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Collective oscillations of a classical gas confined in harmonic traps
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Starting from the Boltzmann equation, we calculate the frequency and the damping of the collective oscil-
lations of a classical gas confined by a harmonic potential. Both the monopole and quadrupole modes are
considered in the presence of spherical as well as axially deformed traps. The relaxation time is calculated
using a Gaussian ansatz which explicitly accounts for the occurence of quadrupole deformations in velocity
space. Our approach provides an explicit description of the transition between the hydrodynamic and colli-
sionless regimes. The predictions are in very good agreement with the results of a molecular-dynamics simu-
lation carried out in a gas of hard spheres.@S1050-2947~99!02312-4#

PACS number~s!: 03.75.Fi, 32.80.Pj, 05.20.Dd, 05.30.Jp
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I. INTRODUCTION

After the experimental realization of Bose-Einstein co
densation in trapped atomic gases@1#, the investigation of
collective excitations in these systems has become a
popular subject of research~see@2# for a recent theoretica
review!. At very low temperatures, when the the whole sy
tem is Bose-Einstein condensed, the motion is described
the hydrodynamic equations of superfluids. These equati
which can be directly derived starting from the mean-fie
Gross-Pitaevskii equation for the order parameter, give p
dictions @2,3# in very good agreement with experiments@4#.
At higher temperatures the mean-field effects become
important, while collisional terms cannot be ignored. If t
temperature is notably larger than the critical temperature
Bose-Einstein condensation the dynamical behavior of a
lute gas is well described by the Boltzmann equation. In t
case two different regimes may occur: a collisional~hydro-
dynamic! regime characterized by conditions of local stat
tical equilibrium and a collisionless regime where the mot
is described by the single-particle Hamiltonian. Differen
from the case of uniform gases, also in the collisionless
gime the system exhibits well-defined oscillations which
driven by the external confinement. The equations for
hydrodynamic regime were investigated in@5,6#, while a
phenomenological interpolation between the two regim
was proposed in@7#. A first attempt to describe the correctio
to the hydrodynamic limit using the Chapman-Enskog p
cedure was made in@8#.

The purpose of this paper is to provide an analysis of
lowest oscillation modes~eigenfrequency and damping! in a
harmonic trap with cylindrical symmetry, using an appro
mate solution of the classical Boltzmann equation. The m
aim is to study the transition between the hydrodynamic
collisionless regimes. Our approach relies on a Gaussian
satz for the distribution function. For harmonic trapping su
an ansatz exactly reproduces the solution of the class
Boltzmann equation in both the hydrodynamic and collisio
less regimes and is consequently expected to be a good
proximation also in the intermediate regime. We thus p
form a linear expansion of the collisional integral whic
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leads to an analytic evaluation of the relaxation time for
quadrupole mode. The corresponding predictions are c
pared with the exact results of a numerical simulation ba
on molecular dynamics.

In our paper atoms behave like hard spheres,s0 being
their total cross section which will be assumed to be ene
independent. This is well satisfied in classical ultracold ga
where collisions are completely characterized by thes-wave
scattering length and the cross section is thus isotropic an
most cases energy independent.

II. METHOD OF AVERAGES

The starting point of our analysis is the Boltzmann equ
tion for the phase space distribution functionf (r ,v1 ,t) @10#:

] f

]t
1v1•“ r f 1

F

m
•“v1

f 5I coll@ f #, ~1!

where

I coll@ f #5
s0

4pE d2Vd3v2uv22v1u@ f ~v18! f ~v28!2 f ~v1! f ~v2!#

is the usual classical collisional integral. It accounts for el
tic collisions between particles 1 and 2, with initial veloc
tiesv1 andv2, and final velocitiesv18 andv28 . The solid angle
V gives the direction of the final relative velocity. The e
pression for the collisional term can be easily extended
include effects of both Bose and Fermi statistics@9#. Actu-
ally most of the results discussed in this paper hold also
the presence of quantum degeneracy, provided the syste
not Bose-Einstein condensed and one can ignore mean-
effects. The quantitative estimates of collisional effects p
sented in this work will, however, be based on classical s
tistics.

The forceFtrap52“U trap(x,y,z) is produced by the con
fining potential which in the following will be chosen to b
of harmonic form:
4851 ©1999 The American Physical Society
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U trap~x,y,z!5
1

2
mv'

2 ~x21y2!1
1

2
mvz

2z2. ~2!

We introduce the anisotropy parameterl5vz /v' . For l
51, one deals with an isotropic harmonic trap, forl2!1
one has a cigar-shaped trap, and forl2@1 a disk-shaped
trap. Starting from Eq.~1!, one can derive useful equation
for the average of a general dynamical quantityx(r ,v):

d^x&
dt

2^v•“ rx&2 K Ftrap

m
•“vx L 5^xI coll&, ~3!

where the average is taken in both position and velo
space:

^x&5
1

NE d3rd3v f ~r ,v,t !x~r ,v!. ~4!

As a consequence of the invariance properties of the c
section, the quantitŷxI coll& can be written in the useful form

^xI coll&5
1

4NE d3rd3v1DxI coll@ f #, ~5!

whereDx5x11x22x182x28 with x i5x(r ,vi). The colli-
sional contribution~5! is equal to zero ifx corresponds to a
dynamic quantity conserved during the elastic collision. T
happens ifx can be written in the form@10,11#

x5a~r !1b~r !•v1c~r !v2. ~6!

III. MONOPOLE OSCILLATION IN HARMONIC
ISOTROPIC TRAPS

Let us consider a harmonic isotropic trapping poten
(vx5vy5vz[v0). As a first application of Eq.~3!, one
can immediately derive the behavior of the monopole mo
@11–13# by computing the evolution of the square radius:

d^r2&
dt

52^r•v&. ~7!

In order to obtain a closed set of equations one also need
following equations:

d^r–v&
dt

5^v2&2v0
2^r2& ~8!

and

d^v2&
dt

5v0
2^r2&. ~9!

The collisional term does not contribute to the above eq
tions because all the dynamic quantities satisfy the criter
~6!. So there is no damping for the ‘‘breathing’’ mode of
classical dilute gas confined in a harmonic isotropic trap. T
same is true if one includes quantum degeneracy effect
the collisional term.

By looking for solutions of Eqs.~7!–~9! evolving in time
aseivt one immediately finds the resultv52v0, holding for
all collisional regimes from the collisionless to the hydrod
y
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namical one. The occurrence of this monopole undam
solution was pointed out by Boltzmann~see, for example, the
discussion in@12#!.

It is worth noticing that the frequency of the classic
monopole oscillation in isotropic harmonic traps differs fro
the one of a Bose-Einstein condensed gas atT50. In the
latter case the monopole oscillation is still undamped, but
frequency, for largeN, is v5A5v0 @3#. The difference is the
consequence of the combined effect of Bose-Einstein c
densation and of the mean-field interaction. Furthermore
finite temperature the monopole oscillation is expected
exhibit damping because of the coupling between the c
densate and the thermal component of the gas.

Inclusion of mean-field effects on the left-hand side of t
Boltzmann equation~1! would modify the structure of the
system ~7!–~9! of equations for the monopole oscillatio
which would no longer correspond to a closed set of eq
tions. As a consequence, the monopole frequency would
shifted with respect to the value 2v0 and damped also in the
classical regime.

IV. DAMPING OF THE QUADRUPOLE OSCILLATION

The purpose of this section is to investigate the quad
pole mode of a classical gas as well as its coupling with
monopole oscillation arising in anisotropic traps. In this ca
the solution of the Boltzmann equation exhibits damping a
one has to deal explicitly with the collisional term. In th
presence of anistropy, thel z50 component of the quadru
pole is coupled with the monopole and one finally finds t
following set of coupled equations:

d^x1&
dt

22^x3&50,

d^x2&
dt

22^x4&50,

d^x3&
dt

2^x5&1
2v'

2 1vz
2

3
^x1&1

vz
22v'

2

3
^x2&50,

d^x4&
dt

2^x6&1
2vz

222v'
2

3
^x1&1

v'
2 12vz

2

3
^x2&50,

d^x5&
dt

1
2vz

214v'
2

3
^x3&1

2vz
222v'

2

3
^x4&50,

d^x6&
dt

1
4vz

224v'
2

3
^x3&1

4vz
212v'

2

3
^x4&5^x6I coll&,

~10!

where we have defined the quantities

x15r2,

x252z22r'
2 ,

x35r•v,

x452zvz2r'•v' ,
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x55v2,

x652vz
22v'

2 . ~11!

If the trap is isotropic (v'5vz), the set of Eqs.~10! de-
couples in two subsystems. One subsystem refers to the
damped monopole oscillations discussed in the prece
section. The other corresponds to the damped quadru
mode. Notice that collisions affect only the last equation
Eq. ~10!. Actually, only the variablex652vz

22v'
2 is not a

conserved quantity and hence does not satisfy the criter
~6!. The above results explicitly show that the relaxati
mechanism of the oscillations described by Eqs.~10! is de-
termined by the occurrence of quadrupole deformations
the velocity distribution which make the collisional integr
^x6I coll& different from zero. In principle, this term should b
calculated by a full solution of the Boltzmann equation, lea
ing to an infinite hierarchy of equations.

The central point of our treatment is the approxima
evaluation of̂ x6I coll& using a Gaussian ansatz of the form

f ~r ,v,t !5NS m

2p D 3a'az
1/2

u'uz
1/2

e2mU'
2 /2u'

3e2mUz
2/2uze2m(a'r'

2
1azz

2)/2, ~12!

wherer'5Ax21y2 andU5v2^v&. Equation~12! provides
a natural generalization of the local equilibrium distributio
by introducing a deformation not only in coordinate spa
~taken into account by thea parameters!, but also in velocity
space. These deformations are of the quadrupole type
consequently are well suited to describe the relevant c
sional effect entering the integral^x6I coll&. Deformations of
a similar form are responsible for the viscosity term in t
Chapman-Enskog expansion of statistical mechanics@10#.
One can show that, in the presence of harmonic trapping
Gaussian ansatz~12! describes exactly the monopole an
quadrupole oscillations both in the hydrodynamic and co
sionless regimes. In the former case, the velocity distribu
is isotropic and henceu'5uz . In the collisionless regimeu'

is instead different fromuz , corresponding to configuration
far from local equilibrium. Only in the presence of isotrop
trapping and for the monopole oscillation do the hydrod
namic and collisionless solutions coincide. In this case
ansatz~12!, with u'5uz anda'5az provides an exact so
lution of the Boltzmann equation.

In the limit of small oscillations around the equilibrium
configuration, the axial and transverse temperatures ca
expanded around the equilibrium valueu0:

u'5u01du' ,

uz5u01duz , ~13!

and one finds

^x6&5
2

m
~duz2du'! ~14!

showing that̂ x6& is directly sensitive to the anisotropy o
the velocity distribution. The collisional contribution to th
n-
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equation forx6 @last equation of the system~10!#, can be also
expressed in terms of this anisotropy. By inserting Eq.~12!
into Eq. ~5! with x5x6 we obtain, after linearization, the
expression~see the Appendix!

^x6I coll&52
2

t

~duz2du'!

m
52

^x6&
t

, ~15!

where the relaxation timet is given by

t5
5

4gcoll
. ~16!

Equation~16! provides an explicit link between the classic
collision rate@16#

gcoll5
n~0!v ths0

2
~17!

giving the number of collisions undergone by a given ato
per unit of time, and the relaxation time for the quadrupo
mode. In Eq.~17! v th5A8u0 /pm is the thermal velocity and
n(0) is the central density. Notice that this relationship
predicted to be independent of the anisotropyl of the trap
since the spatial dependence of the distribution function~12!
can be factorized in the calculation of the collisional integr

Result ~15!, when inserted into Eqs.~10!, permits us to
obtain a linear and closed set of equations which can
solved by looking for solutions of the typeeivt. The associ-
ated determinant then yields the dispersion law

~v224vz
2!~v224v'

2 !2
i

vt S v42
2

3
v2~5v'

2 14vz
2!

18v'
2 vz

2D50. ~18!

The first term of Eq.~18! corresponds to the dispersion la
for the pure collisionless regime (vt→`). In this case the
eigenfrequencies coincide with the ones predicted by
single-particle harmonic-oscillator Hamiltonian:vCL52vz
and 2v' . Viceversa, the term multiplying 1/t refers to the
pure hydrodynamical regime (vt→0). For a spherical trap
one getsvHD5A2v0 and 2v0 for the quadrupole and mono
pole modes, respectively. For a cigar-shaped configura
(l2!1) the two hydrodynamic solutions have instead t
form vHD5A12/5vz andA10/3v' @5#, while for a disk trap
(l2@1), one findsvHD5A8/3vz andA3v' .

Formula~18!, which provides the proper interpolation be
tween the collisionless and hydrodynamic regimes, can
simplified in the case of a spherical, cigar, and disk-sha
trap. In fact, the dispersion law~18! can be written in all
these limiting cases in the useful form

v25vCL
2 1

vHD
2 2vCL

2

11 ivt̃
~19!

typical of relaxation phenomena@7,14#. The timet̃ is related
to t by a simple numerical factor. For example,t̃5t for the
quadrupole mode in the spherical case, andt̃56t/5 (t̃
54t/3) for the lowest mode of the cigar-~disk! shaped con-
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4854 PRA 60DAVID GUÉRY-ODELIN et al.
figuration. A relevant feature of Eq.~19! is the presence o
an imaginary part, associated with the damping of the os
lation. By writing the frequency asv5v r1 iG one finds,
assumingG!v r ,

G.
t̃

2

vCL
2 2vHD

2

11~v r t̃ !2
. ~20!

Notice that the damping depends crucially on the differe
between the frequencies calculated in the collisionless
hydrodynamic regimes and exactly vanishes when these
quencies coincide. This happens, for example, in the mo
pole case for isotropic trapping, as discussed in the prev
section@15#.

In the hydrodynamic limit (v r t̃!1) the damping pre-
dicted by Eq.~20! takes the form

GHD.
t̃

2
~vCL

2 2vHD
2 !, ~21!

while in the opposite regime (v r t̃@1) one gets

GCL.
1

2vCL
2 t̃

~vCL
2 2vHD

2 !. ~22!

A maximum forG is found atv r t̃;1, leading toG;(vCL
2

2vHD
2 )/v r . Around this value, the approximation leading

Eq. ~20! is no longer accurate, and one should rather use
~18! or Eq. ~19!.

In a similar way one can also investigate the frequen
and the damping of thel z52 quadrupole modes for a ha
monic trap with cylindrical symmetry. In this case, the d
persion law can be exactly written in the form~19! with t̃
5t, vCL52v' , andvHD5A2v' .

V. NUMERICAL SIMULATION

In this section, we present results for the dispersion
arising from a numerical simulation, based on molecular
namics. Our aim is to check the quality of prediction~16! for
the relaxation time given by the Gaussian approximation
cussed in the preceding section. We considerN523104

particles moving in the potential~2!. Binary elastic collisions
are taken into account using a boxing technique@17,18#. At
each time stepdt, the position of each particle is discretize
on a square lattice with a stepj. The volumej3 of a box is
chosen such that the average occupationpocc of any box is
much smaller than 1. Collisions occur only between two p
ticles occupying the same box, and the time stepdt is ad-
justed in such a way that the probabilitypcoll of a collisional
event duringdt is also much smaller than 1. We choo
typically pocc;pcoll;5%.

Initial conditions for exciting the lowest energetical mo
are obtained by a deformation in coordinate and veloc
spaces of the cloud along the weak axes, keeping the ph
space density constant. We have checked that this me
leads to the excitation of only the lowest frequency mo
Then, we let the cloud evolve. The damped oscillation of
variablex252z22r'

2 is analyzed for different choices of th
collision rate. As an example, the oscillation frequency a
il-
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the damping for a cigar-shaped trap (l51/10) are plotted
~solid circles!, respectively, on Figs. 1 and 2. One observ
that the frequency decreases as the ratiovz /gcoll decreases
and tends asymptotically to the hydrodynamic val
A12/5vz51.55vz . For large value ofvz /gcoll , the fre-
quency instead approaches the collisionless value 2vz . By
performing a least-squares fit with formula~18!, we obtain

t5~1.2860.05!
1

gcoll
, ~23!

which agrees well with the Gaussian prediction~16!. The full
line on Figs. 1 and 2 corresponds to Eq.~18! with t given by

FIG. 1. Real part of the frequency of thel z50 mode of a clas-
sical gas confined in a cigar-shaped trap (l51/10), versus
vz /gcoll . The solid curve represents the prediction of the Gauss
ansatz. The circles are the numerical results obtained with a m
clular dynamics simulation.

FIG. 2. Damping of thel z50 mode of a classical gas confine
in a cigar-shaped trap (l51/10), versusvz /gcoll . The notations for
the line and the markers are the same as in Fig. 1.
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the Gaussian ansatz prediction~16!. We have also checke
that result~23! is independent of the value ofl, consistently
with the prediction of the Gaussian ansatz.

VI. CONCLUSION

In this work, we have presented an investigation of
collective frequencies of a classical gas trapped in a h
monic potential well. Starting from the classical Boltzma
equation, we have derived a set of coupled equations for
averages of the relevant dynamic variables associated
the monopole and quadrupole modes. The relaxation time
the quadrupole oscillation was evaluated by a Gaussian
satz for the distribution function and the quality of the a
proximation was checked by a numerical simulation ba
on molecular dynamics.

The results of the present work suggest that the Gaus
ansatz is very accurate for investigating the damping of
quadrupole oscillation and in general the transition betw
the hydrodynamic and the collisionless regimes of this mo
Our approach is based on the use of the classical Boltzm
equation as a natural starting point and consequently neg
the possible occurence of mean-field interactions. This ef
should be responsible, in particular, for the occurrence
damping in the monopole oscillation also in the case of i
tropic harmonic trapping. The investigation of the mean-fi
corrections as well as the inclusion of quantum statist
effects in the collisional term will be the object of a futu
investigation.

APPENDIX: COLLISIONAL INTEGRAL

The Appendix is devoted to the explicit calculation of t
collisional integral̂ x6I coll&. After linearization with respec
to du' andduz , this integral reads

^x6I coll&5
1

32p

ms0

Nu0
2E d3rd3U1d3U2

3uU12U2ud2V f 0~1! f 0~2!Dx6@du'~~U'
2 !18

1~U'
2 !282~U'

2 !12~U'
2 !2!1duz~~Uz

2!18

1~Uz
2!282~Uz

2!12~Uz
2!2!#, ~A1!

where f 0 is the Gaussian~12! evaluated at equilibium, and
Dx65(x6)11(x6)22(x6)182(x6)28 . Let us introduce the
center-of-mass velocityC and the relative velocity before
(V) and after (V8) collision:
an

e

v.

E

e
r-

he
ith
or
n-

-
d

an
e
n

e.
nn
cts
ct
f
-

d
l

U15C1V/2,

U25C2V/2,

U185C1V8/2,

U285C2V8/2. ~A2!

The conservation of kinetic energy during an elastic collis
ensures

V25V82, ~A3!

so that the collisional integral can be rewritten in the form

^x6I coll&52~duz2du'!
3

128p

ms0

Nu0
2

3E d3rdVd3Cd2Vd2VV

3V3f 0~1! f 0~2!@Vz
22Vz8

2
#2, ~A4!

whereV denotes the solid angle betweenV andV8, andVV
fixes the absolute angle ofV. Let us first calculate the angu
lar integral:

I V[E d2VVd2V@Vz
22V8z

2#2. ~A5!

As the integration is made on all relative velocity angles, o
can perform a change of variables and integrate over
anglesVV and VV8 independently. Using spherical coord
nates, one then easily finds the result

I V5V4
128p2

45
. ~A6!

The calculation of the collisional integral~A4! is now
straightforward as it involves only Gaussian integrals. W
finally obtain the useful expression

^x6I coll&52~duz2du'!
4

5m
v ths0n~0! ~A7!

for the collisional integral, wherev th is the thermal velocity.
Result ~A7! permits us to derive the main equations~15!–
~17! used in Sec. IV to calculate the relaxation timet and the
damping of the quadrupole mode.
.

.

.

tt.

tt.
@1# M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiem
and E. A. Cornell, Science269, 198 ~1995!; K. B. Davis,
M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfe
D. M. Kurn, and W. Ketterle, Phys. Rev. Lett.75, 3969
~1995!.

@2# F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Re
Mod. Phys.71, 463 ~1999!.

@3# S. Stringari, Phys. Rev. Lett.77, 2360~1996!.
@4# D. S. Jin, J. R. Ensher, M. R. Matthews, C. E. Wieman, and

A. Cornell, Phys. Rev. Lett.77, 420~1996!; M.-O. Mewes, M.
,

,

.

R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, C. G
Townsend, and W. Ketterle,ibid. 77, 998 ~1996!; M. R. An-
drews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G
Townsend, S. Inouye, and W. Ketterle,ibid. 79, 553 ~1997!;
80, 2967~E! ~1998!; U. Ernst, A. Marte, F. Schreck, J
Schuster, and G. Rempe, Europhys. Lett.41, 1 ~1998!.

@5# A. Griffin, Wen-Chin Wu, and S. Stringari, Phys. Rev. Le
78, 1838~1997!.

@6# Y. Kagan, E. L. Surkov, and G. Shlyapnikov, Phys. Rev. Le
79, 2604~1997!.



A

s

I,

s

n-

in

,

4856 PRA 60DAVID GUÉRY-ODELIN et al.
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