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Mean-field effects in a trapped gas
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In this paper I investigate mean-field effects for a Bose gas harmonically trapped above the quantum
transition temperature in the collisionless regime. I point out that these effects can play a role in low dimen-
sional systems. My treatment relies on the Boltzmann equation with the inclusion of the mean-field term. I first
discuss the equilibrium state then derive the dispersion relation for collective oscillations~monopole, quadru-
pole, and dipole modes! in D dimensions.
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The dynamics of Bose-Einstein condensates~BECs! of
dilute atomic gases are described by the Gross-Pitaev
equation~ @1# and references therein!. The main feature of
this equation is the mean-field term arising from the inter
tion between particles. Most of the BEC experiments
carried out in the Thomas-Fermi regime where the inter
tion energy dominates the kinetic energy, resulting in an
verted parabola shape of the condensate density. How
the mean-field term in a Bose gas is not only found w
below its critical temperatureTc , but also has a contribution
above Tc , and is even magnified by a kind of Hanbur
Brown and Twiss factor. Up to now most BEC experimen
have been performed in the collisionless regime~i.e., the
mean free collision rate is small with respect to the tr
frequencies! where the contribution of the mean-field of no
condensed atoms is negligible.

In order to specify the role of dimensionality, I introduc
the dimensionless ratio of the mean-field energy to the th
mal energyz5gn/kBT, wheren is the density,g accounts
for the mean-field strength inD dimensions, andT is the
temperature. In three dimensions~3D! the strength of the
pseudopotential isg54p\2a/m wherea is thes-wave scat-
tering length that replaces the true two-body potential at
energies. One readily establishes for 3D thatz3D

;(na3)1/3(nldB
3 )2/3, whereldB5h(2pmkBT)21/2 is the de

Broglie wavelength. Consequently, for a dilute Bose g
above the critical temperaturez3D!1. Thus the results pre
sented in this paper are valid as corrections in 3D. In t
dimensions~2D! or in quasi-2D@2# ~3D but with one ‘‘fro-
zen’’ direction in which particles undergo zero point oscill
tions! and in the weakly interacting limit, the quantityz2D is
only logarithmically small with respect toldB

2 and the mean-
field energy can be comparable to the thermal energy ab
the quantum transition temperature~Kosterlitz-Thouless@3#!.
In this paper, the 2D coupling constantg is taken constant, I
consequently neglect the logarithmical dependence on
density. In one dimension~1D! or in quasi-1D@4#, the quan-
tity z1D is of the order of (nldB)2(nlc)

22 where the corre-
lation length is defined byl c5\/Amgn. Classical descrip-
tion and mean-field theory can be used up to the reg
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whereldB;1/n; l c , i.e., z1D;1. In the regime wherel c is
much smaller than the mean interparticle separation the
acquires Fermi properties and is then called a gas of imp
etrable bosons or Tonks gas@5#.

Finally, in low dimensional systems, the role of the mea
field even above the critical temperature of a quantum tr
sition is more important. Some experiments have prepa
low dimensional condensates in optical and magnetic tr
@6#. Another class of experiments@7# has been done in the
noncondensed regime with the same kind of confinem
Hydrogen atoms on liquid 4He also provide a two-
dimensional system@8#. Experiments performed on micro
chips offer the possibility of investigating the low dimen
sional regime@9,10#.

In this paper my aim is to extend the traditional treatme
of the Bose gas above the critical temperature by taking
account the mean-field contribution of particle interactio
The method consists of including the classical mean-fi
term, also known as the Vlasov contribution, in the Bol
mann equation. So far, the collective oscillations of a Bo
gas above the critical temperature have been investig
without the mean-field contribution in the hydrodynamic r
gime @11,12#, and an interpolation formula from the colli
sionless up to the hydrodynamic regime has been propo
@13,14#.

In Sec. I, we briefly recall the general framework bas
on the Boltzmann equation. The stationary solution is d
cussed in Sec. II. In Sec. III, we derive the frequencies of
low lying modes of a Bose gas for positive and negat
scattering length by means of a scaling ansatz. We obtai
interpolation formula from the collisionless gas to th
interaction-dominated thermal gas~Vlasov gas! in the ab-
sence of dissipation.

I. FORMULATION

In traditional BEC experiments, the Bose gas above
critical temperature is well described by the classical Bo
mann equation@15#, or the Uhlenbeck-Boltzmann equatio
@16# if experiments are sufficiently accurate to measure
deviation from the classical distribution. In the following,
present the method for generalizing this equation when
mean-field contribution is included.

I consider an ensemble of harmonically trapped therm
©2002 The American Physical Society13-1
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atoms that evolves according to the Boltzmann-Vlasov
netic equation@15,17#:
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•

] f

]v
5I coll , ~1!

where f (r ,v,t) is the single particle phase space distributi
function, U5( iv i

2r i
2/2 the confining potential,n5* f dDv

the density, andg the mean-field strength inD dimensions.
I coll is the collisional integral describing relaxation process
Note thatI coll50 in 1D because of conserved quantities. T
Vlasov term@last term of the left-hand side of Eq.~1!#, a
Hartree-Fock mean-field term@18#, is even magnified for
point-like interactions by a factor of 2 with respect to t
condensate for the same density. Indeed, for nonconde
clouds both the Hartree and the Fock terms contribu
whereas for the condensate only the former contributes.

The kinetic equation~1! is valid for kBT@\v wherev is
the typical trap frequency and fora!ah where ah
5@\/(mv)#1/2 is the oscillator quantum length. One mu
check that thes-wave approximation is valid. For instance,
requires thata!ldB in 3D.

II. EQUILIBRIUM STATE

In equilibrium, Eq.~1! reads

(
i 51

D S v i

] f 0

]r i
2v i

2r i

] f 0

]v i
2

2g

m

]n0

]r i
•

] f 0

]v i
D50. ~2!

By multiplying Eq. ~2! by v j r j and integrating over spac
and velocity, I deduce the average size^r j

2& along thej axis
@13#:

v j
2^r j

2&2^v j
2&2

g

mNE n0
2dDr 50. ~3!

As expected, repulsive interactions (g.0) favor a reduction
of the density from the free particle case. The opposite
havior is obtained in the case of attractive interactionsg
,0). We can extract the shape of the density by search
for a factorized solution of Eq.~2! of the form f 0(r ,v)
5nv(v)n0(r ). I find a Gaussian spherical distribution for th
velocity. The density distribution is a solution of the follow
ing equation:

k ln~n0!12gn0 /m5m2(
j

v j
2r j

2/2, ~4!

wherek5*v j
2nvdDv5kBT/m. In two limiting cases, the so

lution has a simple form. Forg50, I find the Gaussian shap
as expected for a harmonic confinement without the Vla
term. On the contrary, in the limit where the interpartic
interactions also dominate and are repulsive, the shape o
cloud is determined by a balance between the harmonic
cillator and the interaction energy resulting in an appro
mately inverted parabola. This is the same shape as foun
a harmonically trapped BEC in the Thomas-Fermi regi
@1#, since in this case the mean-field term also domina
03361
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This result can also be shown in the classical hydrodyna
regime@12# under the same conditions. Strictly speaking th
situation can be approached only for low dimensional s
tems. For intermediateg, Eq. ~4! gives the proper interpola
tion between the Gaussian and the Thomas-Fermi shape

For g,0, the density distribution is sharpened with r
spect to the free Gaussian one. In fact, by increasing
number of atoms, the spatial extent of the distribution
reduced. If the attractive energy overwhelms the kinetic
ergy the cloud collapses. One may obtain the criterion
such a collapse in 3D by means of a Gaussian ansatz@19#
and findsac533ahN21(ah /ldB)5. However, this result is
out of the range of validity of the classical approximation

III. COLLECTIVE OSCILLATIONS
OF A COLLISIONLESS GAS

In this section I investigate the collective oscillations of
Vlasov gas, i.e., in the absence of the dissipative term (I coll)
but with the mean-field contribution.

A. Scaling ansatz method

I study the low-lying modes~monopole, quadupole, an
dipole! by means of the scaling factor method@12,20–23# in
D dimensions. I recall that in this method the proper shape
the cloud does not enter directly in the equations. This is w
the solutions are equally valid for a Bose gas just above
critical temperature as for a classical gas. I make the follo
ing ansatz for the nonequilibrium distribution functio
f (r ,v,t)5 f 0„R(t),V(t)… with Ri5r i /l i and Vi5l iv i

2l̇ i r i , so that the density profile is implicitly included i
this ansatz. The dependence ont is contained in the free
parametersl i . By substituing this ansatz into Eq.~1!, I find

(
i

H Vi

l i
2

] f 0

]Ri
2l iRi~ l̈ i1v i

2l i !
] f 0

]Vi
2

2g

P jl j

]n0

]Ri

] f 0

]Vi
J .0.

~5!

This equation can be combined with Eq.~2! taken at the
phase space point (r5R,v5V) in order to replace the las
term of Eq. ~5! by a linear superposition of] f 0 /]Ri and
] f 0 /]Vi . I finally obtain

(
i

H S Vi

l i
2

2
Vi

P jl j
D ] f 0

]Ri
2l iRi S l̈ i1v i

2l i2
v i

2

l iP jl j
D ] f 0

]Vi
J

50. ~6!

This equation provides the constraints on the ans
The first average moment@13# of RiVi , namely
*RiVi@•••#dDRdDV/N, where @•••# represents Eq.~6!
leads to a set of Newton-like second order ordinary differ
tial equations:

l̈ i1v i
2l i2

v i
2

l i
3

1v i
2jS 1

l i
3

2
1

l iP jl j
D 50 ~7!

with j5g^n0&/(g^n0&1kBT). Expanding Eq.~7! around the
equilibrium value defined byl i51, I find the frequencies of
3-2
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MEAN-FIELD EFFECTS IN A TRAPPED GAS PHYSICAL REVIEW A66, 033613 ~2002!
the low energy collective oscillations of a Bose gas. T
expansion allows the determination of the ‘‘quadra
modes,’’ namely the monopole and the quadrupole mode

B. Monopole mode

Consider the case of isotropic harmonic confinementv i
5v0. Then the scaling ansatz is in the kernel of the collis
integral and provides a solution of Eq.~1! which is also in
the collisional regime. An exact solution of this mode w
first reported in@24# for the classical Boltzmann equatio
without mean-field.

The small amplitude expansion of Eq.~7! gives the fre-
quency of the monopole mode~also called the breathing
mode!, v0A41j(D22), for all dimensions and in the pres
ence of the total effects of collisions~mean-field term and
dissipation viaI coll). In 3D this frequency ranges from 2v0

in the absence of the mean-field term up toA5v0 when the
mean-field dominates. In the latter case one obtains the s
result as expected for a Bose-Einstein condensate in
Thomas-Fermi limit@25#. In 2D I find 2v0 for the monopole
mode, a result independent of the mean-field which is a s
cial feature of 2D already investigated in Ref.@26#. In this
case, the scaling ansatz provides an exact solution of Eq.~1!.
In 1D, the monopole frequency ranges from 2v0 to A3v0
when the mean-field dominates. The latter has been der
in @27# in the context of a 1D Bose-Einstein condensate. T
same frequency for the monopole mode is also obtained f
very different system: trapped ions in 1D@28#. However, it is
a coincidence that happens only for the Coulomb potent

C. Quadrupolar mode

In 2D and 3D, Eq.~7! provides the mean-field contribu
tion to quadrupolar collective oscillations for a collisionle
gas. In 2D, Eq.~7! gives two coupled equations forlx and
ly , which, after linearization, yield the dispersion relation

v25
1

2
@~42j!~vx

21vy
2!

6@~42j!2~vx
22vy

2!214vx
2vy

2j2#1/2#. ~8!

For j50, I recover the single particle excitation frequen
of the cloud:v52v i for each spatial direction@29#. In the
limit j51, this relation can be derived from a purely hydr
dynamic approach@11,12# by taking into account the mean
field contribution in the same limit. Formula~8! also pro-
vides finite temperature corrections to this regime and
proper interpolation inbetween these two limiting cases.

For a cylindrical 3D harmonic trap around thez axis ~I
denoteb5vz /v'), I can label the modes by their angul
azimuthal numberM, since the angular momentum along t
z axis is conserved. I find the eigenfrequencies of the m
M50 ~coupling between quadrupole and monopole mod!:

v25
v'

2
@414b22j6~@414b22j#218b2@2812j

1j2# !1/2#, ~9!
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and the frequency of the quadrupole mode with azimut
quantum numberM52: v2/v'

2 52(22j). The limit j;1
gives the formulas derived by Stringari@25# for the low en-
ergy excitation spectrum of a BEC in the limit where th
energy of interaction predominates over the kinetic ene
Low-lying collective excitations~monopole, quadrupole!
spectrum of a BEC are rather a proof of mean-field dom
nated physics than a direct proof of superfluidity in the La
dau sense@30#. The low-lying shape oscillations of noncon
densed clouds have already been observed experimen
@31,32#, but not in the regime where the mean-field can p
a detectable role. As already pointed out, my calculation
3D is valid only if j!1. For an isotropic 3D trap (v i
5v0), the oscillation frequency splits into the monopo
mode with a frequencyvM.2v0(11j/8) and the quadru-
pole mode with a frequencyvQ.2v0(12j/4) as soon as I
take into account the mean-field.

D. Dipolar mode

The dipolar mode which corresponds to the rigid moti
of the density profile is not affected by the mean-field. Th
can be shown by searching for a solution of the fo
f (r ,v,t)5 f 0(R(t),V(t)) with Ri5r i2h i and Vi5v i2ḣ i .
Each componenth i is time dependent. Following the sam
procedure, I readily establish the equation of motion forh by
taking the average value ofVi : ḧ i1v i

2h i50. I recover the
fact that Kohn modes do not depend on interactions. T
result is naturally unchanged if I take into account the co
sional integral contribution.

E. Discussion

I coll50 is strictly speaking only applicable for a collision
less gas (a→0) and to the hydrodynamic regime~collision
rate@ trap frequencies!. In between,I coll is negligible with
respect to the Vlasov term ifa!ã, whereã is a critical value
for the scattering length. The collision integral is of the sa
order of magnitude as the Vlasov contribution wheng
5sv2l , wheres58pa2 is the elastic cross section,v is a
typical thermal velocity, andl a typical size. I takel

;v/v and findã50.03ldB(ldB /ah)2. Just above the criti-
cal temperature,ã is of the order of the scattering length fo
the experiment of Ref.@9# performed on a microchip. For th
metastable helium experiment@33# ã is slightly smaller than
the scattering length. Even though these experiments are
in the Thomas-Fermi regime, one can no longer ign
mean-field effects. In many BEC experiments,zmax,1024

which clearly justifies that it is neglected. However, in Re
@9# this ratio is of the order ofzmax;10% and could be
increased by stronger longitudinal confinement. Further
periments on microchips@10# should allow for the reduction
of dimensionality. Dipolar traps can also be a useful tool@7#.
These techniques should help for the observation of class
mean-field above a quantum transition. In@33#, the quantity
zmax is of the order of 20610% as a consequence of th
large value of the scattering length and the high density
the sample.
3-3
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Two-dimensional quasi-condensates have been rece
observed in a gas of hydrogen atoms on a liquid4He surface
@8#. The regime investigated in this experiment correspo
to a mean field energy of the order of the thermal ene
(zmax;1). This kind of system may be very well suited fo
studying the effects that I present in this paper.

IV. CONCLUSIONS

Mean-field effects for a Bose gas above the quantum t
sition temperature play an increasing role as the dimens
ality is reduced. This paper deals with the contribution of
mean-field to the low-lying collective modes of such a ga
derive, even for an interacting gas, the frequency of
monopole mode under isotropic harmonic confinement. N
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that results derived herein hold also for the in phase mo
of the two-component Fermi-system when the mean-fi
plays a role.

The mean-field contribution could be seen directly on
equilibrium shape of the gasin situ. Time-of-flight measure-
ment may allow for the direct observation of its contributio
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