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Collective oscillations of a classical gas confined in harmonic traps
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Starting from the Boltzmann equation, we calculate the frequency and the damping of the collective oscil-
lations of a classical gas confined by a harmonic potential. Both the monopole and quadrupole modes are
considered in the presence of spherical as well as axially deformed traps. The relaxation time is calculated
using a Gaussian ansatz which explicitly accounts for the occurence of quadrupole deformations in velocity
space. Our approach provides an explicit description of the transition between the hydrodynamic and colli-
sionless regimes. The predictions are in very good agreement with the results of a molecular-dynamics simu-
lation carried out in a gas of hard spherg31050-294{09)02312-4

PACS numbs(s): 03.75.Fi, 32.80.Pj, 05.20.Dd, 05.30.Jp

[. INTRODUCTION leads to an analytic evaluation of the relaxation time for the
quadrupole mode. The corresponding predictions are com-
After the experimental realization of Bose-Einstein con-pared with the exact results of a numerical simulation based
densation in trapped atomic gaddd, the investigation of on molecular dynamics.
collective excitations in these systems has become a very In our paper atoms behave like hard sphergs being
popular subject of researdlsee[2] for a recent theoretical their total cross section which will be assumed to be energy
reviev\b_ At very low temperatures, when the the whole Sys_independent. This is well satisfied in classical ultracold gases
tem is Bose-Einstein condensed, the motion is described pyhere collisions are completely characterized by shveave
the hydrodynamic equations of superfluids. These equation§cattering length and the cross section is thus isotropic and in
which can be directly derived starting from the mean-fieldmost cases energy independent.
Gross-Pitaevskii equation for the order parameter, give pre-
dictiqns[2,3] in very good agreement with experimeipts. Il METHOD OF AVERAGES
At higher temperatures the mean-field effects become less
important, while collisional terms cannot be ignored. If the The starting point of our analysis is the Boltzmann equa-
temperature is notably larger than the critical temperature fotion for the phase space distribution functifr,v,,t) [10]:
Bose-Einstein condensation the dynamical behavior of a di-
lute gas is well described by the Boltzmann equation. In this of F
case two different regimes may occur: a collisiotfadro- E+v1-Vrf+ E‘Vvllecoll[f]y (h)
dynamig regime characterized by conditions of local statis-
tical equilibrium and a collisionless regime where the motion
is described by the single-particle Hamiltonian. Differently where
from the case of uniform gases, also in the collisionless re-
gime the system exhibits well-defined oscillations which are o0
driven by the external confinement. The equations for thel ¢ f]= 4—J' d2Qd3v | v — vy |[F (V) F(Vh) — F(vy) F(Vy)]
hydrodynamic regime were investigated [i,6], while a .
phenomenological interpolation between the two regimes
was proposed ifi7]. A first attempt to describe the correction is the usual classical collisional integral. It accounts for elas-
to the hydrodynamic limit using the Chapman-Enskog pro-ic collisions between particles 1 and 2, with initial veloci-
cedure was made if8]. tiesv, andv,, and final velocitiew; andv;. The solid angle
The purpose of this paper is to provide an analysis of thé) gives the direction of the final relative velocity. The ex-
lowest oscillation mode&igenfrequency and dampinop a  pression for the collisional term can be easily extended to
harmonic trap with cylindrical symmetry, using an approxi- include effects of both Bose and Fermi statis{ies Actu-
mate solution of the classical Boltzmann equation. The mairlly most of the results discussed in this paper hold also in
aim is to study the transition between the hydrodynamic andhe presence of quantum degeneracy, provided the system is
collisionless regimes. Our approach relies on a Gaussian anot Bose-Einstein condensed and one can ignore mean-field
satz for the distribution function. For harmonic trapping sucheffects. The quantitative estimates of collisional effects pre-
an ansatz exactly reproduces the solution of the classicalented in this work will, however, be based on classical sta-
Boltzmann equation in both the hydrodynamic and collision-tistics.
less regimes and is consequently expected to be a good ap- The forceF ;= — VU,{X,y,2) is produced by the con-
proximation also in the intermediate regime. We thus perfining potential which in the following will be chosen to be
form a linear expansion of the collisional integral which of harmonic form:
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1 1 namical one. The occurrence of this monopole undamped
Utraf(X,Y,2) :Emwf(x2+y2) + Emwfzz. (2)  solution was pointed out by Boltzmartsee, for example, the
discussion if12)).
We introduce the anisotropy parameter w,/w, . For A It is worth noticing that the frequency of the classical

=1, one deals with an isotropic harmonic trap, fcr<1  Monopole oscillation in isotropic harmonic traps differs from
one has a cigar-shaped trap, and ¥3&1 a disk-shaped the one of a Bose-Einstein condensed ga3a0. In the
trap. Starting from Eq(1), one can derive useful equations latter case the monopole oscillation is still undamped, but the

for the average of a general dynamical quanity,v): frequency, for largeN, is w= \5w, [3]. The difference is the
consequence of the combined effect of Bose-Einstein con-
d<X> < Ftrap

densation and of the mean-field interaction. Furthermore, at
T_<V'Vr)(>_ m Vx| =Xl ot (3 finite temperature the monopole oscillation is expected to
exhibit damping because of the coupling between the con-
where the average is taken in both position and velocitydensate and the thermal component of the gas.
space: Inclusion of mean-field effects on the left-hand side of the
Boltzmann equatior{l) would modify the structure of the
1 system (7)—(9) of equations for the monopole oscillation
x)= Nf drd3vi(r,v,t) x(r,v). (4 \which would no longer correspond to a closed set of equa-
tions. As a consequence, the monopole frequency would be
As a consequence of the invariance properties of the crosshifted with respect to the valuewg and damped also in the
section, the quantityy! o) can be written in the useful form classical regime.

1
X oot} = mf dPrd3v, Ayl o 11, ) IV. DAMPING OF THE QUADRUPOLE OSCILLATION

The purpose of this section is to investigate the quadru-
whereA y=x1+ x2— x1- — X2 With x;=x(r,v;). The colli-  pole mode of a classical gas as well as its coupling with the
sional contribution(5) is equal to zero ify corresponds to a monopole oscillation arising in anisotropic traps. In this case
dynamic quantity conserved during the elastic collision. Thisthe solution of the Boltzmann equation exhibits damping and

happens ify can be written in the fornj10,11] one has to deal explicitly with the collisional term. In the
presence of anistropy, tHe=0 component of the quadru-
x=a(r)+b(r)-v+c(rv2. (6)  pole is coupled with the monopole and one finally finds the

following set of coupled equations:
I1l. MONOPOLE OSCILLATION IN HARMONIC

d{x1)
ISOTROPIC TRAPS v _
Let us consider a harmonic isotropic trapping potential
(wx=wy=w,=wg). As a first application of Eq(3), one d{x2)
can immediately derive the behavior of the monopole mode T—2<X4)=0,
[11-13 by computing the evolution of the square radius:
d(r? d(x3) 207 +w) i-wf
2w, % X o)+ o )+ s ) =0,
In order to obtain a closed set of equations one also needs the d(y,) 202—20? w? 2
following equations: dt —(xe)+ 3 (x)+ 3 (x2)=0,
d(r-v
& ® A 2eitae? | 202207
dt 3 <X3> 3 <X4>_ '
and 2 2 2 2
d{xe) 4w;—4w] doi+ 2w
*) _ 20 © ot S (X5 (xa)=(xelcon).
dt =~ 7 (10)

The collisional term does not contribute to the above equawhere we have defined the quantities
tions because all the dynamic quantities satisfy the criterium

(6). So there is no damping for the “breathing” mode of a X1=r%,
classical dilute gas confined in a harmonic isotropic trap. The
same is true if one includes quantum degeneracy effects in X2=222—rf ;
the collisional term.

By looking for solutions of Eqs(7)—(9) evolving in time X3=TI"V,

ase'“! one immediately finds the result= 2w, holding for
all collisional regimes from the collisionless to the hydrody- X4=22ZV,— T -V,
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X5=V?, equation foryg [last equation of the syste(t0)], can be also
expressed in terms of this anisotropy. By inserting 8@)
Xe=2vi—vZ. (1)  into Eq. (5) with xy=xs we obtain, after linearization, the

expressior(see the Appendix
If the trap is isotropic {, = w,), the set of Eqs(10) de-
couples in two subsystems. One subsystem refers to the un- (X6l col) = — E (66,—66,) _ {Xe) (15)
damped monopole oscillations discussed in the preceding X6l coll T m T’
section. The other corresponds to the damped quadrupole o
mode. Notice that collisions affect only the last equation ofWhere the relaxation time is given by

Eq. (10). Actually, only the variableyg=2v2—v? is not a 5
conserved quantity and hence does not satisfy the criterium = ) (16)
(6). The above results explicitly show that the relaxation 4Ycal

mechanism of the oscillations described by Bdd) is d_e- . Equation(16) provides an explicit link between the classical
termined by the occurrence of quadrupole deformations i ollision rate[16]

the velocity distribution which make the collisional integral
(xsl con) different from zero. In principle, this term should be n(0)V oo
calculated by a full solution of the Boltzmann equation, lead- Yo =7 5 (17)
ing to an infinite hierarchy of equations.
The central point of our treatment is the approximategiying the number of collisions undergone by a given atom
evaluation of(xsl cor) USiNg a Gaussian ansatz of the form per unit of time, and the relaxation time for the quadrupole
mode. In Eq(17) vy,= V86y/mm is the thermal velocity and

v t):N(ﬂ)Saiailzeme’% n(O)_ is the cent_ral density. Notice tha_\t this relationship is
Y 2m) ¢, 9%’2 predicted to be independent of the anisotroppf the trap
since the spatial dependence of the distribution funatidh

Xe*mugmze* m(aﬂf+azzz)/2, (12 can be factorized in the calculation of the collisional integral.

Result(15), when inserted into Eq€10), permits us to
wherer | = x?+y? andU=v—(v). Equation(12) provides obtain a linear and closed set of equations which can be
a natural generalization of the local equilibrium distribution, solved by looking for solutions of the typg“'. The associ-
by introducing a deformation not only in coordinate spaceated determinant then yields the dispersion law
(taken into account by the parameters but also in velocity )
space. These deformatio_ns are of theT quadrupole type and (w2—4w§)(w2—4wf)—l—(w4—gw2(5wﬁ+4w§)
consequently are well suited to describe the relevant colli- T 3
sional effect entering the integrékgl o). Deformations of
a similar form are responsible for the viscosity term in the +8w? wg) =0. (18)
Chapman-Enskog expansion of statistical mechahi¢s.
ggﬁsi?gnsg?]\ggpétz’)Irzjtehsir?gzegigc(i&h?r:ren%‘;Cngzg%nghawhe first term of Eq(18) corresponds to the dispersion law

quadrupole oscillations both in the hydrodynamic and colli-1o" the pure collisionless regimao—¢2). In this case the

sionless regimes. In the former case, the velocity distributior?.'genfrequ.encIes c0|n9|de W'th the ones pred|cted by the
is isotropic and hence, = 6,. In the collisionless regimé, single-particle harmonic-oscillator Hamiltonianic, = 2w,

is instead different fron®,, corresponding to configurations and 2o, . V|cever§a, the'term multiplying i/refer; o the

far from local equilibrium. Only in the presence of isotropic pure hydrodynamical regimex(r—0). For a spherical trap,
trapping and for the monopole oscillation do the hydrody-ON€ 9€tSvHp= v2wo and 2w, for the quadrupole and mono-
namic and collisionless solutions coincide. In this case thé)oge modes, respectively. For a cigar-shaped configuration
ansatz(12), with 6, = 6, and @, = «, provides an exact so- (A°<1) the two hydrodynamic solutloqs have |r_15tead the
lution of the Boltzmann equation. form wyp= v12/5w, and 10/3w, [5], while for a disk trap

In the limit of small oscillations around the equilibrium (A\?>1), one findswp=\8/3w, and 3w, .
configuration, the axial and transverse temperatures can be Formula(18), which provides the proper interpolation be-

expanded around the equilibrium valdg: tween the collisionless and hydrodynamic regimes, can be
simplified in the case of a spherical, cigar, and disk-shaped
0, =0y+ 50, , trap. In fact, the dispersion laWi8) can be written in all
these limiting cases in the useful form
6,= 0o+ 56,, (13 , ,
Wyp™ WcL
and one finds W=t (19
l1tiwT
2 : . L~
(xe)= 5(502— 66,) (14 typical of relaxation phenomen,14]. The timer is related

to 7 by a simple numerical factor. For examptes 7 for the

showing that(xe) is directly sensitive to the anisotropy of quadrupole mode in the spherical case, and67/5 (7
the velocity distribution. The collisional contribution to the =417/3) for the lowest mode of the cigafdisk) shaped con-
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figuration. A relevant feature of Eq19) is the presence of 2.1
an imaginary part, associated with the damping of the oscil-
lation. By writing the frequency as=w,+il" one finds,
assumingl < w, ,

2.0

2 2
T WoL— W
=" CL ~HD. (20) 1.9

1.8

wr/wz

Notice that the damping depends crucially on the difference
between the frequencies calculated in the collisionless and
hydrodynamic regimes and exactly vanishes when these fre- 1.7
guencies coincide. This happens, for example, in the mono-
pole case for isotropic trapping, as discussed in the previous

section[15]. 1.6
In the hydrodynamic limit ¢, 7<1) the damping pre-
dicted by Eq.(20) takes the form 1.5 L L . .
_ 0 1 2 3 4 5
T wz/?’coll
FHDZE(‘U%L_waD)y (21)

FIG. 1. Real part of the frequency of thg=0 mode of a clas-
sical gas confined in a cigar-shaped trap=(1/10), versus
w, !y - The solid curve represents the prediction of the Gaussian
ansatz. The circles are the numerical results obtained with a mole-
clular dynamics simulation.

while in the opposite regimes(, 7>1) one gets

Ioi=—=(0& —oip). (22)
CUCLT

the damping for a cigar-shaped trap=f1/10) are plotted

A maximum forI is found atw,7~1, leading tol' ~ (w2,  (solid circles, respectively, on Figs. 1 and 2. One observes

— w?p) o, . Around this value, the approximation leading to that the frequency decreases as the rajdy., decreases
Eq. (20) is no longer accurate, and one should rather use Eq@nd _tends asymptotically to the hydrodynamic value
(18) or Eq.(19). V12/50,=1.550,. For large value ofw,/vy.y, the fre-

In a similar way one can also investigate the frequencyguency instead approaches the collisionless valug. By
and the damping of the,=2 quadrupole modes for a har- performing a least-squares fit with formul8), we obtain
monic trap with cylindrical symmetry. In this case, the dis-

persion law can be exactly written in the forfh9) with 7 7=(1.28+0.05

23
=7, we,=2w, , andwyp=\20), . Yeoll (
V. NUMERICAL SIMULATION which agrees well with the Gaussian predicti@). The full

line on Figs. 1 and 2 corresponds to Efg) with 7 given by

In this section, we present results for the dispersion law
arising from a numerical simulation, based on molecular dy- 0.3
namics. Our aim is to check the quality of predictid®) for
the relaxation time given by the Gaussian approximation dis-
cussed in the preceding section. We consibler 2x 10*
particles moving in the potenti&2). Binary elastic collisions
are taken into account using a boxing technifiié,18. At 0.2
each time stept, the position of each particle is discretized
on a square lattice with a stép The volumeg® of a box is 3
chosen such that the average occupapgg of any box is ~. r
much smaller than 1. Collisions occur only between two par- =
ticles occupying the same box, and the time sééps ad-
justed in such a way that the probabiliby,, of a collisional
event duringét is also much smaller than 1. We choose
typically pocc= Peon~5%.

Initial conditions for exciting the lowest energetical mode
are obtained by a deformation in coordinate and velocity
spaces of the cloud along the weak axes, keeping the phase- 0.0 0 1 5 3 4 5
space density constant. We have checked that this method 0,/
leads to the excitation of only the lowest frequency mode. 2/ Vool
Then, we let the cloud evolve. The damped oscillation of the |G, 2. Damping of thé,=0 mode of a classical gas confined
variabley,=2z2—r? is analyzed for different choices of the in a cigar-shaped trap.&= 1/10) Versusw,/ yq - The notations for
collision rate. As an example, the oscillation frequency andhe line and the markers are the same as in Fig. 1.

0.1
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the Gaussian ansatz predicti¢h6). We have also checked U;=C+V/2,
that result(23) is independent of the value af consistently
with the prediction of the Gaussian ansatz. U,=C—V/2,
VI. CONCLUSION U, =C+V'/2,
In this work, we have presented an investigation of the Uy, =C—V'/2. (A2)

collective frequencies of a classical gas trapped in a har-
monic potential well. Starting from the classical BoltzmannThe conservation of kinetic energy during an elastic collision
equation, we have derived a set of coupled equations for thensures
averages of the relevant dynamic variables associated with

the monopole and quadrupole modes. The relaxation time for

the quadrupole oscillation was evaluated by a Gaussian an- o ) ) )
satz for the distribution function and the quality of the ap-S° that the collisional integral can be rewritten in the form
proximation was checked by a numerical simulation based
on molecular dynamics.

The results of the present work suggest that the Gaussian
ansatz is very accurate for investigating the damping of the
guadrupole oscillation and in general the transition between
the hydrodynamic and the collisionless regimes of this mode.
Our approach is based on the use of the classical Boltzmann
equation as a natural starting point and consequently neglects

the possible occurence of mean-field interactions. This effect ) )
should be responsible, in particular, for the occurrence ofvhere(l denotes the solid angle betwerandV’, and(Q

damping in the monopole oscillation also in the case of isofixes the absolute angle f. Let us first calculate the angu-
tropic harmonic trapping. The investigation of the mean-field@r integral:
corrections as well as the inclusion of quantum statistical

effects in the collisional term will be the object of a future
investigation.

V2i=V'2 (A3)

mO'O
(X6l co) = —(56,— 56&)@ N_b’g

X f drdVvd3Cd?Qd?Q,,

XV3o(1)fo(2)[VE- V2,12, (A4)

|sz d2Q,d?Q[Vvi-V'2)2, (A5)

As the integration is made on all relative velocity angles, one
can perform a change of variables and integrate over the
The Appendix is devoted to the explicit calculation of the angles(ly and (y, independently. Using spherical coordi-

collisional integrak sl o). After linearization with respect nates, one then easily finds the result
to 60, and 40,, this integral reads

APPENDIX: COLLISIONAL INTEGRAL

. 12872
45

lo (AB)

1 mO'O 3 3 3
<X6|coll>:_32 — | d°rd*U,d°U, ) o _ )

T N6 The calculation of the collisional integralA4) is now
straightforward as it involves only Gaussian integrals. We

X U= Ul d®Qfo(1)fo(2) A xe[ 96, (UD)1s finally obtain the useful expression

+(U2)p—(U?)1—(U2),) + 80,((U2)1
+(U2), —(UH—(UDy)],

wheref, is the Gaussiarfl2) evaluated at equilibium, and

4
(A1) (X6l con)=—1(56,— 50L)%Vth0'0n(0) (A7)

for the collisional integral, wherey, is the thermal velocity.

AXGZ(X6)1+(XG)Z_(XG)l’_(X6)2’ . Let us introduce the
center-of-mass velocitfC and the relative velocity before

(V) and after ¥') collision:

Result(A7) permits us to derive the main equatiofi®)—
(17) used in Sec. IV to calculate the relaxation timand the
damping of the quadrupole mode.
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