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France and CNRS, UMR 5589, F-31062 Toulouse, France
(Received 27 July 2011; published 29 November 2011)

We report on the experimental study of a Bragg reflector for guided, propagating Bose-Einstein

condensates. A one-dimensional attractive optical lattice of finite length created by red-detuned laser

beams selectively reflects some velocity components of the incident matter wave packet. We find

quantitative agreement between the experimental data and one-dimensional numerical simulations and

show that the Gaussian envelope of the optical lattice has a major influence on the properties of the

reflector. In particular, it gives rise to multiple reflections of the wave packet between two symmetric

locations where Bragg reflection occurs. Our results are a further step towards integrated atom-optics

setups for quasi-cw matter waves.
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The interaction of light with structures having a periodic
refractive index profile is ubiquitous in photonics.
Applications range from simple antireflection coatings to
the fabrication of dielectric mirrors with ultrahigh reflec-
tivities, used for instance in high-finesse cavities, and to
semiconductor laser technology with the example of ver-
tical cavity surface-emitting lasers (VCSELs), and distrib-
uted feedback or distributed Bragg reflector lasers. In the
field of guided optics, fiber Bragg gratings are essential
components for the telecommunication industry, as well as
for the realization of outcoupling mirrors in high-power
fiber lasers. Photonic crystal devices also have a huge
range of applications [1].

In matter wave optics and interferometry, interactions of
free-space propagating beams or trapped clouds with peri-
odic structures or potentials have been extensively inves-
tigated and are commonly used as mirrors and beam
splitters [2–4]. In this Letter, we demonstrate, following
the proposals of Refs. [5–9], a Bragg reflector for manipu-
lating a guided Bose-Einstein condensate (BEC) propagat-
ing in an optical waveguide, i.e., the exact atom-optics
counterpart of a photonic fiber Bragg grating. We study
the dynamics and the transmission of a probe wave packet
as a function of the depth of the optical lattice. As we will
develop later on, this quasi-1D configuration clearly
exemplifies two textbook features of quantum mechanics:
quantum reflection [10–12] and band theory [13,14]. This
Letter is organized as follows. We first present a simple
model to gain some physical insight into the Bragg reflec-
tion of a matter wave packet by a finite-length lattice
having a Gaussian envelope. Then we describe our experi-
mental implementation and show quantitative agreement
between the data and our model. Finally, we discuss nu-
merical simulations that give access to unresolved details
in the experiment.

We consider a BEC with given mean velocity �v and
dispersion �v propagating in a horizontal waveguide

defining the x axis. At some distance, two intersecting laser
beams interfere and create an attractive quasiperiodic po-
tential of finite length, with lattice spacing d (see Fig. 1).
The potential experienced by the atoms is modeled by

UðxÞ ¼ �U0 exp

�
� 2x2

~w2

�
sin2

�
�x

d

�
; (1)

whose depth U0 > 0 is proportional to the power of the
laser beams. The period d naturally introduces typical
scales in velocity vR ¼ h=ðmdÞ and energy ER ¼ mv2

R=2.
We are interested in a wave packet with finite size and

velocity dispersion impinging on a finite-length lattice. Let
us consider first the textbook case of an incident plane
wave and a square-envelope lattice (see, e.g., [15] for an
analytical treatment of the problem). Figure 2(a) shows the
transmission coefficient for a lattice of N ¼ 800 sites,
calculated by solving numerically the corresponding sta-
tionary Schrödinger equation. For a given velocity v, one
observes that the transmission coefficient essentially

FIG. 1 (color online). Schematic view of the experimental
setup (not to scale).
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switches between 0 and 1 as a function of the depth of the
lattice U0. It can be interpreted as follows. At the entrance,
the incoming state of energy Ei ¼ mv2=2 is projected onto
the eigenstates of the lattice. The associated eigenenergies
distribute into energy bands [13] whose position can be
expressed in terms of the characteristic functions of the
Mathieu equation [16,17] as depicted by the white dashed
lines in Fig. 2(a). Reflection occurs if Ei lies in the gap
between two allowed energy bands. Because of the finite
length of the lattice the energy bands are not strictly
continuous and resolve into N separate states for vanishing
incident velocity [17]. Undersampling of the image gives
rise to the ‘‘foamy’’ aspect of the low-velocity side of
transmission bands. Obviously, the reflection by an attrac-
tive potential is a purely quantum effect, with no classical
counterpart.

A second interesting feature appears in the limit of a
vanishing potential depth U0. One still observes reflection
but it occurs only for incident velocities of the form v ¼
nvR=2 where n is an integer [see the white arrows in
Fig. 2(a)]. This corresponds to Bragg’s condition
2d sin� ¼ n� [14], where � ¼ �=2 for retroreflection,
and � ¼ h=ðmvÞ is the incident de Broglie wavelength of
the atoms: the reflection amplitude at each lattice site is
small, but constructive interference between all the re-
flected waves results in a macroscopic reflected wave
building up. For the range of parameters of Fig. 2(a),
quantum reflection by a single lattice well occurs only
for velocities that are very small as compared to vR [17]
and thus cannot explain the observed features.

Figure 2(b) shows the result of the same calculation, but
now for the experimentally relevant case of a lattice having

a smooth Gaussian envelope. One clearly observes a
drastic change in the dependence of the transmission co-
efficient: for a fixed velocity v, the transmission is essen-

tially equal to one only below a critical value Uð1Þ
0 of the

lattice depth, and then goes essentially to zero for increas-
ing U0 (except for very narrow resonances). That critical
value corresponds to the smallest one at which total reflec-
tion would occur for the square-envelope lattice. Almost no
resurgence of the transmission is observed if U0 is further
increased, which gives a ‘‘sawtooth’’ appearance to the
boundary between reflection and transmission.
This can be understood as follows. We are in the slowly

varying envelope limit as ~w � d. The amplitude of the
lattice does not change appreciably over a few sites, and
thus one can consider that, locally, the matter wave inter-

acts with a constant-amplitude lattice. WhenU0 ¼ Uð1Þ
0 the

reflection condition is met at the center of the lattice, i.e.,
at x ¼ 0. Then, for higher values of U0, there are
some locations �xrefl, on both sides of the center, for

which Uð�xreflÞ ¼ Uð1Þ
0 . In this case, reflection occurs at

x ¼ �xrefl. If there were not a second, identical mirror at
x ¼ xrefl, the transmission of the lattice would strictly

vanish for U0 >Uð1Þ
0 . However, as in optics, the two local

Bragg mirrors actually constitute a Fabry-Perot resonator,
analog to a VCSEL cavity for example, and transmission
exhibits sharp resonances which gives the same foamy
aspect as in Fig. 2(a).
We now come to the experimental realization. Our tech-

nique to produce all-optical BECs has been described in
detail elsewhere [18]; in what follows we thus simply recall
the major steps. We produce an almost pure 87Rb conden-
sate containing typically 5� 104 atoms by forced evapo-
ration over 4 s in a crossed optical dipole trap. It is made of
two intersecting beams with a wavelength of 1070 nm. A
horizontal one, with a waist of 50 �m, to be used later as a
guide for the BEC, defines the x̂ direction. The second, the
‘‘dimple’’ beam, of waist 150 �m, propagates along the
diagonal in the (x; z) plane, ẑ being the vertical (Fig. 1).
Spin distillation using a magnetic field gradient during
evaporation [18] results in the BEC being prepared in the
state jF ¼ 1; mF ¼ 0i. We then decrease adiabatically the
power in the dimple beam by a factor�20 over 80 ms, thus
barely keeping a longitudinal confinement for the BEC,
before switching it off abruptly to outcouple a wave packet
in the horizontal guide. In this way, we produce a wave
packet with a minimal intrinsic longitudinal velocity dis-
persion [19,20]. To set the wave packet in motion, we then
switch on a coil, coaxial with the guide, that produces an
inhomogeneous magnetic field. Through the quadratic
Zeeman effect the wave packet is accelerated in 15 ms to
a final mean velocity �v ¼ 11 mm=s. The residual accel-
eration of the packet due to stray fields and beam curvature
is negligible (we measure an upper bound of 10 mm=s2).
Centered 350 �m downstream from the dimple location

x0, the optical lattice is produced at the intersection of two

FIG. 2 (color online). Intensity transmission coefficient of the
lattice for an incident plane wave of velocity v, as a function of
the lattice depth U0. (a) Square-envelope lattice with 800 sites.
The white dashed lines are obtained from the Mathieu character-
istic functions; white arrows show the velocities for which the
Bragg condition is fulfilled (see text). (b) Lattice with a Gaussian
envelope (1=e2 radius ~w ’ 230d). The vertical shaded stripe
corresponds to the relevant velocity components in the wave
packet used for the measurements shown in Figs. 3 and 4. The
insets on top of (a) and (b) illustrate the shape of the lattice
envelope, but the number of sites is reduced to N ¼ 20 for
clarity.
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beams with a wavelength �L ¼ 840 nm (red-detuned with
respect to the 87Rb D1 and D2 lines) and a waist w ¼
110 �m, linearly polarized along ẑ, crossing at an angle
� ’ 81�. The lattice detuning is large enough so that
spontaneous emission does not play any role in our experi-
mental time scales. The resulting lattice spacing is d ¼
�L=½2 sinð�=2Þ� ’ 650 nm, and the envelope 1=e2 radius is
~w ¼ w= cosð�=2Þ ’ 145 �m. In a set of preliminary ex-
periments we calibrate the potential depth U0 using
Kapitza-Dirac (KD) diffraction [21,22]. A BEC is created
at the position of the lattice and exposed to the lattice
potential for a short time �KD, typically a few tens of
microseconds. The diffraction pattern of the BEC after
time of flight as a function of �KD is then compared to
numerical simulations of the process. A typical 35 mW per
beam results in U0 up to 15ER.

After being launched as described above, the wave
packet propagates in the horizontal guide for an adjustable
time tprop. Then all the lasers are switched off abruptly and

the cloud is imaged by absorption after a 10 ms time of
flight. This gives access to the spatial density distribution
nðx; tÞ ¼ jc ðx; tÞj2 of the wave packet with a resolution of
about 10 �m limited by the numerical aperture of our
collection lens.

In a first set of experiments, the propagation time tprop ¼
100 ms is sufficiently long so that the interaction with the
lattice is completed. We measured in a separate experiment
the mean velocity �v ’ 11 mm=s ’ 1:6vR and a rms veloc-
ity spread �v ’ 1:3 mm=s ’ 0:2vR corresponding to the
shaded region of Fig. 2(b). For each lattice depth U0, an
average image is generated from eight individual runs and
then integrated along the transverse direction ŷ. Figure 3(a)
is a stack of 55 such profiles. For sake of comparison,
Fig. 3(b) is the result of a numerical simulation of the

wave packet dynamics using the one-dimensional
Schrödinger equation solved by the split-Fourier method;
the initial condition is a Gaussian wave packet with the
experimentally measured momentum and position disper-
sions [19]. There is no adjustable parameter and the overall
agreement with experimental data means that our simple
1D model captures most of the physics involved.
Let us concentrate first on the transmitted part of the

wave packet (x > 0). If there were no lattice, the propaga-
tion time tprop is long enough so that the initial size of the

wave packet is negligible with respect to its size after
propagation. The spatial distribution of the wave packet
would then be a direct mapping of its initial velocity
distribution fðvÞ: nðx; tpropÞ / f½ðx� x0Þ=tprop�.
One can then understand intuitively the main features of

Fig. 3 for the scattering of a wave packet, from the trans-
mission coefficients shown in Fig. 2(b) for a plane wave. In
the background of the shaded area of Fig. 2(b) representing
the wave packet one can see the transmitted and reflected
components. In the presence of the lattice, the reflected
part propagates backwards and is located, for the propaga-
tion time chosen here, at a symmetrical position. This
explains why the transmitted and reflected wave packets
appear like a complementary mirrored image of each other.
The sawtoothlike boundary, reminiscent of the transmis-
sion diagram, is a fingerprint of the band structure inside
the lattice. However, the effect of the lattice potential is not
limited to the one of the sinusoidal component, responsible
for the Bragg reflection described above. The spatially
averaged attractive potential also accelerates the wave
packet. The white dotted line in Fig. 3(b) shows the final
position of a classical particle starting with velocity �v from
position x0 and propagating for a time tprop, taking into

account its acceleration by the spatially averaged lattice
potential. The fair agreement with the data indicates that
the slight curvature in the position of the wave packet as a
function of U0 simply arises from this classical effect.
Beyond studying the asymptotic scattering states, it is

also possible to visualize the dynamics of the interaction by
varying tprop. Figure 4(a) displays such a time sequence

that fairly compares to the numerical simulation depicted
in the same conditions in Fig. 4(b). One clearly observes
the spreading of the incident wave packet over the whole
lattice for 30 & tprop & 45ms and its subsequent splitting

into a reflected and a transmitted one. Unfortunately, the
details of the inner dynamics are washed out by the free
expansion of the wave packet during the time-of-flight
sequence and the finite resolution of the imaging system.
Numerical simulations, properly checked against

the previous experimental results, are useful here. In
Fig. 4(c) we have deliberately suppressed the time-of-flight
period and enhanced the optical resolution and the contrast
with respect to Fig. 4(b): one then clearly observes mul-
tiple reflections of some components of the wave packet at
symmetric positions �xrefl, with decreasing amplitude at

FIG. 3 (color online). (a) Measured density distribution of the
wave packet (of initial mean velocity �v ¼ 11 mm=s) after a
propagation time tprop ¼ 100 ms, for different lattice depths U0.

Each horizontal line is the average of typically eight absorption
images integrated along the ŷ direction. The vertical white
dashed line shows the position of the center of the lattice.
(b) Results of the simulation without any adjustable parameters.
The finite resolution of the imaging system (� 10 �m) is
included. The dotted line is the expected position of the center
of the wave packet according to classical dynamics (see text).
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each bounce. This ‘‘cavity-ring-down’’ behavior explains
the formation of structures in the transmitted and reflected
wave packets as observed in Fig. 4(a) and especially visible
as a parallel lower stripe in the transmitted wave packet for
50 & tprop & 75 ms. However, experimentally, observing

several bounces is not possible here due to the small
number of atoms involved.

In the same way, in images such as Fig. 3 the reflected
wave packet appears to be relatively smooth. It is actually
not the case, as can be seen in simulations with full
resolution (Fig. 5). The lattice acts as a matter wave
interference filter with very narrow features due to the
high number of lattice sites (foamy zones of Fig. 2).

Until now we have used a simple one-dimensional de-
scription of the system. However, the system is actually far
from being one dimensional, since the transverse quantum
of energy @!? ’ h� 90 Hz is much smaller than the
typical longitudinal energy scales, typically by 2 orders
of magnitude. Our simple one-dimensional model agrees
well with the experimental results as shown above because
couplings between longitudinal and transverse degrees of
freedom are weak (they are due only to experimental

imperfections such as misalignments of the lattice beams
with respect to the guide, for instance); some transverse
excitations can nevertheless be observed on our data [see,
e.g., the long wavelength dipole oscillations in Fig. 4(a),
especially for tprop * 30 ms]. Stronger couplings would be

expected to significantly alter the scattering properties of
the structure [23,24].
In conclusion, we have studied in detail the scattering of

a guided matter wave by a finite-length optical lattice in the
slowly varying envelope limit. The experiments can be
interpreted in the framework of a local band structure,
and the whole lattice can be seen as a cavity based on
Bragg mirrors.
Major improvements are expected with the use of high

numerical aperture optics [25,26]. Drastically reducing the
length ~w of the lattice and thus generating a structure
consisting of only a few sites, possibly with a shaped
envelope, one could tailor almost arbitrarily the matter
wave filter response. The latter can also be altered using
a moving optical lattice [27,28]. The transmission band of
the filter could then be adjusted at will. Such setups would
prove useful in measuring, for instance, the coherence
length [29] of guided atom lasers [30–32]. In a different
direction, it would be appealing to study the effect of
interatomic interactions [33] on the propagation of the
wave packet, with the possible appearance of soliton trains
[34] or atom-blockade effects [35]. This regime could be
reached by using much higher transverse frequencies for
the guide, in order to enhance the effects of nonlinearities.
We thank I. Carusotto for useful discussions, and

acknowledge support from Agence Nationale de la
Recherche (GALOP project), Région Midi-Pyrénées, and
Institut Universitaire de France.

[1] B. E. A. Saleh and M.C. Teich, Fundamentals of
Photonics (Wiley InterScience, New York, 2007).

[2] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev.
Mod. Phys. 81, 1051 (2009).

[3] D. E. Pritchard et al., Ann. Phys. (Leipzig) 10, 35 (2001).
[4] S. L. Rolston and W.D. Phillips, Nature (London) 416,

219 (2002).

FIG. 4 (color online). Time sequence showing the scattering of
a wave packet with mean velocity �v ’ 11 mm=s on the optical
lattice forU0 ’ 11ER. The white dashed lines in (a) and (b) show
the position of the center of the lattice. The time interval between
successive images is 1 ms. (a) Experimental data. (b) Simulation,
taking into account the finite imaging resolution as well as the
time of flight (TOF) period. (c) Same as (b) but without TOF nor
reduced resolution; the color scale is nonlinear in order to
enhance contrast.

FIG. 5 (color online). (a) Calculated density and (b) velocity
distribution of a wave packet of initial mean velocity �v ¼
11 mm=s after a propagation time tprop ¼ 100 ms with full

resolution. The lattice depth is U0 ¼ 8ER.

PRL 107, 230401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

2 DECEMBER 2011

230401-4

http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1002/1521-3889(200102)10:1/2%3C35::AID-ANDP35%3E3.0.CO;2-Z
http://dx.doi.org/10.1038/416219a
http://dx.doi.org/10.1038/416219a


[5] L. Santos and L. Roso, J. Phys. B 30, 5169 (1997).
[6] L. Santos and L. Roso, Phys. Rev. A 58, 2407 (1998).
[7] N. Friedman, R. Ozeri, and N. Davidson, J. Opt. Soc. Am.

B 15, 1749 (1998).
[8] I. Carusotto, M. Artoni, and G. C. La Rocca, Phys. Rev. A

62, 063606 (2000).
[9] T. Lauber et al., J. Phys. B 44, 065301 (2011).
[10] C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum
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