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Starting from a set of coupled Boltzmann equations, we investigate the thermalization of a two-species cold
atomic gas confined either in a box or in an isotropic harmonic trap. We show that the thermalization times, by
contrast to the collision rate, depend on the interferences between scattering partial waves. The dynamics of
thermalization in a harmonic trap is also strongly dependent upon the ratio between the collision rate and the
trap frequencies.
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I. INTRODUCTION

Ultracold mixtures of alkali-metal atoms have attracted
great interest among atomic physicists. The ability to simul-
taneously cool and trap multiple species offers the possibility
to study a large variety of physical phenomena such as, for
instance, Fermi-Bose mixtures �Ref. 1�.

Thermalization plays a crucial role in the cooling of a
sample by evaporation, and/or in the implementation of sym-
pathetic cooling. The detailed knowledge of the underlying
physics is all the more important for experiments where the
time available to perform evaporation is limited �2�, or for
the optimization of the evaporation ramp in the multipartial-
wave regime �3�. In addition the return to equilibrium of a
gas initially prepared in an out-of-equilibrium state is a
widely used way to infer the value of the scattering length
�4–10�.

The purpose of this paper is to provide a theoretical
framework to describe the thermalization between two cold
gases confined in a box or a harmonic trap. In contrast to
previous theoretical studies on this subject �6,7,11�, we ex-
plicitly take into account all partial waves involved in the
collision process, and we work out the role played by the
confinement in all collisional regimes. Since the basic
mechanism described by the Boltzmann equation is binary
collisions, two-component systems exhibit all the complexi-
ties of n-component systems. The generalization of the re-
sults we obtain to systems containing more than two species
is therefore straightforward.

The paper is organized as follows. Section II describes the
theoretical framework used to investigate the dynamics of
thermalization. Section III is devoted to the simple case of a
gas confined in a box. It gives the explicit expression for the
rethermalization time including the interference terms be-
tween all partial waves involved in the collision process.
Section IV addresses the same problem for a gas trapped in
an isotropic harmonic trap.

II. THEORETICAL FRAMEWORK

The gas i �i=1,2� consists of Ni particles of mass mi

initially thermalized at T i
0. The dynamics of the gas is de-

scribed by a set of two coupled Boltzmann equations for
each phase-space distribution function f i�r ,vi , t�:

� f i

�t
+ �f i,Hi� = Iii�f i� + Iij�f i, f j�, i � j . �1�

The distribution function f i for the species i is governed
by the Hamiltonian Hi through the Poisson bracket �f i ,Hi�,
and by binary collisions. The appearance of two collision
terms on the right-hand side of Eq. �1� is a result of the
possibility of f i to change through both self-collisions �i-i
collisions� or cross collisions �1-2�. The expression for the
collision integrals is

Iij�f i, f j� =� d2��d3vB�vB − vA�
d�ij

d2��

��f i�r,vA� ,t�f j�r,vB� ,t� − f i�r,vA,t�f j�r,vB,t�� ,

�2�

where i , j=1,2. They account for elastic collisions between
particles labeled A and B. We denote the velocities of the two
atoms before they interact with each other by vA and vB, and
after the collision by vA� and vB� . The expression for the col-
lision terms can be easily extended to include the effects of
both Bose and Fermi statistics leading to the Boltzmann-
Nordheim equation �12,13�. In fact, most of the results dis-
cussed in this paper also hold in the presence of quantum
degeneracy, provided the system is not Bose-Einstein con-
densed. The quantitative estimates of collision effects
presented in this work are, however, based on classical sta-
tistics. As shown in Ref. �11� for bosons and Ref. �14� for
fermions, our approach, based on the result of the classical
physics, is valid as soon as the temperature of the sample is
larger than twice the temperature for degeneracy, i.e., the
critical temperature for bosons and the Fermi temperature for
fermions.

The collision problem is simplified by an appropriate
change of variables. We introduce the center-of-mass veloc-
ity v0= �mAvA+mBvB� / �mA+mB�, the total mass M =mA+mB,
the relative velocity vr=vA−vB, and the reduced mass
�=mAmB /M. The relative velocity changes from the value vr
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before the collision to the value vr� after the collision, keep-
ing the same value for the modulus vr=vr� because of
energy conservation. The collision process is described
by specifying the scattering direction with the polar angle
�� and the azimuthal angle �� of the final relative velocity
vr� with respect to the initial relative velocity vr before
the collision. The corresponding solid angle d2��
=d��sin ��d��enters the expression for the integrand of the
collision integrals.

The angular dependence of the elastic scattering directly
derives from the partial-waves decomposition of the scatter-
ing amplitude in the quantum-mechanical description of in-
teractions �15�. For nonidentical atoms, the asymptotic form
of the scattering amplitude f�k ,��� reads

f�k,��� =
1

k
	
l=0

�

�2l + 1�ei	lsin�	l�Pl�cos����� , �3�

where k=�vr /
, ��� �0,�� and Pl�cos����� are the Leg-
endre polynomials. All the complexity of the interatomic po-
tential is contained in the k dependence of the phase shifts 	l.
The differential cross section for nonidentical atoms is given
by d�12/d��= �f�k ,����2.

For identical atoms, we have to take into account the �an-
ti�symmetrization principle. Accordingly the differential
cross section takes the form

d�ii

d��
= �f�k,��� + �f�k,� − ����2, �4�

where �=1 for bosons and �=−1 for fermions. The
integration must be carried out only in the half sphere
��� �0,� /2�. As a consequence of the parity of the spherical
harmonic, the only partial waves contributing to the scatter-
ing cross section for polarized bosons �respectively, fermi-
ons� correspond to even �respectively, odd� values of l. The
interference between partial waves is contained in the differ-
ential cross section �16�.

A relevant parameter to describe the thermalization of the
gases is the collision rate. The average total number of col-
lisions per unit of time 
ij for atom species i and j is ob-
tained by integrating over space and velocity the output
channel term of the collision integral in Eq. �2�:


ij =� d3rd3vAd3vB�ij�vA − vB�f i�r,vA,t�f j�r,vB,t� . �5�

From this quantity we deduce the expression for the mean
collision rate per atom �ij =
ij /Ni. The integrated cross sec-
tion �ij is just the sum of the contributions from partial
waves:

�ij�vr� = �1 + 	ij�	
l

4�

k2 �2l + 1�sin2	l, �6�

where the factor �1+	i,j� accounts for the constructive inter-
ference of undistinguishable scattering channels for identical
atoms, 	i,j being the Kronecker delta symbol. The sum in Eq.
�6� is taken over even �respectively odd� values for identical
�i= j� bosons �respectively fermions�, and over all integer
values for nonidentical atoms �i� j�. The expression for the

collision rate is just a simple sum over the partial waves, it
does not exhibit interference. This is to be contrasted with
the expression of the thermalization rate as will be illustrated
in the next section.

The determination of the thermalization rate is based on
the method of averages �17� combined with an appropriate
ansatz. Starting from Eq. �1�, one readily derives the equa-
tion for the average value of a general dynamical quantity
O�r ,vi�:

d
O�i

dt
+ 
O�f i,Hi��i = 
OIii�i + 
OIij�i, �7�

where the average is taken in both position and velocity
space: 
O�i=�d3rd3vi f i�r ,vi , t�O�r ,vi� /Ni. As a conse-
quence of the collisional invariants — number of atoms, mo-
mentum, and energy—
OiIii�i=0 if Oi is of the form
Oi=a�r�+b�r� ·vi+c�r�vi

2.

III. THERMALIZATION IN A BOX

As a first application of the model, we consider the
thermalization of a two-species gas in a box of volume V.
We assume that atoms can undergo only specular reflection
on the walls of the box, which can be realized experimentally
by using the dipolar optical force �18�. Initially, the
gases are at different temperatures T 1

0�T 2
0. After thermaliza-

tion, the temperature of the gases will be the same
Tf = �N1T 1

0+N2T 2
0� / �N1+N2�, within the Boltzmann dynam-

ics. To evaluate the thermalization time, we write the
equation for the mean total kinetic energy 
Nimivi

2 /2�i of
species i:

d

dt

Nimivi

2

2
�

i
= 
Nimivi

2

2
Iij�

i
� �i, j � i . �8�

The Poisson bracket of Eq. �7� vanishes for a homogeneous
system, and the self-collision integral term does not contrib-
ute because of conservation of kinetic energy for elastic col-
lisions. The calculation of the collision integral term requires
an ansatz for the distribution function. We choose a Gaussian
ansatz for the phase-space distribution function of each
species:

f i�vi,t� = Niexp�−
mivi

2

2kBTi
� , �9�

where Ni=Nimi
3/2 / �V�2�kBTi�3/2� is the normalization

factor. The time dependence is contained only in the
effective temperatures Ti. We assume that �T 1

0−Tf� /Tf �1
and �T2

0−Tf� /Tf �1. Consequently, we can evaluate the total
number of cross collisions per unit of time by setting
T1=T2=Tf in Eq. �5� with the Gaussian ansatz for the distri-
bution functions:


12 =
2

��

N1N2

V
c
�12� , �10�

where we have introduced the velocity c= �2kBTf /��1/2

and the thermally averaged cross section

�12�=2�0

�dx �12�cx�x3e−x2
.
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The expansion around the final temperature Tf of the col-
lision terms yields a set of linear equations. We can rewrite
them in the form �see Appendix A�:

d�Ti − Tj�
dt

= − �Ni + Nj

NiNj
�Ti − Tj

�
, i � j , �11�

with

1

�
=

8�

3M



�12��

�12�


12, �12�

where 

�12��=�0
�dx�̃12�cx�x5e−x2

. The quantity �̃12�cx� is
defined as

�̃12�cx� = 2��
0

�

sin ���1 − cos ���
d�12

d��
d��. �13�

The interesting feature of this expression arises from the in-
terference between partial waves resulting from the angular
integration. This is in contrast to the expression for the total
cross section, which just contains a simple sum over partial
waves. We show in Appendix A that interference occurs only
between partial waves differing by at most one unit of angu-
lar momentum.

We thus find that the relaxation corresponds to an expo-
nential decay but the thermalization times � is not in general
proportional to the collision rate because it contains partial
wave interferences terms.

At very low temperature where only s waves contribute to
the collision process, no interference can occur and the re-
laxation time is proportional to the inverse of the collision
rate. If the cross section depends on the relative wave vector
k of the collision, the factor of proportionality depends on
temperature.

For a cross section of the form �12�k�=4�a12
2 / �1+a12

2 k2�,
one finds


�12� = 4�a12
2 ��1 − �e�
�0,��� ,



�12�� = 2�a12
2 ��1 − � + �2e�
�0,��� , �14�

where �=
2 / �2�kBTf a12
2 � and 
�a ,z�=�z

�ta−1e−tdt. In the
very low-temperature limit ��1, we have 
�12�= 

�12��
=4�a12

2 ; in the unitary limit ��1, we obtain

�12�=2

�12��=2�
2 / ��kBTf�. As a consequence, the num-
ber ��
12� of interspecies collisions per atom required to
equilibrate the temperature of a two-component system made
of atoms of the same mass varies from 1.5 in the very low-
temperature limit to 3 in the unitary limit according to Eq.
�12�.

In the following, we explicitly derive the curves for
the thermalization time � and the interspecies collision rate �
for the same number of 87Rb atoms N1=N2=N in two differ-
ent internal states �5S1/2, F=2, m=1� and �5S1/2, F=1,
m=−1�. This calculation has been performed by taking
into account the first five partial wave contributions for
the cross collisions �19�. We plot in Fig. 1 the average cross
section 

�12�� normalized to its value with the cross section
taken at zero energy. The resonance shape results from a
d-wave resonance, which in turn tends to magnify the

interference terms between p-d, and d-f partial waves,
leading to a significant difference between the thermalization
times calculated with and without the inclusion of interfer-
ence terms.

IV. THERMALIZATION IN AN ISOTROPIC
HARMONIC TRAP

We have shown in the previous section that the relation
between the collision rate and the thermalization rate is
strongly affected by partial wave interferences. In this sec-
tion we emphasize the role played by the confinement, and
we derive the dynamics of the thermalization in all colli-
sional regimes �20�.

For the sake of simplicity, we consider the thermalization
of an atomic mixture confined in a harmonic and isotropic
trap:

Ui�x,y,z� =
1

2
mi�i

2�x2 + y2 + z2� . �15�

By application of the method of averages, we derive the
following set of six coupled equations starting from the evo-
lution of the square radius:

d
r2�i

dt
= 2
r · vi�i,

d
r · vi�i

dt
= 
vi

2�i − �i
2
r2�i + 
r · viIij�i,

d
vi
2�i

dt
= − 2�i

2
r · vi�i + 
vi
2Iij�i. �16�

The momentum and kinetic energy equations for the indi-
vidual species include a contribution from the interspecies
collision term, expressing the fact that it is the total momen-
tum and total kinetic energy of the system rather than the

FIG. 1. Averaged cross sections 

�12�� and 
�12� normalized to
their value at zero temperature as a function of the final temperature
of the mixture made of rubidium 87 in the two different internal
states �5S1/2, F=2, m=1� and �5S1/2, F=1, m=−1�. The resonance
shape results from a d-wave resonance. The quantity 
�12� is rep-
resented in dotted lines. The calculation of 

�12�� made with inter-
ference terms �solid line� differs notably from the calculation where
those terms are neglected �dashed line�.
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individual species’ momentum and kinetic energy that are
summational invariants. These dissipative contributions to
the species equations do not appear in the equation for the
radius since the collision is local and the number of atoms
for each species is conserved.

In the absence of interspecies interactions the set of
Eqs. �16� describes the monopole mode �17,21,22� of both
species independently. The collision terms involving Iii do
not contribute to the above equations because all the dy-
namic quantities are collision invariant for intraspecies col-
lisions. This is why there is no damping for the breathing
mode of a single-species classical gas confined in a harmonic
isotropic trap. In this particular geometry and in the presence
of two species, the relaxation only occurs through the inter-
species collisions whatever the collisional regime of a given
species may be.

The total number of interspecies collisions per unit of
time 
12 can be evaluated after the thermalization, once equi-
librium has been reached:


12 =
N1N2c
�12�

�2�2
���1�2

kBTf

�m1 + m2��1�2

m1�1
2 + m2�2

2 �3/2

. �17�

As the initial state of the mixture is assumed to be not too
far from the final state, this expression gives a reliable esti-
mate of 
12 during the thermalization process. The set of
Eqs. �16� is exact within the Boltzmann formalism. To cal-
culate quantitatively the relaxation driven by interspecies
collisions, we make a Gaussian ansatz for the phase-space
distribution function f i� f i�r ,vi , t� of each species, with the
inclusion of a factor taking into account the space-velocity
correlations:

f i = Niexp�−
mivi

2 + mi�i
2r2

2kBTi
��1 + �imir · vi� , �18�

where Ni is the normalization factor. The effective tempera-
ture Ti and the parameter �i are the only time-dependent
variables. Such an ansatz is inspired by the exact solution for
the phase-space distribution function for the monopole
mode, and provides a natural generalization of the local equi-
librium distribution. For one species the Gaussian ansatz was
shown to be accurate for investigating the damping of the
coupled monopole-quadrupole oscillations in an anisotropic
harmonic trap from the collisionless to the hydrodynamic
regime �17�. At the lowest order, the space-velocity correla-
tions only enter the momentum equations 
r ·viIij�i, while
they can be neglected for the calculation of the term involv-
ing the kinetic energy 
vi

2Iij�i. The details of this calculation
can be found in Appendix B. We find


r · v1I12�1 = −
m1�1

2
r · v1�1 − m2�2
2
r · v2�2

m1N1�1�2�̃
, �19�


v1
2I12�1 = −

m1
v1
2�1 − m2
v2

2�2

m1N1�
, �20�

where the time constants �̃ and � are given by

1

�̃
=

4

3

��1�2

m1�1
2 + m2�2

2



�12��

�12�


12, �21�

1

�
=

8

3

�

M



�12��

�12�


12. �22�

Combining Eq. �16�, and Eqs. �19�–�22�, we obtain a closed
set of six linear coupled equations. As a consequence, the
relaxation in a trap does not correspond in general to a
simple exponential decay.

We demonstrate the physics of rethermalization using
a specific example in which m1=m2=m, �1=�2=�,
N1=N2=N and keeping a constant cross section. However,
we emphasize that the conclusions we draw are generic. In
order to follow the thermalization it is convenient to intro-
duce the three quantities:

�1�t� = 
r2�1�t� − 
r2�2�t�,

�2�t� = 
r · v1�1�t� − 
r · v2�2�t�,

�3�t� = 
v1
2�1�t� − 
v2

2�2�t� .

We characterize the collisional regime through the quan-
tity ��0 with �0=N�. The behavior we obtain is reminiscent
of the one of the monopole-quadrupole mode relaxation in a
harmonic and anisotropic trap �17�. However, the observ-
ables 
r2�i, 
r ·vi�i, and 
v2�i and their equation of evolution
are not the same. The different regimes depend on the dimen-
sionless parameter ��0.

For ��0�1, the gas is in the collisionless regime �see
Fig. 2�. We can recover formally the results obtained in
the previous section, for a confinement of the gas in a
box, by neglecting the space-velocity correlation term in
the equation for �3, leading to an effective equation for
thermalization that is identical to Eq. �11�. In presence of
the harmonic confinement, �3 obeys a third-order differential
equation according to the set of Eqs. �16�. In the collisionless

FIG. 2. Evolution of the normalized moments �̂i as a function of

�t in the collisionless regime ��0=20: �̂1=�1�t� /�1�0� �solid line�,
�̂2=2�2�t� / ��1�0�+�3�0�� �dashed line�, and �̂3=�3�t� /�3�0�.
They account respectively for the difference in the mean value of
the square of the radii, the space-velocity correlations, and the
square of the velocity.
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regime, it can be recast, under our assumptions, in the
form

d�3

dt
� −

�3

�
.

The time needed for thermalization is longer for a confined
gas �see for comparison Eq. �11��. This is in agreement with
the results of Refs. �6,7�. This factor of 2 accounts for the
fact that the space of configuration is larger for a nonhomo-
geneous gas, and that the thermalization affects both the
space and velocity degrees of freedom.

The decay exhibits oscillations when the collisional re-
gime is such that ��0�0.5, with an amplitude scaling as
1/��0. In the intermediate regime ���0�1�, the space-
velocity correlations play a crucial role in the dynamics, and
the decay of the �i quantities is not exponential at all as
shown in Fig. 3. In the hydrodynamic regime ���0�1�, we
find two separate time scales: a rapid one for the relaxation
in velocity space, and a slow one for the relaxation of the
spatial widths �see Fig. 4�. We recover in this limit the clas-
sical behavior of hydrodynamics, with a short time needed to
reach a local equilibrium and a longer time to reach the glo-
bal equilibrium. The time needed to reach complete thermal-
ization is proportional to 1/ ��2�0�. In contrast to the colli-
sionless regime, this time increases with the interspecies
collision rate. We have also performed numerical simulations
based on molecular dynamics �23� to analyze the rethermal-

ization in all collisional regimes and for arbitrary values of
atom numbers, atomic masses, and harmonic trap frequen-
cies for the two species. We have obtained a good agreement
with the predictions of our model based on the ansatz �18�.

In an anisotropic trap with different trap frequencies
�i

�x,y,z�, one can derive a set of equations similar to Eq. �16�.
In this case the behavior of the relaxation is also influenced
by the damping of the quadrupole modes �17�.

V. CONCLUSION

In this paper, we have investigated the thermalization of a
nondegenerate atomic mixture. In our analysis we have taken
into account both the energy and angular dependence of the
interspecies elastic differential cross section. We have de-
rived the explicit form for the thermalization rate, which de-
pends on the interference between the partial waves while
the collision rate does not. In addition, we have shown how
the dynamics of the thermalization is modified by the colli-
sional regime in presence of a confinement.
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APPENDIX A: COLLISION INTEGRALS CALCULATION
IN THE HOMOGENEOUS CASE

The global conservation of kinetic energy in a collision
leads to �+=�1+�2=0. The symmetries of the collision in-
tegral permit one to rewrite the quantity �−=�1−�2 in the
useful form:

�− = �V� d3v0d3vr d2��vr
d�12

d��
�v0 · �vr − vr����1,2

1�,2�,

�A1�

where we have introduced the quantity �1,2
1�,2�

= f1�v1� , t�f1�v2� , t�− f1�v1 , t�f1�v2 , t�. The Gaussian ansatz �9�
for the distribution functions f i allows for an expansion of

�1,2
1�,2� around the final temperature Tf. We obtain

�− = −
�2V

kBTf
�T1 − T2

Tf
�N1N2� d3v0d3vrd

2��vr

�
d�12

d��
�v0 . �vr − vr���2exp�−

Mv0
2 + �vR

2

2kBTf
� . �A2�

From the calculation of �−, one obtains the set of linear Eqs.
�11� with the explicit form Eq. �12� for the relaxation times
�. The angular integration of Eq. �A2� leads to the quantity
�̃12�cx� defined in Eq. �13�. From the expansion of the scat-
tering amplitude in terms of partial waves �3�, we can recast
it in the form

FIG. 3. Evolution of the normalized moments �̂i as a function of
�t in the intermediate regime ��0=1, same notation as in Fig. 2.

FIG. 4. Evolution of the normalized moments �̂i as a function of
�t in the hydrodynamic regime ��0=0.2, same notation as in
Fig. 2.
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�̃12�cx� =
2�

k2 	
0�l�l���

�l,l�sin 	lsin 	l�cos�	l − 	l�� ,

�A3�

where we have introduced the dimensionless numerical fac-
tors �l,l�= �2−	l,l���2l+1��2l�+1��−1

1 �1−x�Pl�x�Pl��x�, 	l,l�
being the Kronecker delta symbol. The expression for the
coefficients �l,l� explicitly contains terms describing interfer-
ence between different partial waves. The properties of the
coefficient �l,l� are the following: �l,l�0, �l,l±1�0, �l,l�=0
otherwise.

Finally, we perform the Gaussian integration of Eq. �A2�,
and we work out the expression for the relaxation time � of
Eq. �12� according to the notation of Eq. �11�.

APPENDIX B: COLLISION INTEGRALS CALCULATION
FOR A HARMONIC CONFINEMENT

The calculation of the quantity 
v1
2I12� can be carried out

in a way similar to the one used in Appendix A. The terms in

�i of the ansatz �18� do not contribute at the lowest order.
To calculate the quantity 
r ·v1I12�, we introduce the quan-

tities �i=miNi
r ·viIij�i and �±=�1±�2. The global conser-
vation of momentum ensures �+=0. The first nonvanishing
contribution to the linearized expansion of �− is obtained by
setting T1=T2=Tf in the ansatz �18�. One finds

�− = − ��1 − �2��2N1N2� d3v0e−Mv0
2/2kBTf

�� d3rd3vrd
2��vr

d�12

d��
�r · �vr − vr���2

�exp�−
�m1�1

2 + m2�2
2�r2 + �vR

2

2kBTf
� . �B1�

The ansatz �18� provides the explicit link between the space-
velocity correlation moment and the parameters �i: 
r ·vi�i

=3�i�kBTf�2 / �mi�i
2�. This expression in combination with

Eq. �B1� permits one to derive the explicit expression �21�
for the relaxation time �̃ of the space-velocity correlation
equation.
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