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We compare two distinct models of evaporative cooling of a magnetically guided atomic beam: a continuous
one, consisting in approximating the atomic distribution function by a truncated equilibrium distribution, and
a discrete-step one, in which the evaporation process is described in terms of successive steps consisting in a
truncation of the distribution followed by rethermalization. Calculations are performed for the semilinear
potential relevant for experiments. We show that it is possible to map one model onto the other, allowing us to
infer, for the discrete-step model, the rethermalization kinetics, which turns out to be strongly dependent upon
the shape of the confining potential.
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I. INTRODUCTION

Evaporative cooling �1� is a very powerful technique that
allowed the achievement of quantum degeneracy in dilute
atomic vapors �2�. On the theoretical side, apart from direct
numerical simulations �3�, several models of evaporative
cooling have been studied, which can be classified in two
categories: continuous and discrete ones.

In discrete models, the process of evaporative cooling is
approximated as a series of truncations of the atomic distri-
bution function, followed by rethermalization toward equi-
librium �4�. Through many steps, the phase-space density of
the atomic sample increases up to order unity. The advantage
of such models lies in their simplicity. However, in the case
of trapped clouds of atoms, those models are not realistic,
since, experimentally, the evaporation is done by ramping
down continuously a radio-frequency knife. Moreover, such
models give no indication of the kinetics of the evaporation.
Therefore, one needs to resort to more elaborated, continu-
ous models, using an appropriate ansatz for the distribution
function, namely, a truncated equilibrium function. It is then
possible, starting from the Boltzmann equation, to obtain the
time evolution of the temperature and of the number of at-
oms �5�. Quantitative comparisons between the predictions
of those two types of models have not been made to date.

Evaporative cooling has been revisited in the context of
the cooling of a guided atomic beam, in view of achieving a
continuous-wave atom laser. The proposal �6� used a con-
tinuous evaporation model to predict the possibility of
achieving quantum degeneracy by using transverse evapora-
tion in an atomic beam, confined transversally by a harmonic
potential. This proposal triggered experimental work in sev-
eral groups �8–10�, and a discrete model of the evaporative
cooling of a beam was developed �7� in close connection
with recent experiments.

In this paper, we address the problem of the transverse
evaporative cooling of a magnetically guided atomic beam
with an energy-selective knife. After characterizing the sys-
tem of interest, we develop a continuous model using hydro-
dynamic equations, adapted from �6�, for an experimentally
realistic transverse potential. Then we describe the same pro-
cess with a discrete-step evaporation model, analogous to the
one used in �7�. Finally, we compare the results given by

those two distincts models. In particular, this comparison al-
lows us to study the influence of the shape of the confining
potential on the kinetics of rethermalization and on the
evaporation “ramp.”

II. STATEMENT OF THE PROBLEM

We consider a beam of atoms of mass m, with a flux �, a
mean longitudinal velocity v, and a temperature T, propagat-
ing in a magnetic guide �11� of axis z, providing a two-
dimensional quadrupole magnetic field �bx ,−by ,0�, b being
the transverse gradient. A longitudinal bias field B0 is super-
imposed to avoid Majorana spin flips �9�. The atoms there-
fore experience the following semilinear transverse potential:

U�x,y� = ��B0
2 + b2�x2 + y2� − �B0. �1�

Here, � is the magnetic moment of the atoms. The on-axis
potential is taken as the origin of energies. One defines the
dimensionless parameter ���B0 /kBT. For typical experi-
mental parameters, the evaporation starts with ��1 where
the potential experienced by the atoms is essentially linear,
and degeneracy is reached in the regime ��1, where the
potential is essentially harmonic. Therefore it is crucial to
take into account the real shape of the potential in order to
describe the whole evaporation process.

An important quantity characterizing the beam is the
s-wave elastic collision rate � which reads �12� �= n̄�v̄,
where the average density at thermal equilibrium is defined
by n̄=�n2�r�d3r /�n�r�d3r, � is the s-wave scattering cross
section, and v̄=4�kBT / ��m�. For the specific case of the
semilinear potential �1�, � reads

� =
�

2�3/2

1 + 2�
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v
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The on-axis phase-space density 	 accounts for the degree
of degeneracy of the beam, and reads for a semilinear poten-
tial

	 = n�0�
dB
3 =
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3 , �3�

where 
dB=h /�2�mkBT is the thermal de Broglie
wavelength.
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Two-dimensional transverse evaporation is applied in or-
der to selectively remove atoms from the beam. In practice,
this is achieved by driving transitions to an untrapped state
with radio-frequency or microwave fields �9�. The evapora-
tion criterion then relates to the transverse energy � and to
the angular momentum of the atom along z. For the sake of
simplicity, as in Ref. �5�, we assume in the following that any
atom having a transverse energy ��
kBT, where 
 is the
evaporation parameter, is evaporated. This criterion implic-
itly assumes sufficient ergodicity of the atomic motion. Ex-
perimentally, this simple energy criterion can be well ap-
proximated by a multiradius evaporation scheme recently
implemented in �13�.

III. CONTINUOUS MODEL

In this section, we assume that the evaporation takes place
over the whole guide length. The height of the energy knife
�ev�z�=
kBT depends on z in order to perform forced evapo-
ration. We therefore assume that the beam’s distribution
function is a local equilibrium one �5�, truncated at the en-
ergy �ev.

By using such an ansatz in the Boltzmann equation, one
gets a set of coupled hydrodynamic equations relating the
following local quantities characterizing the beam: the linear
density n�z�, the longitudinal velocity v�z�, and the tempera-
ture T�z�. The details of this somewhat lengthy calculation
can be found in Refs. �6� and �14� for the case of a harmonic
transverse potential. The validity of such an ansatz was
checked with a molecular dynamics simulation of the pro-
cess. In the following, we present the generalization of this
analytical approach to the case of a semilinear confinement.

In the stationary regime, the hydrodynamic equations read

�z�nv� = − �1n , �4a�

�z�nv2 + nvth
2 � = − �1nv , �4b�

�z
nv�5

2
vth

2 +
v2

2
+

�U�
m

	
 = − n��1
v2

2
+ �2vth

2 	 , �4c�

where vth=�kBT /m. They correspond, respectively, to the
evolution of the flux, of the momentum, and of the enthalpy
of the beam. The notation �U� stands for the thermal average,
at the temperature T, of the potential energy U. These equa-
tions are well suited to describe a supersonic beam with a
high enough Mach number �typically v�3vth�.

In the semilinear potential �1�, the mean value of the po-
tential energy reads �U�=kBT�2+�� / �1+��. �1 and �2 cor-
respond to the evaporation-induced particle and energy loss
rates, respectively. They are proportional to the elastic colli-
sion rate � and obviously depend on the evaporation param-
eter 
:

�i = �� 2

�

8

15
Ki�
,�� �i = 1,2� . �5�

The functions Ki are given by the following integral:

Ki�
,�� = �
0


+1/2

f�x,��gi�x,
�dx , �6�

with f�x ,��=x3/2�5�+2x�e−
−1/2 / �1+2�� being a contribu-
tion from the density of states per unit length in the semilin-
ear potential, g1�x ,
�=e−x�
−x−1/2�+e−
−1/2, and g2�x ,
�
=e−
−1/2�3+2
−x�+e−x��
+1/2�2−2−3x /2−
x�.

The solid lines in Fig. 1 depict the evolution of the beam’s
flux and temperature obtained by solving the hydrodynamic
equations �4�, assuming that the evaporation parameter 
 re-
mains constant throughout the evaporation. The initial con-
ditions are the experimental ones of Ref. �9�, in which 87Rb
��=�B/2� atoms are used: at z=0, one has �=7
�109 atoms/s, v=60 cm/s, and T=570 �K. The gradient is
800 G/cm and a B0=1 G bias field is applied. When one
increases the value of 
, degeneracy �phase-space density
	�1� is achieved for higher fluxes �and therefore higher
temperatures� since the evaporated particles are very ener-
getic and consequently the evaporative cooling is more effi-
cient. The change in the slope of the “evaporation trajecto-
ries” for T��B0 /kB�30 �K is due to the fact that the
confinement experienced by the atoms changes from essen-
tially linear ��=0.06�1� to essentially harmonic ���1� as
the temperature is reduced. Indeed, the gain in phase-space
density scales differently with the shape of the potential
�4,5,7�.

IV. DISCRETE-STEP MODEL

We now turn to the description of the evaporative cooling
process with a discrete-step model. One evaporation step re-
duces the atomic flux from � to ��. After rethermalization,

FIG. 1. Evaporation “trajectories” in the temperature-flux plane,
for evaporation with a constant 
 for the continuous model �solid
lines� and for the discrete one �dots, each symbol representing the
effect of one evaporation step�. The background gray scale �with the
white labels� shows the on-axis phase-space density. The qualitative
shapes of those trajectories are similar for both models. For 
 high
enough �e.g., 
=8�, the trajectories are very close in both models.
The number of evaporation zones required for reaching degeneracy
in the discrete-step model, for 
=5 �6, 8�, is 88 �152, 526�.
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the beam acquires a new temperature T�. In order to calculate
the relative variations of flux �=�� /� and of temperature
�=T� /T, we adapt the approach of Ref. �7� to the semilinear
potential and to the energy-dependant evaporation criterion.
We therefore introduce the two-dimensional density of states
���� in the semilinear potential �1�: �������2+� / ��B0��.
The fraction � of remaining atoms after one evaporation step
is

��
,�� =

�
0


kBT

����e−�/kBTd�

�
0

�

����e−�/kBTd�

�7�

=1 −
2 + 2��1 + 
� + 
�2 + 
�

2�1 + ��
e−
.

�8�

In order to derive �, we first calculate the transverse energy �̄
of the remaining atoms

�̄ =

�
0


kBT

�����e−�/kBTd�

�
0

�

����e−�/kBTd�

. �9�

We define the dimensionless parameter ��
 ,��� �̄ / �kBT�
�15�. The conservation of the total energy during rethermal-
ization gives

kBT��� +
��

2
	 = ���U�T�,�� + ��

3kBT�

2
, �10�

where the average �U�T�,�� of the potential is taken at thermal
equilibrium with a temperature T�, i.e., with ��=� /�. This
yields a quadratic equation in �, with the solution

� =
2� + � − 5�� + �28���2� + �� + �2� + � − 5���2

14�
.

One then readily obtains the relative variations of the colli-
sion rate � and of the phase-space density 	 after an evapo-
ration step.

The corresponding evaporation trajectories �for 
 con-
stant� are depicted with circles on Fig. 1. Each symbol rep-
resents the flux and temperatures ��n ,Tn� of the beam after
the nth evaporation zone.

V. DISCUSSION

We compare the results given by the two models, in terms
of evaporation trajectories and of the efficiency of evapora-
tion. As depicted on Fig. 1, the evaporation trajectories have
the same qualitative behavior in both models. However, for a
given 
, the discrete-step evaporation leads to higher final
fluxes and temperatures. For a high evaporation parameter
�
=8�, the trajectories given by both models almost coin-
cide.

To make these statements more quantitative, we introduce
the figure of merit for an evaporative cooling ramp, i.e., the
relative variation of the beam’s phase-space density 	 for a
given loss of particles. We therefore define the evaporation
efficiency � as

� � −
d ln 	

d ln �
. �11�

This quantity is straightforward to calculate for a given
evaporation model. Figure 2 represents ��
� for the case of a
harmonic transverse confinement. As expected, � increases
with 
 in both models. It appears that discrete-step evapora-
tion is more efficient than the continuous one, which can be
understood qualitatively by the fact that in the latter scheme,
some atoms are evaporated without giving rise to a tempera-
ture reduction, a process commonly called “spilling” �1,5�.
However, for 
 high enough, the efficiencies of both models
almost coincide.

We now turn to the kinetics of evaporation: for a given
shape of the potential �linear or harmonic� and a given value

D of the evaporation parameter in the discrete model, we
determine the corresponding parameter 
C�
D� for the con-
tinuous model, which leads to the same evaporation trajec-
tory in the �T ,�� plane. This mapping allows us to extract
information on the kinetics aspects of the rethermalization
between evaporation zones for the discrete models. More
precisely, we infer the number Nc of collisions required to
rethermalize between successive zones. For this purpose, we
integrate over time the collision rate from the continuous
model, with an evaporation parameter 
C�
D�, between two
points �Tn ,�n� and �Tn+1 ,�n+1� of the evaporation trajectory
obtained with the discrete model.

To allow for a quantitative comparison between linear and
harmonic confinements, we scale the evaporation parameter

D as in Ref. �4� by defining 
̃D=
D /2 �
̃D=
D /3� for a
harmonic �linear� confinement. Evaporation with a given
normalized parameter 
̃D then yields approximately the same
flux reduction, independently of the shape of the confining
potential. On Fig. 3, we have depicted Nc as a function of 
̃D,

FIG. 2. Evaporation efficiency � as a function of the evaporation
parameter 
, for a harmonic transverse confinement. The solid
�dashed� line corresponds to the continuous �discrete-step� evapora-
tion model.
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for both linear and harmonic confinements. As expected, Nc
decreases with increasing 
̃D, since the atomic distribution is
less and less affected by the evaporation, yielding a faster
relaxation toward equilibrium. For a linear confinement,
50%–100% more collisions �as compared to the harmonic
one� are required for rethermalization between evaporation
zones. This dependence of the kinetics on the shape of the
confining potential is reminiscent of what is known for ther-
malization of confined gas mixtures �16�: the rethermaliza-
tion time is shorter in a homogeneous system than for a
trapped cloud. In a power-law trap of exponent �, the rether-
malization time decreases when � increases, which simply
originates from the different scaling laws of the density of
states.

Therefore, two competing effects need to be considered
when one studies the whole evaporation process: in a linear
potential, the kinetics is slow but the gains in collision rate
and in phase-space density scale more favorably �7� than in a
harmonic confinement. In terms of the minimum number of
collisions required to achieve a given gain in phase-space
density, those two effects compensate each other. For in-
stance, we find that at least 500 �630� collisions are neces-
sary to gain a factor 5�107 in phase-space density, in a
purely harmonic �linear� potential, for an evaporation param-
eter 
D�4.5 �
D�5.5�. However, in terms of evaporation
length, the difference between harmonic and linear confine-
ments is still large, as runaway evaporation can only occur in
the latter case for a two-dimensional evaporation. As an ex-
ample, we consider two beams with the same initial flux
�7�109 atoms per second� and temperature �200 �K�, with
an initial phase-space density 	i�8�10−7, propagating at
60 cm/s either in a purely harmonic guide, or in a purely
linear one. For the former case, the initial collision rate is
��37 s−1, and slightly decreases to ��29 s−1 after evapo-
ration to degeneracy. The evaporation is performed at 
C
=6, a value that minimizes the evaporation length Lev, which
reaches about 11 m. For a linear confinement, although the
initial collision rate is only ��19 s−1, its final value reaches
380 s−1 due to the runaway character of the evaporation. The
total length needed is only 6 m. Interestingly, the total num-
ber of collisions that actually occurred within the beam is

almost the same for both confinements ��550�, as is the
evaporation parameter minimizing Lev.

In practice, due to Majorana spin flips �10�, the guide
potential needs to be semilinear. For a guide with parameters
b=800 G/cm and B0=1 G, we have studied the minimal
evaporation length Lev needed to reach degeneracy, as a
function of the initial flux �i and initial temperature Ti, as-
suming a beam velocity of 60 cm/s. The result is plotted on
Fig. 4, and shows as expected that Lev decreases with lower
Ti and higher �i. The optimal evaporation parameter is al-
most constant with the value 
=6 for our range of param-
eters ��i ,Ti�. The evaporation length determined in this way
is very well fitted by a function of the form

Lev �
Ti

3/2

�i
. �12�

This scaling can be easily understood: since here the run-
away effect exists only at the very beginning of the evapo-
ration ramp, before the effective shape of the potential be-
comes harmonic, the evaporation length is simply inversely
proportional to the initial collision rate. For an initial flux
7�109 atoms/s, an initial temperature 200 �K, a guide gra-
dient b=800 G/cm, and a bias field B0=1 G, quantum de-
generacy is reached for Lev�7 m, which shows the benefi-
cial influence of the increase of the collision rate at the
beginning of the evaporation ramp when the potential is es-
sentially linear.

Actually, the evaporation length deduced here could be
reduced by lowering the beam’s mean velocity �e.g., with the
use of a tilted guide �17�� as it cools down, provided that the
beam stays supersonic enough.

FIG. 3. Number Nc of collisions necessary for rethermalization
between two evaporation zones �inferred by mapping the continu-
ous evaporation model onto the discrete one; see text� as a function
of the scaled evaporation parameter 
̃D. The solid �open� circles
correspond to a linear �harmonic� confinement.

FIG. 4. Minimal evaporation length Lev needed to reach a phase-
space density 	=1 with evaporation at constant 
 for an atomic
beam of initial flux �i and temperature Ti, propagating at 60 cm/s
in a guide with a gradient b=800 G/cm and a longitudinal bias field
B0=1 G. The isocontours of Lev show the large advantage of start-
ing with a temperature on the order of 100 �K for reaching degen-
eracy in a reasonable length. The optimal evaporation parameter 

is almost constant ��6� over the whole parameter space explored
here.
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