANSPORT OF A PACKET: QUANTUM ANALYSIS

So far, the analysis has been carried out using classical
mechanics. The global picture of the optimal trajectories
depending on the different parameters could be obtained
rapidly in this manner. An important question is the validity of
this classical approach to transport a quantum wave packet. It
would be too time consuming to run the quantum counterpart of
the 500 000 numerical simulations that have been necessary to
realize the two-dimensional plots of Figs. 2 and 3. However, we
have performed a large number of direct numerical integrations
of the Schrödinger equation to check the validity of the
classical results for the transport of a wave packet. Those
simulations rely on a split-operator fast Fourier transform
method with a discrete mesh [28]. The initial wave function is
sampled on about 50 mesh cells.

As for the transport of the packet of classical particles, we
have used for our quantum simulations the trajectories for the
center of mass deduced from the exact classical approach of
Sec. II B. To benefit from an optimal transport, we have also
used the magic values deduced from the results of Sec. III B
for which the transport duration can take only discrete values
for a given strength of the anharmonicity (parameter ξ ). We
have checked that the transport of a quantum packet is in
perfect agreement with the classical prediction. An example
is provided in Fig. 4 for which a relatively large quartic
anharmonicity has been used [log10(ξ/d) = −0.8]. We have
plotted the total energy (kinetic plus potential) E(t) (relative
to its initial value) as a function of time in the course of

ω0t
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10−2

10−1

1

10

|1
−

E
(t

)/
E

i|

FIG. 4. Transport of a quantum wave packet. Time evolution
of the total energy (kinetic + potential), E(t), with respect to the
initial energy, Ei , in the course of the transport for three different
time transports tf = 0.75t∗

f (dotted line), tf = t∗
f = 13.335/ω0 (solid

line), and t = 1.25t∗
f (dashed line), where t∗

f has been obtained from
the results of Sec. II C based on classical mechanics.
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the transport for three different time transports, tf = 0.75t∗f ,
tf = t∗f , and t = 1.25t∗f , where t∗f coincides with the prediction
of magic times. The number of excited vibrational states
transiently populated ranges from 4 to 10 depending on the
transport time and clearly shows the nonadiabatic character of
the transport. The optimal value that we find for the transport
time is neither the larger one nor the one that transiently
populates the minimum number of excited states. This is a
general feature of shortcuts to adiabaticity results.

The quantity |E(tf )/Ei − 1| enables one to obtain directly
a lower bound of the population in the ground state at the
end of the transport when the initial energy coincides with the
ground-state energy of the trap. To establish this bound, we
introduce the population (n of the energy level En just after
the transport at time tf . By definition, one has

∑
n (n = 1,

and E(tf ) =
∑

n (nEn. The lower bound is calculated in the
following manner:

(0 = 1 −
∞∑

n=1

(n ! 1 −
∞∑

n=1

(n

(
En

Ei

− 1
)

! 1 −
(

E(tf ) − Ei

Ei

)
, (20)

where we have used the relation E(tf ) − Ei =
∑∞

n=0(En −
Ei) and the fact that (En/Ei − 1) > 1 [29]. For the case
presented in Fig. 4, we deduce that (0 ! 0.656 for tf =
0.75t∗f , (0 ! 0.999 for the optimal time tf = t∗f , and (0 !
0.996 for t = 1.25t∗f .

V. CONCLUSION

In this article, we have investigated the use of the
reverse-engineering method to perform the fast and robust
transport of an atom or a packet of atoms in the presence
of nonanharmonicities or with a power-law trap. The results
provide a clear strategy to optimize the nonadiabatic transport
of atoms. Interestingly, the approach based on classical
mechanics provides also the optimal solution in the quantum
case for the fast transport of a wave packet. This work should
be useful for the community of cold-atom manipulation and
also for quantum information operations in which processing
and storing sites are separated as in the case of ion-trapping
physics.
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