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Mean-field effects in a trapped gas
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In this paper | investigate mean-field effects for a Bose gas harmonically trapped above the quantum
transition temperature in the collisionless regime. | point out that these effects can play a role in low dimen-
sional systems. My treatment relies on the Boltzmann equation with the inclusion of the mean-field term. I first
discuss the equilibrium state then derive the dispersion relation for collective oscillatimn®pole, quadru-
pole, and dipole modgsn D dimensions.
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The dynamics of Bose-Einstein condensaBEC9 of  whereyg~1/n~I, i.e.,{1p~1. In the regime wheré; is
dilute atomic gases are described by the Gross-Pitaevskinuch smaller than the mean interparticle separation the gas
equation( [1] and references therginThe main feature of acquires Fermi properties and is then called a gas of impen-
this equation is the mean-field term arising from the interacetrable bosons or Tonks gs].
tion between particles. Most of the BEC experiments are Finally, in low dimensional systems, the role of the mean-
carried out in the Thomas-Fermi regime where the interacfield even above the critical temperature of a quantum tran-
tion energy dominates the kinetic energy, resulting in an inSition is more important. Some experiments have prepared
verted parabola shape of the condensate density. HowevdpW dimensional condensates in optical and magnetic traps
the mean-field term in a Bose gas is not only found welll6]- Another class of experimen{§] has been done in the
below its critical temperaturE, , but also has a contribution "°ncondensed regime with the same kind of confinement.

. . 4 .
aboveT., and is even magnified by a kind of Hanbury- Hydrogen atoms onliquid’He also provide a two-

Brown and Twiss factor. Up to now most BEC experimentsd'mens'onal systenﬁs].. .Experllments. pgrformed on micro-
. . . chips offer the possibility of investigating the low dimen-
have been performed in the collisionless regitne., the

. . X sional regimg9,10].
mean frge collision rate IS small with respect.to the trap In this paper my aim is to extend the traditional treatment
frequencieswhere Fhe cor?trllbutlon of the mean-field of non- of the Bose gas above the critical temperature by taking into
condensed atoms is negligible. o account the mean-field contribution of particle interactions.
In order to specify the role of dimensionality, | introduce The method consists of including the classical mean-field
the dimensionless ratio of the mean-field energy to the theferm also known as the Viasov contribution, in the Boltz-
mal energy{=gn/kgT, wheren is the densityg accounts mann equation. So far, the collective oscillations of a Bose
for the mean-field strength i® dimensions, andr is the  gas above the critical temperature have been investigated
temperature. In three dimensio8D) the strength of the jthout the mean-field contribution in the hydrodynamic re-
pseudopotential ig=47i°a/m wherea is theswave scat-  gime [11,17, and an interpolation formula from the colli-
tering length that replaces the true two-body potential at lovsjonless up to the hydrodynamic regime has been proposed
energies. One readily establishes for 3D thét, [13,14.
~(na®)™(n\3p) 3, wherehgg=h(2mmksT) "2 is the de In Sec. |, we briefly recall the general framework based
Broglie wavelength. Consequently, for a dilute Bose gasn the Boltzmann equation. The stationary solution is dis-
above the critical temperatutgp<<1. Thus the results pre- cussed in Sec. Il. In Sec. I, we derive the frequencies of the
sented in this paper are valid as corrections in 3D. In twdow lying modes of a Bose gas for positive and negative
dimensions(2D) or in quasi-2D[2] (3D but with one “fro-  scattering length by means of a scaling ansatz. We obtain an
zen” direction in which particles undergo zero point oscilla- interpolation formula from the collisionless gas to the
tions) and in the weakly interacting limit, the quantifyp is  interaction-dominated thermal gd¥lasov ga$ in the ab-
only logarithmically small with respect t)oﬁB and the mean- sence of dissipation.
field energy can be comparable to the thermal energy above
the quantum transition temperatui€osterlitz-Thoules$3]).

In this paper, the 2D coupling constants taken constant, | I. FORMULATION
consequently neglect the logarithmical dependence on the
density. In one dimensiofLD) or in quasi-1D[4], the quan- In traditional BEC experiments, the Bose gas above the

tity {1p is of the order of i\ 4g)*(nlc) "> where the corre-  critical temperature is well described by the classical Boltz-
lation length is defined by.=#/{mgn Classical descrip- mann equatioi15], or the Uhlenbeck-Boltzmann equation
tion and mean-field theory can be used up to the regimgl6] if experiments are sufficiently accurate to measure the
deviation from the classical distribution. In the following, |
present the method for generalizing this equation when the
*Unite de Recherche de I'Ecole normale Stipare et de mean-field contribution is included.
I'Universite Pierre et Marie Curie, assoei@u CNRS. | consider an ensemble of harmonically trapped thermal
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atoms that evolves according to the Boltzmann-Vlasov ki-This result can also be shown in the classical hydrodynamic

netic equatiorj15,17): regime[12] under the same conditions. Strictly speaking this
situation can be approached only for low dimensional sys-
o, oty of g on o (1) tems. For intermediatg, Eq. (4) gives the proper interpola-

ot a o ov “moar gv o tion between the Gaussian and the Thomas-Fermi shape.

For g<0, the density distribution is sharpened with re-
wheref(r,v,t) is the single particle phase space distributionspect to the free Gaussian one. In fact, by increasing the
function, U=Eiwi2ri2/2 the confining potentialn= [fd°v number of atoms, the spatial extent of the distribution is
the density, ang) the mean-field strength iB dimensions. reduced. If the attractive energy overwhelms the kinetic en-
I .01 is the collisional integral describing relaxation processesergy the cloud collapses. One may obtain the criterion for
Note thatl .,;=0 in 1D because of conserved quantities. Thesuch a collapse in 3D by means of a Gaussian arfd&iz
Vlasov term[last term of the left-hand side of E¢l)], a and findsa.=33a,N"(a,/\4g)°. However, this result is
Hartree-Fock mean-field terrfil8], is even magnified for out of the range of validity of the classical approximation.
point-like interactions by a factor of 2 with respect to the

condensate for the same density. Indeed, for noncondensed Ill. COLLECTIVE OSCILLATIONS
clouds both the Hartree and the Fock terms contribute, OF A COLLISIONLESS GAS
whereas for the condensate only the former contributes. . i i i ) _
The kinetic equatioril) is valid for keT>7%w wherea is In this section | investigate the collective oscillations of a

Vlasov gas, i.e., in the absence of the dissipative tdig)(

the typical trap frequency and fom<a, where a ) _ L
¢ but with the mean-field contribution.

=[#/(mw)]*? is the oscillator quantum length. One mus
check that theswave approximation is valid. For instance, it

requires thag<\ 4 in 3D. A. Scaling ansatz method
| study the low-lying modegsmonopole, quadupole, and
Il. EQUILIBRIUM STATE dipole) by means of the scaling factor methid®,20—-23 in

D dimensions. | recall that in this method the proper shape of
the cloud does not enter directly in the equations. This is why
the solutions are equally valid for a Bose gas just above the
2) critical temperature as for a classical gas. | make the follow-
ing ansatz for the nonequilibrium distribution function:
) ) ) ) f(r,V,t):fO(R(t),V(t)) with Ri:ri/)\i and Vi=)\ivi
By multiplying Eq. (2) by vjrj and integrating over space _j ' so that the density profile is implicitly included in
and velocity, | deduce the average sizg) along thej axis  this ansatz. The dependence biis contained in the free

In equilibrium, Eq.(1) reads

2 - =_-. =

afg 29 dng dfg
S — r— . =
i=1 vlari @i I(?Ui m Jdr; Jdv;

[13]: parameters.; . By substituing this ansatz into E¢f), | find
g .
2,2 2 24D, _ V; of . of 2g Jng of
A~ (0] - o[ -0 @ Vidfo | o Gisamnlfo 28 o dfo]
e mN Z £2 IR MRV 0N Ty I} JR; V,

As expected, repulsive interactiong>0) favor a reduction )

of the density from the free particle case. The opposite berpig equation can be combined with E@) taken at the
havior is obtained in the case of attractive interactiogs ( phase space point £R,v=V) in order to replace the last

<0). We can extract the shape of the density by searchingyy, of Eq.(5) by a linear superposition off,/dR; and
for a factorized solution of Eq(2) of the form fy(r,v) fo/aV; . | finally obtain

=n,(v)ng(r). | find a Gaussian spherical distribution for the

velocity. The density distribution is a solution of the follow- v, v, \of, ) w? \ of,
i ion: — — —— | — —\:R 4+ W\ — —
ing equation: i >\i2 | 7R NRil N+ ol NI, |9V
xk In(ng) +2gne/m=p— >, w?r?/2, (4) =0. (6)
I

This equation provides the constraints on the ansatz.
wherexzfvjznvdeszT/m. In two limiting cases, the so- The first average moment[13] of RV, namely
lution has a simple form. Fay=0, | find the Gaussian shape [R;Vi[---]d°Rd°V/N, where [---] represents Eq.(6)
as expected for a harmonic confinement without the Vlasoveads to a set of Newton-like second order ordinary differen-
term. On the contrary, in the limit where the interparticle tial equations:
interactions also dominate and are repulsive, the shape of the
cloud is determined by a balance between the harmonic os-
cillator and the interaction energy resulting in an approxi-
mately inverted parabola. This is the same shape as found for
a harmonically trapped BEC in the Thomas-Fermi regimewith ¢=g(ng)/(g(ny)+kgT). Expanding Eq(7) around the
[1], since in this case the mean-field term also dominatessquilibrium value defined by;=1, | find the frequencies of

2
)\|+(1)|2)\|_ )\_|3+(1)2§

0 (7)
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the low energy collective oscillations of a Bose gas. Thisand the frequency of the quadrupole mode with azimuthal
expansion allows the determination of the “quadraticquantum numbeM =2: wzlwf=2(2—§). The limit é~1
modes,” namely the monopole and the quadrupole modes. gives the formulas derived by String&@5] for the low en-
ergy excitation spectrum of a BEC in the limit where the
B. Monopole mode energy of interaction predominates over the kinetic energy.
: . . . ! Low-lying collective excitations(monopole, quadrupole
Consider the case of isotropic harmonic confinement  qocyrym of a BEC are rather a proof of mean-field domi-
= wo. Then the scaling ansatz is in the kernel of the collisionyateq physics than a direct proof of superfluidity in the Lan-
integral and provides a solution of EGl) which is also in 45, sensg30]. The low-lying shape oscillations of noncon-
the collisional regime. An exact solution of this mode wasygnseq clouds have already been observed experimentally
first reported in[24] for the classical Boltzmann equation [31,32, but not in the regime where the mean-field can play

without mean-field: ) , a detectable role. As already pointed out, my calculation in
The small amplitude expansion of E) gives the fre- 3D is valid only if é&<1. For an isotropic 3D trap df;

?nuoedn;ywot/%oI%rrglc;dd?rf:n;itda:lzeinbtrk?:thrlgg- =wyp), t_he oscillation frequency splits into the monopole

Y ' o X p mode with a frequencyy=2wy(1+ &/8) and the quadru-

ence of. the -total effects of .coII|S|or(smean-f|eId term and pole mode with a frequencyy=2wo(1- £/4) as soon as |

dissipation vial o). In 3D this frequency ranges frome  {ake into account the mean-field.

in the absence of the mean-field term up\#w, when the

mean-field dominates. In the latter case one obtains the same

result as expected for a Bose-Einstein condensate in the D. Dipolar mode

Ao, . The diplar e which cortesponc to the g ot

cial féature of 2D aFI)ready investigated in RE26]. In this P&t the density profile is not _affected by the_mean-field. This
! . : can be shown by searching for a solution of the form

case, the scaling ansatz provides an exact solution oflfq. : .

In 1D, the monopole frequency ranges from@to 3w, F(r,v,t)=fo(R(1),V(1)) with Ri=r;—7 andV;=v;— ;.

when the mean-field dominates. The latter has been derivég@Cch component; is time dependent. Following the same

in [27] in the context of a 1D Bose-Einstein condensate. Thérocedure, | readily establish the equation of motionsfdry

same frequency for the monopole mode is also obtained for tking the average value & : 7, +{7;=0. | recover the

very different system: trapped ions in I28]. However, itis  fact that Kohn modes do not depend on interactions. This

a coincidence that happens only for the Coulomb potential.result is naturally unchanged if | take into account the colli-
sional integral contribution.

C. Quadrupolar mode

In 2D and 3D, Eq.7) provides the mean-field contribu- E. Discussion

tion to quadrupolar collective oscillations for a collisionless o= 0 is strictly speaking only applicable for a collision-
gas. In 2D, Eq(7) gives two coupled equations far, and  less gas §—0) and to the hydrodynamic reginfeollision
Ny, which, after linearization, yield the dispersion relation rate> trap frequencies In between| o is negligible with
respect to the Vlasov termé<a, wherea is a critical value
w2=£[(4— £)( w2+ w?) for the scattering length. The collision integr-al ig of the same
2 oy order of magnitude as the Vlasov contribution whgn
=ov?/, whereo=8ma? is the elastic cross section,is a
typical thermal velocity, and” a typical size. | take/

For £é=0, | recover the single particle excitation frequencywvlw and f|nd§=_0.03>\d3()\d5/ah)2. Just abc?"e the criti-

of the cloud:w=2w; for each spatial directiof29]. In the ~ cal temperaturea is of the order of the scattering length for
limit £¢=1, this relation can be derived from a purely hydro- the experiment of Ref9] performed on a microchip. For the
dynamic approachl1,12 by taking into account the mean- metastable helium experimel83] a is slightly smaller than
field contribution in the same limit. Formul@) also pro- the scattering length. Even though these experiments are not
vides finite temperature corrections to this regime and thén the Thomas-Fermi regime, one can no longer ignore
proper interpolation inbetween these two limiting cases. mean-field effects. In many BEC experiments,,<10~*

For a cylindrical 3D harmonic trap around tkeaxis (| which clearly justifies that it is neglected. However, in Ref.
denoteS=w,/w,), | can label the modes by their angular [9] this ratio is of the order of,,,~10% and could be
azimuthal numbeM, since the angular momentum along the increased by stronger longitudinal confinement. Further ex-
z axis is conserved. | find the eigenfrequencies of the modgeriments on microchipisL0] should allow for the reduction
M =0 (coupling between quadrupole and monopole mpdes of dimensionality. Dipolar traps can also be a useful {@3!

These techniques should help for the observation of classical
mean-field above a quantum transition.[88], the quantity

[(4- % wi— ) Haoiw V7. (8)

Wy
“’2:7[4+452_fi([4+4:32_§]2+8:32[_8+2§ {may IS of the order of 2810% as a consequence of the
large value of the scattering length and the high density of
+&)H, (9)  the sample.
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Two-dimensional quasi-condensates have been recentthat results derived herein hold also for the in phase motion
observed in a gas of hydrogen atoms on a lithte surface  of the two-component Fermi-system when the mean-field
[8]. The regime investigated in this experiment correspondplays a role.
to a mean field energy of the order of the thermal energy The mean-field contribution could be seen directly on the
(Zmax—=1). This kind of system may be very well suited for equilibrium shape of the gas situ. Time-of-flight measure-
studying the effects that | present in this paper. ment may allow for the direct observation of its contribution.
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